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Chapter 9

VariationalMethods
It isn’t uncommon to encounter a system that is not particularly close to being solvable, rendering perturbation theory
at least unreliable and at worst completely unhelpful. There are an important class of techniques that go by the name
of variational methods that can be applied quite generally in these circumstances, though they often require a bit of
creativity to exploit well. In this chapter we present the essential idea behind these methods and study (again!) the
Helium atom as a nice example.

9.1 Rayleigh quotients for observables

The main tool behind our variational methods will be the so-called Rayleigh quotient.

Definition 9.1.1 (Rayleigh Quotient). For an observable A, the (real) function

f" : H −→ R ,

ψ #−→ Eʘ(A) =
〈ψ|A|ψ〉
〈ψ|ψ〉 .

(9.1)

is known as the Rayleigh quotient for A.

It may seem a bit overwrought to introduce a new name for what we already know as the expectation value of A in the
state ψ. The point here is to accentuate the fact that this is now being thought of as a (smooth) function on H, which
is not necessarily how we contextualised expectation values of observables previously.

A key property of the Rayleigh quotient is that the stationary values/vectors for f"(ψ) are precisely eigenvalue/vectors
for A. This can be demonstrated as follows.

Lemma 9.1.2. Given a linear subspace K ⊆ H, then

d
dt f"(ψ + tϕ)

∣∣∣∣
U=0

= 0 , ∀ϕ ∈ K ⇐⇒ 〈ϕ|A− f"(ψ)|ψ〉 = 0 ∀ϕ ∈ K . (9.2)

Proof. For ϕ ∈ K, also iϕ ∈ K, so stationarity with respect to adding ϕ implies

d
dt f"(ψ + tϕ) = 0 and d

dt f"(ψ + itϕ) = 0 . (9.3)

By direct computation, the first of these relations gives

0 =
d
dt
〈ψ + tϕ|A|ψ + tϕ〉
〈ψ + tϕ|ψ + tϕ〉

∣∣∣∣
U=0

,

=
d
dt
〈ψ|A|ψ〉+ t 〈ϕ|A|ψ〉+ t 〈ψ|A|ϕ〉+ O(t2)
〈ψ|ψ〉+ t 〈ϕ|ψ〉+ t 〈ψ|ϕ〉+ O(t2)

∣∣∣∣
U=0

,

=
〈ϕ|A|ψ〉+ 〈ψ|A|ϕ〉

〈ψ|ψ〉 − 〈ψ|A|ψ〉 (〈ϕ|ψ〉+ 〈ψ|ϕ〉)
〈ψ|ψ〉2

,

= 2+
(
〈ϕ|(A− f"(ψ))|ψ〉

〈ψ|ψ〉

)
.

This gives the real part of the desired equation. If we repeat the argument with ϕ → iϕ we get the imaginary part as
well, and thus deduce that for states that are stationary against adding vectors ϕ ∈ K,

〈ϕ|(A− f"(ψ))|ψ〉 = 0 . (9.4)
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Thus (A− f"(ψ)) |ψ〉 ∈ K⊥. !

If we set K = H, then K⊥ = {0} and we have the strong relation

(A− f"(ψ)) |ψ〉 = 0 . (9.5)

This means that the critical points of f"(ψ) are precisely the eigenvectors of A and the critical values are the eigenvalues
of A.

9.2 The virial theorem

Using our analysis of the Rayleigh quotient, we can already obtain useful, general information about energy eigenstates
by considering variations within one-parameter families of states. An important example is the following important
theorem, which generalises an analogous result in classical mechanics.

Theorem 9.2.1 (Virial theorem). Assume the Hamiltonian for a quantum mechanical system whose Hilbert space is
identified with a space of wave functions in d dimensions has the conventional form H = T + V with

T =
P2

2m = − !2
2m∇

2 , V = V(X) . (9.6)

Then for any stationary state ψ (so Hψ = Eψ), the following condition holds:

2Eʘ(T) = Eʘ(x ·∇V) . (9.7)

If V is homogeneous of degree N (i.e., V(λx) = λ/V(x)), then we have the following stronger result,

Eʘ(T) =
N

N + 2E , Eʘ(V) =
2

N + 2E . (9.8)

Proof. The idea of the proof is to perform a variational analysis for the family of wave functions of the form ψʌ(x) =
λE/2ψ(λx) for a given reference wave function ψ(x). The factor of λE/2 is included to ensure that all of these wave
functions are normalised equally; this is only done for convenience so that in computing Rayleigh quotients we can
ignore the denominator.

Now suppose that ψ(x) is a (normalised) stationary state; then the Rayleigh quotient of ψʌ(x) must be stationary as a
function of λ at λ = 1,52

d
dλ f)(ψʌ)

∣∣∣∣
ʌ=1

= 0 . (9.9)

Proceeding by direct computation, we have by the chain rule ∇ψʌ(x) = λ
E+2
2 (∇ψ) (λx), which gives us for the

Rayleigh quotient,

f)(ψʌ) =

∫

RE

(
−!2λE+2

2m |(∇ψ)(λx)|2 + λEV(x)|ψ(λx)|2
)

dEx ,

=

∫

RE

(
−λ2!2
2m |∇′ψ(x′)|+ V(λ−1x′)|ψ(x′)|2

)
dEx′ , (9.10)

= λ2Eʘ(T) + Eʘ(V(λ−1x)) .

In the passing to the second line we have defined x′ = λx. With this, (9.9) gives the condition

0 = 2Eʘ(T) +
d
dλEʘ(V(λ−1x))

∣∣∣∣
ʌ=1

= 2Eʘ(T)− Eʘ(x ·∇V(x)) , (9.11)

52Note that while Lemma (9.1.2) is formulated for linear subspaces ofH, the conclusion means that in any parameterised family of states, the
stationary states must give critical points.
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which reproduces (9.7). For V homogeneous of degree N, x ·∇V = NV and we get the simpler result

2Eʘ(T) = NEʘ (V(x)) . (9.12)

We also have for an energy eigenstate
E = Eʘ(T) + Eʘ(V(x)) , (9.13)

and putting these together gives

Eʘ(T) =
N

N + 2E , Eʘ(V) =
2

N + 2E , (9.14)

as required. !

Remark 9.2.2. We offer some additional comments here.

• We see that for the Coulomb potential, for which N = −1, we must have E < 0 because V < 0 and Eʘ(V) is
twice the size of Eʘ(T). (Alternatively, T is a positive operator, so the fact that Eʘ(T) = −E gives the negativity
of E.)

• For the harmonic oscillator, kinetic and potential energies are equal and balanced Eʘ(V) = Eʘ(T) = 1
2E.

• This quantum virial theorem has a classical counterpart, which is the original virial theorem. The classical the-
orem has to do with time-averages of energies along classical trajectories.

9.3 Approximating the ground state

The flagship application of variational methods in quantum theory is to the study of the ground state and ground state
energy of complicated quantum systems. To this end, one observes the following.

Proposition 9.3.1. If f) is bounded below and achieves its minimum E0 := infP(H) f), then E0 is the ground state
energy (minimum eigenvalue) and any state ψ for which f)(ψ) = E0 is a ground state.

Proof. f) is automatically stationary at its minimum, and this will necessarily correspond to an eigenstate. Its eigen-
value will be the minimal one because the other eigenvalues are realised as values of f) as well. !

Conversely, when a system does have a normalisable ground state ψ0, the function f) achieves its lower bound at ψ0.

Though this is a relatively simple observation, this result is actually very powerful. The idea is that we can try to find an
approximate ground state by finding the minimum E0,approx of f) restricted to some cleverly chosen subset of H. We
are guaranteed that E0,approx " E0 by the above, so this procedure produces rigorous upper bounds for E0. If we are
lucky and creative, these upper bounds will also be good approximations (though to estimate errors would be beyond
the scope of the discussion here).

Example 9.3.2 (Helium again). We return to the two-electron Helium atom, with Hamiltonian

H =
P2
1

2m +
P2
2

2m − 2q2F
(

1
|x1|

+
1

|x2|

)
+

q2F
|x1 − x2|

= T + V + δH , (9.15)

where
T =

P2
1

2m +
P2
2

2m , V = −2q2F
(

1
|x1|

+
1

|x2|

)
, δH =

q2F
|x1 − x2|

. (9.16)

As we saw in the previous chapter, we can try to treat δH as a small correction and use first-order perturbation theory
to get decent results for the ground state energy. However, the approximation in that case seemed quite uncontrolled;
δH doesn’t actually seem particularly negligible compared to other terms in the potential. This is a perfect case in
which to attempt a variational estimate, and indeed we can do quite well.
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Proposition 9.3.3. The Helium ground state energy E0 is bounded above according to

E0 # −
(

27
16

)2 q2F
a0
≈ 2.85q2F

a0
. (9.17)

This should be compared to our estimate of −2.75q2F/a0 from first-order perturbation theory and the experimental
value of approximately −2.92q2F/a0; the variational upper bound is well below the first order estimate, and indeed is
within three percent of the experimental value.

Proof. We derive this using a one-parameter family of wavefunctions like we did with the virial theorem. To choose
our variational Ansatz, we use a physical argument. The idea is that if we want to model the dynamics of two electrons
in the Helium atom as being non-interacting, we should adjust the effective value of the nuclear charge to account for
screening, i.e., each electron should on average see less than the full charge of the nucleus since the other electron is
producing an electric field with the opposite sign. In other circumstances, this kind of an approximation is sometimes
called a mean field approximation, and it can be quite effective.

To put this idea into practice, we adopt trial wave functions of the form

ψ;(x1, x2) =
(

Z3

πa30

)
exp

(
−Z(r1 + r2)

a0

)
, (9.18)

where Z is the parameter we will minimise over. This is the exact ground state for the effective Hamiltonian

H; =
P2
1

2m +
P2
2

2m − Zq2F
(

1
r1
+

1
r2

)
= T +

Z
2V , (9.19)

satisfying H;ψ; = E;ψ; with E; = −Z2q2F/a0, so indeed these are the ground state wave functions for systems of non-
interacting electrons with an adjustable nuclear charge. We then want to minimise the Rayleigh quotient associated to
the true Hamiltonian H evaluated on these states as a function of Z, so we need to compute

f)(ψ;) = Eʘ;
(T) + 2

ZEʘ;

(
ZV
2

)
+ Eʘ;

(δH) . (9.20)

The first two terms can be evaluated using the virial theorem with respect to the effective Hamiltonian H;, which gives
us

Eʘ;
(T) = −E; =

Z2q2F
a0

, Eʘ;

(
ZV
2

)
= 2E; = −2Z2q2F

a0
. (9.21)

The last term in (9.20) is precisely what we computed in our first-order perturbation theory calculation previously, and
gives

〈
ψ;
∣∣δH

∣∣ψ;
〉
= q2F

〈
ψ;

∣∣∣∣
1

|x1 − x2|

∣∣∣∣ψ;

〉
=

5
8

Zq2F
a0

. (9.22)

Putting everything together, we have

f)
(
ψ;
)
=

q2F
a0

(
Z2 − 27

8 Z
)

=
q2F
a0

[(
Z− 27

16

)2
−
(

27
16

)2
]
. (9.23)

As a function of Z, this is minimised at Z = 27
16 , reflecting the extent to which each electron shields the charge of the

nucleus to the other. From this we extract the upper bound

E0 # f)(ψ 27
16
) = −q2F

a0

(
27
16

)2
. (9.24)

!

Aswe noted above, this is not only an upper bound but turns out to be a very good estimate for the ground state energy.
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The accuracy can be improved by considering a more general Ansatz for trial wave functions—indeed, an accuracy to
within three parts in 108 has been obtained for this calculation using a family of 393 basis functions.

The above result represents a marked improvement over what we got using elementary perturbation theory. The fact
that we do better is not a coincidence at all. Indeed, we have the following.

Proposition 9.3.4. Let H = H0+δH as before and let the family of states {ψʌ} over which we will minimise be chosen
so that ψ(0)

0 (the ground state of H0) is contained in the family. Let E(0)
0 + E(1)

0 be the first order perturbation theoretic
estimate of the ground state energy found before. Then for Evar = inf{ʘʌ} f) we have

E(0)
0 + E(1)

0 " Evar " Eground . (9.25)

Proof. Recall that E(1)
0 =

〈
ψ(0)
0

∣∣∣δH
∣∣∣ψ(0)

0

〉
so that

E(0)
0 + E(1)

0 =
〈
ψ(0)
0

∣∣∣H0 + δH
∣∣∣ψ(0)

0

〉
= f)

(
ψ(0)
0

)
, (9.26)

and since ψ(0)
0 ∈ {ψʌ}, this is an upper bound for the infimum of f) on {ψʌ}. !

9.4 Approximating excited states

Though the ground state energy tends to be of particular interest, we may also want to approximate the energies of
excited states. If wewere to have perfect knowledge of the first k eigenstates ψ0, . . . ψL−1, with energies E0,E1, . . . , EL−1,
say, then it would be straightforward to use the same variational ideas as we did above to approximate the k+ 1st state.
Letting HL = Span{ψ0, . . . , ψL−1}, we would have

Proposition 9.4.1. If infH⊥
L

f) is attained for some ψL ∈ H⊥
L , then this is the k + 1st lowest energy eigenstate, and

f)(ψL) " EK, j = 0, . . . , k− 1.

Proof. Since H : HL → HL, self adjointness implies that H : H⊥
L → H⊥

L . Applying the main variational result for f)
onH⊥

L gives that if f) achieves its infimum at ψL, then (H− f)(ψL))
∣∣ψL
〉
= 0 and ψL is the eigenstate with the lowest

eigenvalue in H⊥
L . Since the lowest k eigenvalues are in HL, this must be the k + 1st. !

If this was where things stopped, we would be in the unfortunate situation of needing to have an exact result for lower
lying states before approximating the higher ones. It turns out that we can proceed without knowledge of the first k
eigenvectors/eigenvalues using the following important theorem.

Theorem 9.4.2 (Min-max). If the infimum

inf {max{f)(ψ) , ψ ∈ K} , dimK = k} (9.27)

is attained, where the infimum is taken over k-dimensional subspaces K ⊂ H, then it is the kth lowest eigenvalue and
the state on which it is attained the corresponding eigenvector. Thus, themaximum value of f) onK is an upper bound
for the kth energy level of the system.

Wewill give the proof for the case whereH has a basis of normalisable energy eigenstates. In the general case (involving
generalised eigenstates), both the statement of the theorem and the proof become slightly more technical.

Proof. Let E0 # E1 # E2 # . . . be the ordered energy eigenvalues and let ψ0, ψ1, . . . be the corresponding en-
ergy eigenstates. Let HL−1 = Span{ψ0, . . . , ψL−2}. Now for any k-dimensional subspace K ⊂ H, we will have
dim

(
K ∩H⊥

L−1
)
" 1, so we can find a (normalised) vector ψ ∈ K that can be expressed in terms of the ψO for

n " k− 1.

ψ =
dimH∑

O=L−1
aOψO ,

dimH∑

O=L−1
|aO|2 = 1 . (9.28)
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For which we have

f)(ψ) =
E∑

O=L−1
|aO|2EO "

E∑

O=L−1
|aO|2EL−1 = EL−1 , (9.29)

so maxʘ∈K{f)(ψ)} " EL−1.

On the other hand, for K = span{ψ0, ψ1, . . . , ψL−1} we have that maxʘ∈K f)(ψ) = EL−1, and the result follows. !

By considering families of choices of K we can try to improve the bound. Indeed, this leads to a nice approximation
scheme. To do so, we choose trial subspacesK (perhaps varying with respect to some parameters), and for a given trial
subspace of dimension k, the maximum of f) will be the largest eigenvalue of the restriction/projection of H toK (i.e.,
HK = ΠK ◦ H ◦ ΠK). So we can produce bounds (and potentially estimates) for EL−1 by solving finite-dimensional
eigenvalue problems, i.e., by solving (perhaps numerically) for the largest roots of the characteristic polynomials of
k× k matrices. This is known as the Rayleigh–Ritz method.

Example 9.4.3 (Angular momentum with Rayleigh–Ritz). The variational methods introduced in this section can be
used not just for the Hamiltonian of a system, but for any self-adjoint operator with bounded-below spectrum. Indeed,
consider the case of a particlemoving on the sphere (the rigid rotor). The total angularmomentumoperator in spherical
polar coordinates (and atomic units: ! = 1), has the form

L2 = − 1
sin2 θ

(
sin θ ∂

∂θ

(
sin θ ∂

∂θ

)
+

∂2

∂φ2

)
. (9.30)

We canobtainRayleigh–Ritz estimates for the first two eigenvalues ofL2 by taking, as a basis for a space of trial functions
ψ1(θ, φ) = 1 and ψ2(θ, φ) = cos2 θ. We then need to solve the characteristic equation for the projection of the L2

operator to this trial space,
det
(〈

ψK

∣∣∣L2
∣∣∣ψL

〉
− λ

〈
ψK

∣∣∣ψL

〉)
= 0 . (9.31)

Clearly L2ψ1 = 0, and we calculate that

L2ψ2 = −
1

sin θ
∂

∂θ

(
sin θ ∂

∂θ cos2 θ
)

=
2

sin θ
∂

∂θ
(
sin2 θ cos θ

)
,

=
2

sin θ
(
2 sin θ cos2 θ − sin3 θ

)
= 2

(
2 cos2 θ − sin2 θ

)
,

= 2
(
3 cos2 θ − 1

)
= 2

(
3ψ2 − ψ1

)
.

(9.32)

We also need the following normalisations and inner products,

||ψ1||
2 =

∫
sin θ dθ dϕ = 4π ,

||ψ2||
2 =

∫
cos4 θ sin θ dθ dϕ = 2π

(
− 1

5 cos5 θ
) ∣∣∣∣

ʑ

0
=

4π
5 ,

〈
ψ1
∣∣ψ2
〉
=

∫
cos2 θ sin θ dθ dϕ = 2π

(
− 1

3 cos3 θ
) ∣∣∣∣

ʑ

0
=

4π
3 .

(9.33)

We clearly have
〈
ψK

∣∣∣L2ψ1

〉
= 0 =

〈
ψ1

∣∣∣L2ψK

〉
, so the only remaining element is

〈
ψ2
∣∣L2ψ2

〉
=
〈
ψ2
∣∣6ψ2 − 2ψ1

〉
=

24π
5 − 8π

3 =
32π
15 . (9.34)

Our eigenvalue equation therefore gives

0 =

∣∣∣∣
−4λπ − 4ʑʌ

3
− 4ʑʌ

3
32ʑ
15 −

4ʑʌ
5

∣∣∣∣ =
62π2

45 λ(λ − 6) . (9.35)
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so λ = 0 or λ = 6, which correspond to " = 0 and " = 2, respectively, in the standard formula "(" + 1) for the
eigenvalues of L2 (with ! = 1). The first case gives the eigenvector ( 1

0 ), that is ψ1; the second gives
(−1

3
)
or 3ψ2 − ψ1.

We recognise these as precisely (up to normalisation) the spherical harmonics Y0
0 and Y0

2 .

While we have ended up landing on exact eigenstates/eigenvalues, we didn’t get the first two, but rather the first and
fifth lowest eigenstates of L2—we missed the three " = 1 states. This is, of course, compatible with our eigenvalues
being upper bounds for the first two eigenvalues. However, in our trial basis we explicitly chose only φ-independent
functions, so we have effecively enfoced by hand that we are only studying states with m = 0. In the m = 0 sector, we
have ended up with the first and third eigenstates. This is frequently a useful trick in applying Rayleigh–Ritz; you can
specialise to a subspace of the Hilbert space with some definite behaviour with respect to other symmetries and then
avoid worrying about many lower-energy states that are orthogonal to that subspace.


