STRING THEORY I

Lecture 9
(4) Interactions
4.1 Generalities
4.2 Vertex opwatoss: introduction
4.3 Vertex operators: opens stiong

- tachyons
-livel 1 k luvel 2
4.4 Thestate vertex corsinpondince

Lost lectur:
We introduced certex opuators to deswibe the emistion or abrortion of physical string states froms the sussective of a fixed stwing wored sheet

For example:
 primary gperatiso of weint $h=1$

$$
\begin{aligned}
& \begin{array}{l}
\text { branching of am } \\
\text { ooan string in which }
\end{array} \\
& \text { (1) } \\
& \text { opan string in which } \\
& \text { an opmitring in staters } \\
& \text { brancho into (11) \& (23 } \\
& \text { plocess in which ittec(2) is emitted (o) } \\
& \text { (abribed) at the end point } \sigma=0 \text { of } \\
& \text { a sixed string with the veltex } V_{2}[(]) \\
& \text { descuibing the misision of stats } 12\rangle \\
& \text { Wom } \sigma=0 \text { at } \bar{c}
\end{aligned}
$$

Open string

- Vertex operator for emiscion/abrontion of a tachyon

$$
V_{k}(\tau)=: e^{i k \cdot x}: \text { has } h=\frac{1}{e}(k \cdot k) e^{2}=1
$$

C bol the tachyon

$$
\alpha^{\prime} k^{2}=1
$$

where

$$
: e^{i k \cdot x}:=e^{k \cdot \sum_{n=1}^{\infty} \frac{\alpha_{m}}{m} e^{i m \tau}} e^{i k \cdot x(\tau)} e^{-k \sum_{n=1}^{\infty} \frac{\alpha_{n}}{n} e^{-i n \tau}}
$$

so we have

$$
\begin{aligned}
& \left(k^{2}=x\right)
\end{aligned}
$$

Remarks on normal orduing:
We have adopted above a convention for the normal or doing:

$$
: e^{i k \cdot x}: \text { vs } e^{i k \cdot x}
$$

these differ by an eysonential $e^{k^{2}(\cdots)}$ so moral ordwing has no effect when $k^{2}=0$ To see this: mote that

$$
\begin{aligned}
& e^{i k \cdot \alpha_{m}} e^{i k \cdot \alpha_{n}}=e^{i k \cdot\left(\alpha_{m}+\alpha_{n}\right)} e^{\frac{1}{2}\left[i k \alpha_{m}, i k \cdot \alpha_{1}\right]} \\
& =e^{i k \cdot\left(\alpha_{m}+\alpha_{n}\right)} e^{-\frac{1}{2} k \cdot k m \delta_{m+n}, 0}
\end{aligned}
$$

Building ventex opwators bi lavel one stabo For these itates $k^{2}=0$
is we ave sooking bl the photon emistion/ abrotion vertix spuatios

- some apporopiato local opunutor
- no zevo mide erpendence \rightarrow connider $\partial_{\tau} X^{\mu}$

$$
\begin{aligned}
& {\left[L_{m}, \partial_{\tau} X^{\mu}(\tau)\right]=\frac{\partial}{\partial t}\left[L_{m}, X^{\mu}(\tau)\right]} \\
& \quad=\frac{\partial}{\partial \tau}\left(-i\left(\partial_{\tau} X^{\mu}(\tau)\right) e^{i m \tau}\right) \\
& \quad=e^{i m \sigma}\left(-i \partial_{\tau}+m\right) \partial_{\tau} X^{\mu}(\tau)
\end{aligned}
$$

Then $\partial_{\tau} X^{m}(T)$ is primary of weight $h=1$ We could try $\iota^{\text {polarization }}$

$$
V_{S}(\tau)=\left(\rho \cdot \partial_{\tau} X(\tau)\right): e^{i k \cdot x(\tau)}:
$$

and deal with normal ordering issues.

In $\rho \cdot \partial_{\tau} X(\tau)$: each oscillator ppuatos is comfracted with 5
In $e^{i k \cdot x(\tau)}$: each oscillator gpuatos is somfraded with K
Moreouar:

$$
\left[\alpha_{m} \cdot S, \alpha_{n} \cdot K\right]=m \delta_{m+n, 0}(\rho \cdot K]
$$

\therefore when $5 \cdot k=0$ (Mhyrical polavization) the opwator product
$\left(S \cdot \partial_{\tau} X(\tau)\right): e^{i k \cdot X(\tau)}$: is well \&efined
enocorretions from ordwing.-)

Thun we have:

$$
V_{\rho}(\tau)=(\rho \cdot \dot{x}(\tau)): e^{i k \cdot x(\tau)}: \text { with } k^{2}=0, \rho \cdot k=0 \quad(h=1)
$$

Note that

$$
(k \cdot \dot{x}): e^{i k \cdot x}:=-i \partial_{\tau}\left(e^{i k \cdot x}\right)
$$

which vanishes after integrating over \subseteq.
This means that the longitudinal mode dersurbles

- It is mot a coinuidna that the rules for constructing vertex opwators is ubedy powallel to the construction of physical states.
Here we have for level 1
vertex opswators with $\stackrel{1-1}{\longleftrightarrow}$ physical states

$$
n=1
$$

Building vertex operators fo level two stabs
Harder. At level two we guess

$$
\begin{aligned}
& \gamma_{\mu \nu} \alpha_{-1}^{\mu} \alpha_{-1}^{\nu}(0 ; K\rangle \\
& \text { mass-inell: } e^{2} k^{2}=-2
\end{aligned} \longleftrightarrow \gamma_{\mu \nu} \dot{X}^{\mu} \dot{X}^{\nu}: \underbrace{e^{i k \cdot x}}_{\begin{array}{c}
h=-1 \\
\text { fol } e^{2} k^{2}=-2
\end{array}}
$$

missal ordering rorkctions:
$\gamma_{m \nu} \dot{X}^{\mu} \dot{X}^{\nu} \quad$ oscillator roorduings are proportional to $\gamma^{\mu}{ }_{m}$
se require traceless γ
$\gamma_{\mu \nu} \dot{X}^{\mu} \dot{X}^{\nu} \&: e^{i k \cdot x}:$ oscillator resrderings proportional to k. γ so require
$K \cdot \gamma=0$ is transuerx polarization

$$
\gamma_{\mu \nu} \alpha_{-1}^{\mu} \alpha_{-1}^{\nu}|0 ; K\rangle \longleftrightarrow \gamma_{\mu \nu} \dot{x}^{\mu} \dot{x}^{\nu}: \underbrace{e^{i k \cdot x}}_{h=-1\left(l^{l} k^{2}=-\alpha\right)}
$$

with $k \cdot \gamma=0$ \& γ traceless

These ave the conditions for a massive spin two state, that is a symmetric traceless 2 -torsos of $S O(D-1]=S O(25)$

It is the onto possibility in $D=26($ see GSW)

$$
\ddot{x^{M}}: e^{i k \cdot x}: 1 ?
$$

As a consequence we have a map state \longrightarrow opwator
in which $|\phi\rangle_{\text {ope }} \longmapsto V_{\phi}(\tau) \quad \begin{gathered}\text { conformal primary } \\ \text { of dimmerion } \\ h=1\end{gathered}$ For example: noting that : $e^{i k \cdot x}$: has $h=\frac{1}{\theta}(k \cdot k)$

Gang inwaviance:
led 1: for the proton vertex operator with $\mathcal{F} \sim K$ (longitudinal mode)

$$
\int d i k \cdot \dot{x} e^{i k \cdot x}=-i \int d i \partial_{r}\left(e^{i k \cdot x}\right)=0 \text { un to } \quad \text { bon don twos }
$$

so longitudinal mode decouples.
4.4 State-vertex coriespondence

It is not a coincidence that theve is a similavity between statis le vertex opmatos.
Note that if $V(\tau)$ is a weetex gpuator deswibing the unision (or absorption) worm the end point $\sigma=0$ at sove time τ, fhen

$$
V(t)=e^{i \tau L_{0}} V(0) e^{-i \tau L_{0}}
$$

becaux the Homiltonian is $l_{0}-a=L_{0}-1$.

For the tachyon:

$$
V_{T}(k, \tau)=: e^{i k \cdot x(\tau)}:=e^{i \tau L_{0}}: \underbrace{e^{i k \cdot x(0)}}_{V_{T}(k, 0)}: e^{-i L_{0}}
$$

Consider the action of this powator on the zero mommitum string vauum state $10 ; 0\rangle$

$$
\begin{aligned}
& \left.V_{T}(K, \tau)(0 ; 0\rangle=e^{i \sigma l 0}: e^{i k \cdot k(0)}: e^{-i \sigma L_{0}} 10 ; 0\right\rangle \\
& \left.=e^{i \sigma L_{0}} e^{i k \cdot K(0)}: 10 ; 0\right) \quad \text { os } L_{0}(0 j 0\rangle=0 \\
& =e^{i \tau L_{0}} e^{k \cdot \sum_{n=1}^{\infty} \frac{\alpha_{m}}{m}}: e^{i k \cdot x(0)}: e^{-k \sum_{n=1}^{\infty} \frac{\alpha_{n}}{n}}|0 ; 0\rangle \\
& =e^{i \pi L 0} e^{K \cdot \sum_{m} \frac{1}{m} \alpha-m} \cdot \underbrace{\left.e^{i K \cdot x(0)}: 10 ; 0\right\rangle}_{10 j K\rangle} \text { as } \alpha_{\forall n \rightarrow 1}|0 ; 0\rangle=0
\end{aligned}
$$

$$
V_{T}(K, \tau)|0 ; 0\rangle=e^{i \tau l_{0}} e^{K \cdot \sum_{m=1} \frac{1}{m} \alpha-m}|0 ; K\rangle
$$

Define $t=e^{i t}=e^{t}$, where $\tau=-i t$ (so t is Euclidean world sheet time). Then

$$
\begin{aligned}
& V_{T}(K, \tau)(0 ; 0\rangle=z_{1}^{L 0} e^{k \cdot \sum_{m=1} \frac{1}{m} \alpha_{-m}}|0 ; k\rangle \\
& \left.\left.=z^{1+N}\left(1+k \cdot \alpha_{-1}+\frac{1}{2}\left(\left(k \cdot \alpha_{-2}\right)+\left(k \cdot \alpha_{-1}\right)^{2}\right)+\cdots\right) \right\rvert\, 0 \cdot k\right) \\
& \left.\left.h^{L_{0}}(\cdots)(0 ; k)=e^{\left.-\frac{1}{3} k^{2}\right)+N}(\ldots) \right\rvert\, 0 ; k\right), \quad \frac{1}{9} k^{2}=1 \\
& V_{z}(k, \tau)|0 ; 0\rangle=z\left(1+z k-\alpha_{-1}+\frac{1}{2} z^{2}\left(\left(k \cdot \alpha_{2}\right)+\left(k \cdot \alpha_{-1}\right)^{2}\right)+\theta\left(z^{2}\right)\right)(0 j k)
\end{aligned}
$$

Then we can recover the state $10 j k$) from V_{T} by taking

$$
|0 ; k\rangle=\lim _{z \rightarrow 0} \frac{1}{z} V_{T}(k ; t)|0 ; 0\rangle=\lim _{t \rightarrow-\infty} e^{-t} V_{T}\left(K_{i} i t\right)|0: K\rangle
$$

For the photon

$$
\begin{aligned}
V_{S}(k, \tau)=\rho \cdot \dot{x} & e^{i k \cdot x}|0 ; 0\rangle=z^{N} \sum_{m>0}\left(\rho \cdot \alpha_{-m}\right) e^{\sum_{n>0} \frac{1}{n} k \cdot \alpha_{-n}}|0 ; k\rangle \\
& =\left(\hbar\left(\rho \cdot \alpha_{-1}\right)+Z^{2}\left(\left(\rho \cdot \alpha_{-l}\right)+\left(\rho \cdot \alpha_{-1}\right)\left(k \cdot \alpha_{-1}\right)\right)+\cdots\right)|0 j k\rangle
\end{aligned}
$$

We recover thestatio $(\rho ; k)$ Worn

$$
\left.\left.\lim _{k \rightarrow 0} \frac{1}{\hbar} V_{\rho}(k ; i t) \right\rvert\, 0 ; 0\right)
$$

Continuing lila this, a pattern bus mes dear: So v a phigrical state $|\varphi\rangle$ with vertex operator $V_{\psi}(\tau)$ we have

$$
|\psi\rangle=\lim _{t \rightarrow 0} \frac{1}{\hbar} V_{\psi}(i t)(0 ; 0\rangle
$$

An anabgous statement molds for "out" tats. For acannle

$$
\begin{aligned}
& \langle 0 ; 0| V_{T}(K ; i t)=<0 ; K \left\lvert\, e^{\sum_{n_{0} 0} \frac{1}{n} \alpha_{n} \cdot K} z^{-L_{0}}\right. \\
& \\
& =\frac{1}{z}<0 ; K \left\lvert\,\left(1+\hbar^{-1}\left(\alpha_{1} \cdot K\right)+\frac{1}{2} \hbar^{-2}\left(\alpha_{2} \cdot K+\left(\alpha_{1} \cdot k\right)^{2}\right)+\cdots\right)\right. \\
& \langle 0 ; K|=\lim _{z \rightarrow 0} z<0 ; 0 \mid V_{T}(K, \tau)=\lim _{t \rightarrow \infty} e^{t}\langle 0 ; 0| V_{T}(K j i t)
\end{aligned}
$$

$$
\begin{aligned}
& |\psi\rangle=\lim _{t \rightarrow 0} \frac{1}{\hbar} V_{\psi}(i t)|0 ; 0\rangle \\
& \langle\psi|=\lim _{\hbar \rightarrow \infty} z_{\hbar}\langle 0 ; 0| V_{\varphi}(i t)
\end{aligned}
$$

in
out

Ore can also un this to deswibe on incoming state $|\psi\rangle$ cor an out sing state $<\Psi I$) by acting with the venters opuarts' on the two momentum vacuum state in the infinite Euclidean past ie $t \rightarrow-\infty$ (resp Euclidean suture, $t \rightarrow \infty$)

The picfure pisunted heve is part a gmwal treatment of the opwator-stato corrispandence in conformal Gield theoro where the gmeral comstruction is

$$
\begin{aligned}
A(t) \longrightarrow\left|\Psi_{A}\right\rangle & =\lim _{t \rightarrow-\infty} z^{h_{A}} A(i t)(\Omega\rangle \\
\longrightarrow\left\langle\Psi_{A}\right| & =\lim _{t \rightarrow \infty} z^{-h_{A}}\langle\Omega| \phi(i t)
\end{aligned}
$$

where (Ω) is the vaccumm state.

Next:
\rightarrow Vertex pporatovs for the chad string
$\rightarrow 3 k 4$ point interactions
end of lecture 9

