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HEALTH WARNING:

The following lecture notes are meant as a rough guide to the lectures. They are
not meant to replace the lectures. You should expect that some material in these
notes will not be covered in class and that extra material will be covered during
the lectures (especially longer proofs, examples, and applications). Nevertheless,
I will try to follow the notation and the overall structure of the notes as much
as possible.
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1 Background and motivation

� Overview

The following section is a general introduction to the problem of growth in bi-
ological system. This section will not be covered in class but is included as
background material.

Growth is a generic term that describe processes in which the mass of a body changes
over time. In biology, the problem of growth is fundamental to all aspects of life from
cell-division to morphogenesis, development, maintenance, cancer, and ageing. All life
forms experience growth and one of the ultimate challenges of modern biology is to
understand how the genetic code is used to transform cells into a fully grown organisms
and how such an organism manages to regulate shape and functions through growth
and remodelling.

Growth processes also appear in physics to describe problems such as epitaxial
growth where new material is fed in the system and reorganised on the substrate.
It is also associated with phase transition phenomena where the interface between
the phases evolves in time to produce structures such as a crystal [1]. These free
boundary problems are controlled by diffusion and unlike problems in biological growth
the interface is a line of discontinuity with no particular material property. The swelling
of gels is arguably the closest non-biological process that mimics growth as it is non-
diffusive and it can be used to test basic mechanical ideas for some biological pattern
formation [2].

1.1 Classification of growth

Aspects of growth and remodelling occur during the entire life of an organism. There-
fore, growth fills many purposes and functions and, accordingly, is associated with
qualitatively different processes. A first classification of growth processes is organ-
ised by the way it alters a body, either by mostly changing its volume, its material
properties, or the relative position of material points:

Growth. In the modelling of growth, the simple term growth usually refers to the
change in mass (typically an increase in mass, but applies obviously to resorption
of material as well). This change in mass can be a an addition of new mass at
constant density (typical of many soft tissues), a change in density at constant
volume (as in the case of a mature bone for instance), or both (as in the case of
a developing bone). Mathematically, a theory of growth must take into account
the addition of mass either at the boundary of the body or within the body itself.

Remodelling. It is well know that in the process of ageing tissues may get stiffer or
softer. The term remodelling refers to the evolution of material properties of a
system (typically excluding density), that is the change in time of the stiffness,
fibre orientation, fibre strength, and so on. This remodelling process is due to a
change in the microstructure that determines the overall behaviour of the tissue.
For instance, the typical composition of soft tissues in many animals is a mixture
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of collagen fibres within an elastin matrix. Whereas elastin content remains
mostly unchanged over many years, there is a continuous turnover of collagen
that depends on the local biochemical and mechanical stimuli acting on the cells.
The relative content of different types of collagen fibres and elastin determines
the overall response of the tissue. This process can occur without change of mass
but is nevertheless crucial for the description of a tissue in response to mechanical
loadings. From a mathematical perspective, the evolution of material properties
can either be modelled by evolving the material parameters of a system or, at
a lower scale, by taking properly into account the evolution of different tissue
components.

Morphogenesis. Early in embryonic life, new tissues and organs are formed. In this
process there is often major reorganisation and differentiation of cells after cell
division. Morphogenesis is associated with growth, remodelling, and reorgani-
sation of material elements. This reorganisation process can only happen if the
adhesion between different components is weak enough so that they can sepa-
rate and reattach. This observation has important consequences for modelling
as tissues undergoing morphogenesis exhibits rapid elastic stress relaxation and
plastic-like flow. In many instances, it may therefore be more appropriate to
describe such tissues or collections of cells as a fluid or as a visco-elastic material
rather than an elastic material with evolving configuration.

Further, growth itself can be classified by the location of growth and the manner
in which new material is added to the existing structure. The main categories are: tip
growth, accretive growth, and bulk growth as describe below.

1.1.1 Tip Growth.

First described by Duhamel du Monceau in 1758 [3] for the growth of roots, tip growth
(or apical growth) describes growth processes that take place in a small region at the tip
of filamentary structures (See Fig. 1). It is the main growth mechanism used microbial
organisms and plant systems such as fungi, filamentary bacteria, pollen tubes, or root
hair. Since growth occurs in a region of constant size, the overall scaling of mass with
time is linear. This linear scaling is avoided by allowing branching, a typical features
of these filamentary systems, that allows for essentially one-dimensional structures to
explore a three-dimensional volume for nutrients. Tip growth is sometimes referred to
as primary growth in plants. Indeed, once a stem or root is large enough, it will also
be subject to secondary growth by thickening through the addition of external layers.
Mechanically, the problem of tip growth is to understand the interaction of the tip with
its environment, its shape, width, internal stresses, and how it evolves based on laws
of material addition within the walls.

1.1.2 Accretive Growth.

Accretive, surface, or appositional growth describe mechanisms such as deposition in
hard tissues where new material is added to the boundary of an existing body. It
is the typical mechanism responsible for the formation of teeth, seashells, horns. At
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Figure 1: Top row. Left: Growing root as depicted by Duhamel in 1758 [3]. Right:
First theoretical description of tip growth by Reinhardt in 1892 for the growth of fungus
[4]. Bottom row: pictures of growing tips. From left to right: actinomycetes from a
spore, bar is 1µm (source: Society for Actinomycetes Japan.); streptomyces A3(2), bar
is 1µm; allomyces ; lily root hair (typical diameter 15-20µm) (images courtesy of J.
Dumais).
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the microscopic level surface growth is also found in bones where changes in bone
density occur by deposition or resorption of new material on the surface of trabeculae
or the walls of canals excavated by osteoclast [5]. Mathematically, many problems in
accretive growth can be modelled by assigning an accretion vector at the boundary
of the body based on the local geometry (See Fig. 2). The problem amounts then to
evolve that boundary based on the accretion vector and recompute the new shape to
obtain the information on the local geometry necessary to further evolve the system.
The key question from a modelling point of view is to obtain an accretion law from
the interaction of the soft tissue of the animal with the new accreted part and evolve,
accordingly, the hard body.

Figure 2: Accretive growth. Top Row: Growth of horns and seashells as described by
D’Arcy Thompson [5]. Middle row: The theoretical basis of accretive growth. For a
given body at time t, an accretion vector is defined at the active growth boundary.
At time t + dt a new surface (in red) is created. Bottom row: different body forms
obtained by different choices for the accretion vector (from [6]).
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1.1.3 Bulk growth.

Bulk, volumetric or interstitial growth refer to processes in which local volume ele-
ments in the material change over time (rather than on the boundary of the body as
in accretive growth). It is typical of many developmental, physiological or patholog-
ical processes and has been particularly well documented in specific systems such as
arteries, heart, muscles, and solid tumours. Bulk growth encompasses hyperplasia, the
increase of volume due to cell proliferation typical of many developmental systems; hy-
pertrophy, the change of volume due the enlargement of its constituents, typical of many
physiological processes; and neoplasia, the abnormal and often unregulated growth or
division of cells, typical of tumour growth. Mathematically, bulk growth offers many
interesting challenges. First, a local volume element may not remain isotropic during
growth and a tensorial description of growth is therefore needed. Indeed, imagine a
small sphere with a given set of axes. In an anisotropic growth process this small sphere
will be transformed into an ellipsoid with a new set of principal axes. The mapping in
Euclidean space that describes this local transformation maps the axes of the initial
configuration of the sphere to the principal axes of the ellipsoid and it is fully described
by a tensor, the growth tensor. A second challenge in bulk growth is that it applies to
soft tissues that are elastic. Therefore, it is not clear if the deformation observed from
an initial state is due to the growth or the elastic response of the material, or both.
This problem which will be discussed at length in this review was first formulated by
Hsu in 1968 in what may be considered as the first work to address the problem of
mechanical growth modelling: “If the form to which a body grows under no applied
loads is known, what will be the form of the body if some mechanical loads are applied
during its growth?”. Note that from a modelling perspective, bulk growth can be used
to described the growth of filamentary objects (for instance neurons or plant stems
which have distributed growth) or surfaces (such as layers of cells which do not change
their thickness).

The classification of growth as tip, accretive, and bulk is, are not rigid and depends
on the scale at which the problem is being studied. Indeed, both tip growth and accre-
tive growth could be modelled as bulk growth processes where a thin soft layer close
to the boundary expands and stiffens in time rather than new material being added
at the boundary. Indeed, tip growth is a bulk process that is localised at the apical
part of the filament and a detailed analysis of this process requires an understanding
of areal growth due to insertion of new materials in the apical zone. Similarly, bone
growth and wound healing can be seen either as an accretive process or a localised bulk
process where density evolves.

1.2 The scaling of growth

The first question to be addressed when thinking about growth concerns the evolution
of the mass of an organ or an organism with respect to time. If both total mass of
an individual and the mass of an organ is known, we can naturally ask how an organ
evolves relatively in comparison to the organism. For isntance, one can ask: how
does the brain grow with respect to the total weight? How does height scale with
weight? and so on. Despite the fact that the total mass M is the only objective
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measure of size applicable to all biological organisms, the first historical records of
growth evolution was on the height of human. In 1759, Count Philibert Gueneau de
Montbeillard started to record every 6 months the height H(t) of his son from his
birthday to the age of 18. This record shown in Fig. 3 was published in the fourth
volume of the supplement to Buffon’s “Histoire Naturelle” [7]. The first complete

A. B.

C.

Figure 3: The growth of man (and rats). A. First record of longitudinal growth done
by Count Montbeillard in 1759 (reproduced from [7]). B. Growth curves from Stratz’s
book in 1904 [8] and C. Growth curves for rats fitted by a Gompertz law [9].

.

statistical study of the evolution of weight and height in man was conducted by the
Belgian polymath Adolphe Quetelet and published in 1835, in his “Treatise on Man”
[10]. In this remarkable book, Quetelet pooled and analysed data from the Belgian
population and considered both general trends and deviations around average by use
of the Gaussian distribution (which is considered to be the first use of the Gaussian
distribution for a statistical study). Quetelet also suggested a law of growth by fitting
the data of height H(t) against time t by

H(t) = at+
b+ t

1 + 4
3
t
, (1)

and a scaling of weight versus height of the form W = cHα where α = 5/2 during
development and α = 2 for adults, in which case the Quetelet coefficient c becomes the
infamous Body Mass Index, which remains a critical estimate of fitness and obesity
despite its obvious shortcomings and many criticisms [11]. The attempt to scale height
with respect to weight also represents one of the first attempts to obtain an allometric
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law in biology, that is a power law between a given physical quantity and the total
mass of the organism [12].

By the end of the nineteenth century there was a flurry of activity dedicated to
understanding both the growth of humans by itself but also in comparison with the
growth of animals and plants [13]. The idea emerged that up to a rescaling of time
and mass, growth in different biological organisms could follow some universal laws.
Many of these studies are well described in the seminal book by d’Arcy Thompson on
“Growth and Form” first published in 1917 [5].

Bogin reports that by 1972 no less than 200 different models or fitting functions
had been proposed to describe the evolution of human growth [14]. The first attempt
to model the evolution of the total mass based on physical principles relies on an idea
by Pütter [15] first published in 1920. Pütter proposed that animal growth can be seem
as a balance between addition and removal of building materials in the body. Growth
proceeds as long as new material is added faster than it is removed and stops when
both processes are balanced.

Mathematically, the rate of material removal is typically assumed to be proportional
to the mass M(t) itself as in a standard decay problem whereas the rate of addition of
new material is proportional to a power of the mass which leads to [16]

dM

dt
≡ Ṁ = M(aM−p − b), (2)

where a, b > 0, 0 ≤ p < 1 andM∞ = (a/b)1/p is the asymptotic mass. IfM0 = M(t = 0)
is the mass at birth, the solution of this equation is M(t) = M0e

(a−b)t if p = 0 and(
M(t)

M∞

)p
= 1−

[
1−

(
M0

M∞

)p]
e−bpt, (3)

otherwise (See Fig. 4B for an example with p = 1/4). Note that Eq. (2) also contains
the classical logistic curve [17] in the limit p→ −1 with a and b negative and Richards
model [18] (with p < −1, a and b negative) used to model the growth of plants.

The choice for the exponent p is more problematic. A typical argument is to assume
that the addition of new material is limited by energy input and metabolic rates. It the
energy intake and growth rate are directly proportional to the weight itself, we have
Ṁ ∼M , that is p = 0, and exponential unlimited growth is expected. This behaviour
observed in the early developmental stages of insects is only valid until a change in the
mode of growth takes place.

If we assume that the metabolic rate follows a scaling based on geometry and that
energy intake is proportional to the surface area, we have Ṁ ∼ M2/3, that is p = 1/3
(a power law originally proposed in 1839 by Sarrus and Rameaux [19]) but, more
generally, Ludwig von Bertalanffy [16] suggested that most biological systems grow in
an intermediate regime with exponent 0 < p < 1/3.

More recently, it was proposed [20] that the production of new material should be
related to Kleiber’s law [21] that states that the metabolic rate of an organism (defined
as the energy expended by an organism per unit time) scales as the 3/4 power of the
total mass (See Fig. 4C) leading to p = 1/4. It has been argued that this power law
for metabolic rate is widely applicable to biological systems perhaps over 27 orders of
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magnitude from bacteria to whales and even plants and forests [22], but many have
also criticised the validity of such statistical analysis and have argued for exponents
closer to 2/3 [23]. The origin and justification of this type of power laws in terms
of first principles have remained elusive. Unfortunately, the lack of scientific theory
is naturally fuel for endless discussions, debates, opinions, and controversies with very
little mathematical content and the general field of scaling laws for growth has confused
motion for progress [24].

For any choice of exponent p ∈]0, 1], these growth curves show a sigmoidal be-
haviour (See Fig. 4B) that is indeed observed in many systems. This sigmoidal be-
haviour describes well a slow initial phase followed by quick maturation, ending with an
asymptotic limit typically describing an organisms after its reproductive phase (note
also humans have evolved and adapted in such a way as to avoid many power laws
applicable to many species including the simple law (2)). Nevertheless, human growth
can be modelled by considering pre-pubertal and post-pubertal periods as separate
[25]).

A.

B.

C.

Figure 4: Growth laws and scaling. A. Growth evolution from von Bertalanffy [16] . B.
Kleiber’s law: Metabolic rate as a function of mass [21]. C. Scaling and data analysis
based on Kleiber’s law (From [20]). Here M/M∞ is plotted agains the dimensionless
time τ = bpt− ln(1− ( M0

M∞
)p) as described by Eq. (3) with p = 1/4.

The key feature of this simple model is that it identifies the specific growth rate1

given by Ṁ/M as a central quantity. Indeed, the basic idea is that a proportion of
new tissue generated by growth is capable of growing itself but as time goes by, this
ability is reduced. These two principles were well described by Peter Medawar [26] who

1The term specific is correct here as it refers, in general, to a quantity per unit mass.
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wrote:“What results from biological growth is itself, capable, of growing” and “Under the
actual conditions of development the specific acceleration of growth is always negative”.

Another possible law that has been used in the context of growth is the Gompertz
law, first introduced in 1825 [27] for the evolution of human population, then used in
actuarial sciences as a modified compound law, then proposed as a suitable growth
law for organisms [28]. The Gompertz law is obtained as the solution of a Malthusian
equation of growth Ṁ = KM with a growth rate K decaying exponentially in time

Ṁ = ae−ktM, a = k ln

(
M∞
M0

)
, (4)

which leads to

M(t) = M∞

(
M∞
M0

)−e−kt

. (5)

This rather unfriendly mathematical equation (whose solution contains the exponential
of an exponential and two characteristic time scales) has been shown to be a particularly
good fit for bacterial and tumour growth among others [29] and remains widely used
for fitting data (See Fig. 3B).

1.3 Relative growth

Psychological studies have shown that children are undeniably cute and loveable [30].
It has been argued that this cuteness factor, a propensity or desire to cuddle or defend
a person, is due in part to our perception of the relative size of body and facial features
in children versus adults [31]. Proportionally, the skull of babies is larger than the ones
of adults (See for instance Fig. 5) [32] and further relative dimensions of the skulls
(height versus diameter, roundness) also evolve. Indeed, no adult organism is a pure
dilation of itself at birth. The case of a pure dilation of any organ from initial to adult
life is referred as a case of isometric growth whereas the relative growth of an organ
with respect to the total weight of the organism is known as allometric growth [33].
Therefore, the second natural problem of growth that follows from the studies of mass
evolution is to understand how organs, limbs, or tissues grow with respect to the total
body mass, the general topic of relative growth.

The subject of relative growth developed at the end of the 19th century with the
early work of Dubois and Lapicque on the relative size of the brain in different species
[37] and within a given species [38] following an early observation from Cuvier that big-
ger mammals have relatively smaller brains [39]. Following extensive work on various
aspects of differential growth by D’Arcy Thompson [5], the subject was further ex-
panded and applied to many different biological systems by Julian Huxley in his book
“Problem of Relative Growth” [40] where he coined the word allometry to describe
relative growth that follows a power law.

The central idea in Huxley’s work is that the mass m or length l of an organ scales
as a power of the total mass M of the organism, that is

m = kMα. (6)

Note that by expressing m as a function of M , one removes the explicit dependence on
time which allows to consider only the size m and M at a given points of development
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A. B. C.

D.

B.

Figure 5: Relative growth. A. and B. Relative proportion in the growth of man (from
Stratz [8]) C. Allometric scaling for the claw of the fiddler crab (from [34]). D. Different
males Dynastes showing the relative increase of horns as a function of size. Illustrations
from Champy 1924 [35] (Reproduced from [36])

.

when making comparisons between animals. If masses are compared, the case α = 1
corresponds to isometric growth and any other exponent would be considered as relative
or allometric growth. If this scaling also holds during growth (that is both k and α are
time-independent), it simply states that the two specific growth rates of an organ and
an organisms are proportional, that is

m = kMα ⇐⇒ ṁ

m
= α

Ṁ

M
. (7)

Starting in the 1920’s, this simple but fundamental idea has played the role of
an ordering principle in comparative biology and evolution [41]. The possibilities are
endless as the size of any organ in any species can be compared to any other ones from
any other species at any point in the development and generations after generations,
students and researchers in biology have combed the beaches, swept the forests, and
fished the seas to gather data on size and weight. Typically, one compares either the
relative size of different organs in one species (intraspecific allometry), the relative sizes
of one organ within different species (interspecific allometry), or the relative size of one
organ or different organs at different point in development for a given species (dynamic
allometry).

A typical allometric study proceeds with the following steps (i) gather experimental
or bibliographic data on either the size of an organ or the metabolic rate of an organism
and its total weight in different species; (ii) plot this data in a log-log plot; (iii) find
the best linear fit and extract the slope α; (iv) Find a simple rational number close
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Figure 6: Allometry in plants. An interesting example of a possible allometric law for
growth arises in plants when the growth rate is plotted against the weight [22].

.

to α and argue on geometry, physics, network theory, or thermodynamics ground that
this slope was predicted from simple first principles; (v) discuss the relevance of this
new law of nature in the context of physiology, pathology, or evolution; (vi) discuss
why some species or organs may not follow the expected law, hence justifying the rule
through its exceptions [42]. Fig. 6 shows an example of growth rate allometry in plants.
These studies, despite their obvious shortcomings from a epistemological point of view,
have been incredibly successful and power laws nowadays are the very few quantitative
laws related to shape and size that seem to hold across diverse organisms [43]. As
such, allometry remains nowadays a favourite tool and a methodological framework
for comparative biology [44]. More importantly, for the study of growth, the mere
existence of observed scaling laws, that is the undeniable fact that aspects of sizes,
growth rates, or metabolic rates tend to cluster in a linear fashion against total weight
when expressed in log-log coordinates, suggest that critical aspects of size and growth
rate are indeed governed or constrained by geometry, mechanics, and physics as already
argued by Medawar in 1941 [26]2.

At the organ or body level, relative growth can be measured by direct measurement.
However, organs themselves do not follow necessarily isometric growth and experience
different growth rates at different points. The skull of mammals typically elongate after
birth, brains in humans fold onto themselves during development, and roots tend to
grow by limiting their growth in a small region at the tip. Growth, typically is neither
isometric nor homogeneous. Therefore, when studying growth it is important to con-
sider that different points on the growing body may grow at different rates creating,
in the words of Huxley, growth gradients and growth sources [40], and in the terminol-
ogy preferred by 19th century plant physiologists differential growth [45]. Differential
growth is central to all aspects of growth mechanics as it is responsible not only for

2Note however that Medawar believed that growth is dominated and limited by diffusion, which
turns out to be relevant only at the microscopic scale.
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shaping an organism but also for creating stresses through geoemtric incompatibility.
However, to capture its key features new experimental and mathematical methods are
needed.

1.4 Stress influences growth

From a biologist perspective growth is mediated by gene activation and regulation. In
a simplified view, different genes will trigger different growth responses. For instance,
in the case of the leaf of the model plant Arabidopsis thaliana, a number of genes and
microRNAs have been identified that regulate and control the shape of leaves during
development (See Fig. 7). Exquisite details are known on the initial stage of leaf forma-
tion including features such as adaxial-abaxial polarity, symmetry, and flat morphology,
as well as the precise control of cell division, proliferation and expansion. This genetic

Figure 7: A genetic view of growth. The shape and size of a leaf is determined during
development by a number of regulatory genes that have been identified by systematic
genetic studies [46].

.

perspective of growth is fundamental as it identifies at the smallest scale the essential
features that control cell division and expansion. It also provides information at the
local level on the change in shape and volume of the growing components of a body.
Nevertheless, a leaf will only acquire a shape as a result of cell division by developing
physical forces between cells or within a cell. There are important physical, geometric,
and mechanical constraints in the development of a tissue or an organ that need to be
integrated with genetic and biochemical signals to obtain a full picture of growth.

The fact that mechanical loading has an effect on growth is not surprising as many
anecdotical facts are well appreciated. We know, for instance, that muscles will grow
when repeatedly strained during exercise. We know also that astronauts will loose
bone mass in space flights due to the effect of reduced gravity [47] and, conversely, that
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tennis players have denser bones in their playing arms [48], that trees will grow shorter
but more stubby in areas which are more windy [49], that the earlobe will stretch and
grow under the action of heavy earrings and that foot-binding results in smaller foot
size and permanent deformations [50]. The precise nature of how mechanical signals
applied in the bulk or at the boundary of a body are mediated down to the cell and the
nucleus is not yet known but the effect of the mechanical environment on the regulation
of growth is undeniable.

Figure 8: A mechanical view of growth. Left: The length of a growing stem is con-
tinuously recorded while the plant is being pulled by different weight (from Sachs’s
Text-book of botany [45]). Right. Results of a similar experiments performed on
maize leaves. Different weights are being attached leading to different growth velocity
and growth rate as a function of the applied force [51].

.

The influence of stress and mechanical loading on growth and physiological regula-
tion is well documented in many systems some of which we briefly review next.

1.4.1 The growth of stems

Simple experiments that quantified the relationship between growth and applied stress
were already performed by plant physiologists of the 19th Century. The idea is as
simple as it is beautiful. As a stem grows, a string is attached to its tip and tied
around a pulley (See Fig. 8). Different weights can be placed at the other end of the
string to apply different constant forces to the growing stem. The length of the stem is
continuously recorded by an auxanometer. Experiments on maize leaves show that the
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growth rate increases with the applied load demonstrating very clearly the relationship
between external loading and growth.

1.4.2 The growth of axons

Another interesting example of stress-mediated growth in a biological system is found
in the development and branching of neurons. Most neurons have a very distinctive
morphology with a large cell body and long protoplasmic protrusions from the cell body.
These protrusions, called neurites, develop into either axons or dendrites that connect
to each other to create a connected network, the nervous system. The initiation,
development, and growth of axons have been shown to depend on applied mechanical
forces [52]. The initiation of axons of chick sensory neurons, chick forebrain neurons
and rat PC12 cells can be experimentally manipulated by the proper application of
tension on the surface of the cell body [53]. Following initiation, the elongation of an
axon can be manipulated by first gluing a calibrated glass needle and then towing the
neurons with constant force leading to different growth rate (See Fig. 9).

Figure 9: Growth of an axon: Right: Experimental elongation of a neurite in a stage
2 hippocampal neuron induced by applied tension. (A) Neuron immediately before
needle application. Arrowhead marks position to which needle was attached. (B)
Same neuron 30 min later during early stage of neurite towing. (C) 5:40 h/min after
panel B, at the end of towing. Bar, 20 µm.[54] Left: Axonal elongation rate for chick
sensory neurites as a function of experimentally applied tension. Each line reflects the
data of single towed neurite. Data and graphs from [55].

1.4.3 Thoma’s law in arteries

Arteries are the blood vessels that carry blood from the heart to organs and body tis-
sues. Mechanically, they can be seen as mostly cylindrical structure with a triple layer
of visco-elastic material that can grow and remodel. The arterial system is a highly
complicated and regulated mechanical system sustaining varying pressures, loads, and
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stresses. It has been known since the early work of R. Thoma in 1893 ([56], see also
[57, 58]) that the magnitude of blood flow in chick embryo blood vessels regulates
the vessels’ diameters and further that this effect is mediated through shear stress
on the inner arterial wall. Thoma also showed that the magnitude of pressure regu-
lates the vessels’ thicknesses. These observations on mechanical regulation of artery
thickness and diameter have been verified experimentally over the years [59]. Arteries
also respond to changes in axial loading; a sustained increase in axial loading tends to
lengthen arteries in culture and in vivo suggesting that axial stress (or strain) is also
regulated towards a homeostatic value [60].

Figure 10: Arteries are the main blood vessels in the body carrying blood from the
heart to organs and body tissues. Their thickness, diameter, and length are regulated
by mechanical stimuli, among others.

1.4.4 Woods law for the heart

The heart is a complicated organ that pumps blood to the body by active muscular
contraction. The heart size and thickness is regulated during homeostasis to maintain
proper function. In 1892 Woods proposed that wall stress is a key factor in this
regulation process [61]. The basic idea of Woods is to look at the heart as an elastic
membrane and use Laplace’s law to obtain information on wall stresses (See Fig. 11).
Laplace’s law (sometimes called Young’s law or Laplace-Young’s law [62]) states that
for an elastic membrane, the difference of pressure P accross the membrane is related
to the principal curvatures κ1 and κ2, the wall thickness h and principal wall stresses
by

P = h (σ1κ1 + σ2κ2) . (8)

If we assume transverse isotropy of the walls, we obtain P = hσ(κ1 + κ2). Woods
showed through direct geometric measurement that the ratio

CWoods = P/σ = h(κ1 + κ2) (9)

is nearly constant across the heart. More strikingly, the Woods number CWoods also
seem vary only by about 22% across different mammal and birds species [63]. The
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idea is then that wall stress could be the prime regulator of heart size and thickness.
In simple terms, Woods’ law states that the heart grows and remodels as to keep wall
stress constant. This law is consistent with various pathologies and regulatory mecha-
nisms. For instance, during long periods of high blood pressure P due to pathological
conditions, the heart ventricles thicken by addition of myofibrils as to lower wall stress
over long time. Similarly, athletic exercise leads to increase in volume loading that
decreases the curvature κ of the heart and will be matched by an increase in muscle
fibre length that will also increase the heart thickness h.

Normal heart Ventricular dilation
due to volume overload

Wall thickening due 
to  pressure overload

A. B.

Figure 11: Growth and remodlling in the heart: A. Observation of the principal radii
of curvature on the hear surface as originally performed by Woods [64]. (B) Pathology
of the heart leading to increase in size. Left: normal heart, middle: ventricular dilation
due to volume overload, right: increase in wall thickness due to pressure overload [65]
Reproduced WITHOUT permission.

1.4.5 Tumour spheroid growth

Figure 12: Multicellular tumour spheroids. Left: three-dimensional structure (bar
is 250 mm) reproduced WITHOUT permission from [66]. Right: Growth kinetics of
spheroids grown in agarose gels of different concentration showing that as the gel gets
stiffer the asymptotic size of the spheroid is smaller. Right: Geometry of the problem
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Cancer cells can be cultured in vitro to grow on a gel or in a pool of nutrients and
form a sphere-like shape, a spheroid [67] (See Fig. 12). These spheroids are of great
interest as they can be used in a variety of settings to understand the response of cancer
cells under different physical, chemical, and genetic treatments [68]. Mathematically,
the delightful spherical symmetry of these aggregates allows for a direct comparison to
experiments and a reduction of the problem difficulty by only considering the evolution
of the spheroid radius [69]. The fact that tumour growth is related to mechanical
stresses was nicely demonstrated by Helmlinger et al. who showed that the final size
of the spheroid depends on the concentration of the agarose gels in which it is cultured
[70]. This study suggest that solid stress (among other factors such as nutrients and
acidity) has a direct effect on growth as high stress may limit the ability of cells to
divide through contact inhibition [70].

1.5 Growth influences stresses: the problem of residual stress

Wapas, Walapas, or Walabas are the generic names for trees belonging to the genus
Eperua. They are found through French and British Guyanas where they are the
most abundant tree species. These trees grow rapidly and can be cut every 30 years,
representing an important economic resource [71]. However, despite their abundance
and rapid growth, Wapas are not widely exploited as they are also locally called: “les
arbres tueurs” (the killer trees), for the danger associated with harvesting them as
they often burst open as they are cut, presenting a real danger for workers [72]. The
tendency to burst is a perfect and extreme example of the release of residual stress
in plants, what plant physiologists call tissue tension [73]. In many biological tissues,
due to a combination of cellular, chemical, and mechanical factors, different parts of
the tissue experience different growth rates. The net result of this differential growth
is that the tissue may be under stress even when unloaded. Residual stress is the
stress field that may exist in a body when unloaded. The generation of residual stress
through differential growth is the a critical feature of any mechanical theory of growth
[74]. Essentially, as growth takes place locally, parts of the body need to be stretched
or compressed to ensure integrity (no cavitation) and compatibility (no overlap) of the
body. In turn, the strains associated with these residual stresses are referred to as
residual strains [75].

A smaller and simpler experiment to visualise and demonstrate tissue tension in
plants can be done in the kitchen with a stalk of rhubarb (Rheum rhabarbarum) and a
kitchen peeler [77, p. 47]. A stalk of rhubarb is made up of an outer layer consisting of
the epidermal tissue and the collenchyma layers, and an inner layer consisting chiefly
of parenchyma. If you carefully peel a strip of the stalk’s outer layer and attempt to
place it in its original position, you will notice that the strip has shrunk in length by
about 2%. If you peel the other outer layers, you may realise that the inner part (the
pith) is extending in length (by about 6%). This simple experiment shows that the
outer wall is in a state of axial tension while the pith is in a state of axial compression
(See Fig. 14). The possible mechanical role of these stresses and combination of tissues
can be appreciated by realising that the peeled rhubarb has lost most of its rigidity; so
much so that it now buckles under its own weight. Similarly if the rhubarb is cut along
its axis, it will tend to bend outwards as part of the elastic stress is relieved when the
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Figure 13: Right: Eperua venosa. Wapas are trees that burst when cut as a result of
their rapid differential growth causing residual stress. Top Left : When they are cut
they can burst open [72]. Bottom Left: Residual stress in plants can also be relieved
by slicing them [76].
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pith elongates and the outer tissues shorten by curving (See Fig. 14).

Figure 14: Residual stress in rhubarb. Top: A rhubarb would naturally curve backward
when cut. Bottom: The middle segment of a long stalk of rhubarb was cut. This
segment, of initial length 20 cm, was then peeled. The peeled strips are now shorter
(by about 2-4%) and the pith is longer (by about 6%). The mutual tensions between
inner and outer layers have been relieved. Left: The residual stress in the pith of the
rhubarb can be measured by adding a weight to the top until its returns to its initial
value [78].

The mutual tension between outer and inner tissues in rhubarb and its possible role
in plant mechanics was mentioned as early as 1848 by Brucke, described by Sachs in
1857, and explored in detail by Hoffmeister in 1867 who noticed that the outer and
inner tissues of Vitis vinifera (common grape vine) respectively, contract and extend
elastically upon separation. The possible role of tissue tension in plant mechanics was
well described by Sachs “We have here the case of an elastic stiff body consisting of
two parts, each in a high degree flexible and by no means stiff; only in their natural
connection do the epidermal tissue and internal tissues together form an elastic rigid
body”[45, p. 216]. Following these early works, tissue tension became a central topic of
interest in plant physiology as it was observed in many plants including wheat roots,
fennel leaves, rhubarb stalks, sweetgum trees, and hypocotyls of cucumber, sunflower,
cantaloupe, and squash. We attribute these stresses to the differential extension of
the cell walls in outer and inner layers, creating an irreversible change in the resting
lengths of both tissues [79].

Tissue tension also played a central role in the discovery of auxin as a growth
hormone through the so-called “curvature pea-test” (See Fig. 15) [80]. As auxin acts
differently on different tissues, the respective growth of the epidermis and pith of
pea hypocotyl can be controlled by varying the auxin concentration and explicitly
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tested by slicing the pea along its axis and measuring the resulting stem curvature.
Despite the early success of mechanics in plant physiology, the advent of genetics and
biochemistry changed the focus of plant development from a physical to a cellular
emphasis. However, in recent years, the study of tissue tension (sometimes called
growth stresses in trees [81]) has regained interest [82] and the role of tissue tension in
growth regulation has become a controversial topic [73].

a b c

Figure 15: Pea test to determine the role of plant growth hormone [73], experiments
with various level of auxin from Thiman and Schneider [83].

In physiology, it is through the work of both Fung and coworkers and the joint work
of Vaishnav and Vossoughi in the 1980’s [84], that the importance of residual stress
became appreciated. The classic experiment of Fung [85] consists in slicing a disk
of artery and realising that it will naturally open due to its residual stress field (See
Fig. 16). If we view the artery as a three-layer cylinder, the opening of the disk reveals
that when closed the inner layer (composed by the media-intima as shown in Fig. 10)
is in compression whereas the other layer (the adventitia) is in tension. The opening
angle in arteries has becomes a standard way of quantifying residual strains [86]. The
stresses associated with the opening angle are known to play a fundamental role in
regulating transmural stress gradient and lowering circumferential stress at the inner
walls [87]. Experimental observations [88] also indicate that, not unlike the dandelion
and the rhubarb, arteries also exhibit axial residual stress due to the relative axial
growth of the different layers as first noted by Bergel [89] in the 1960’s. However,
the effect of axial residual stress and the axial pre-stretch in regular homeostasis still
remains to be elucidated.

Once the importance of residual stresses in arteries was established, it was not
long before residual stress was observed in a number of physiological systems (See
Fig. 17) such as the oesophagus [90], the aorta [91], the heart [92], the trachea [93],
the brain [94], bones [95], the developing embryo [96], as well as other systems such as
solid tumours [97] and even in the drying of fruits [98] and in the aging of meat [99].
Residual stresses are a hallmark of living tissues and organs but play also an important
role in many elastic systems as first noted by Ciley in 1901 [100] and manufactured
systems [101] (see also the reviews [102] for an interesting discussion of the techniques
used in engineering and bioengineering to measure residual stresses and their various
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Figure 16: Residual stress in arteries. Left: Slicing a disk of artery typically shows
that the artery opens relieving some of its residual stress (Picture from Holzapfel and
Ogden). Right: Fung classic experiment and the definition of the opening angle.

effects on the properties and behaviours of different structures).

1.6 Basic questions in a theory of growth, the theory of mor-
phoelasticity

From a geometric point of view, residual stresses arise due to the incompatibility be-
tween a specification of the local change in volume element and the continuity and
integrity of the body. This is easy to visualise in a one-dimensional analogy of the
rhubarb experiment. Consider a sandwich of three identical elastic rods perfectly glued
to each other along their length and only allowed to deform along their length. Then,
we let the middle rod increase uniformly in length. To preserve the integrity of the
composite body, the middle rod must be compressed and the outer two rods must ac-
cordingly stretch. This structure has developed residual stress that could be relieved
by two cuts (simply removing the glue between the layers would release all stresses)
allowing the three rods to return to their original length. Interestingly, the shape of
the grown composite body depends not only on the geometry but also on the elasticity
of the three rods. Indeed, if the outer rods are very stiff, very little deformation will
take place.

This elementary example outlines the interplay between the elasticity of the mate-
rial, the local change in volume due to growth, and the overall geometry of the body.
Further, stresses also influence growth through the evolution laws creating further dy-
namical coupling in the evolution of stresses and geometry. Understanding completely
this coupling for given material and growth evolution laws in a given geometry is the
central problem of a theory of morphoelasticity, that is a theory that couples growth
evolution, geometry, and elastic response [104, 105]. The goal of such an approach
is not only to obtain the new grown shape and the residual stress developed in the
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A. B.

D.

C.

E.

Figure 17: Evidence of residual stress in physiological systems. A. The trachea [93].
Notice how a cut in a disk relieves stress by opening. B: Bones [103]. Here an incision
creates an opening due to tension C: The oesophapgus [90]. Different layers have
different opening angles D: The heart [92]. A slice of heart also opens when cut. E:
The brain [94].
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structure but also to understand how such a new body evolves dynamically, how it
responds to loading, and how it fulfils key structural and biological functions. For
instance, it clearly appears that the grown rhubarb or dandelion is stiffer while grown
and residually stressed than the different tissues it is made of at rest. Similarly, it is
believed that arteries develop residual stress to regulate hoop stress that may cause
tissue separation. How is this structure obtained dynamically? How does it evolve its
material response during loading?

Yet another way that growth and elasticity can be combined in biological materials
is through the formation of new morphological patterns born as mechanical instabilities
[106]. Indeed, it is well-known that elastic materials under external loads can develop
instabilities such as buckling [107] or wrinkling and a natural question is whether growth
itself can generate sufficient stress as to destabilise the body. This is not obvious since
the geometric effect of growth is to change the different length scales associated with the
body (such as thickness) and this may also have a stabilising effect as, typically, stubby
bodies are more stable than slender ones under compression. Therefore, geometric
and mechanical effects can both help stabilise a structure for proper function [108] or
destabilise the body to develop new shapes as found in 3D as well as in plates, shells,
and membranes [109].

The general questions of interest in developing a mechanical theory of growth are
in understanding the origin of the coupling between growth and mechanics as well as
its consequence for biological functions or shapes:

• What is the role of mechanical cues in growing tissues?

• How does growth modify the structural properties of a tissue?

• What is the combined role of mechanics, geometry, and growth in morphological
pattern formation?
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2 One-dimensional growth

� Overview

We consider the simplest possible growing system, a rod growing along a line.
In this case, there is only one strain associated with the mechanics (the elastic
stretch) and one strain associated with growth (the growth stretch).

To understand growth processes, it is instructive to start with simple, one-dimensional
example: the growing rod. Rods are slender elastic structures that can support bend-
ing, twisting, stretching, and shearing. We first constrain growth on the line. When
restricted to deformation in one-dimension, rods support only stretching and, in the
case of growing rod, extension due to increase of mass. This filamentary structure

S0=0

s=0

S0=L0

s(L0)=l

S0

s(S0)

Figure 18: Extension of a filament in one-dimension. Initially of size L0, the filament
changes its length due to growth or stretching o a size l.

is parametrized by a parameter S0 denoting the arc length of a material point from
one end at time t = 0 (say, the left end, taken to be S0 = 0) in an initial unstressed
configuration (see Fig. 18). This rod is initially of length L0. The rod can change its
length and a point initially at a position S0 is located in the current configuration at a
position s = s(S0) and its total length in the deformed configuration is s(L0) = l. The
stretch variable denoting the local change of length is

λ =
∂s

∂S0

. (10)

If all segments of the rod experience the same stretch, the deformation is uniform and
λ is simply given by λ = l/L0. In general, at any point, λ > 1 implies that there is a
local increase in length whereas λ < 1 represents a local decrease in length with respect
to the initial configuration. A change in length can either be due to growth or applied
loads, such as tension or compression. These are very different processes. To illustrate
these differences we consider different growth mechanisms and loadings of the rod.

2.1 Pure elastic deformations

If the rod is put under a tensile stress σ (a stress is a force per area, specifically for
a rod under uniaxial stress it is the force along the axis divided by the cross-sectional
area), there is an elastic energy associated with the new configuration. This energy
can be recovered by releasing the end and work can be provided. In such case, the
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stretch is purely elastic, λ = α, and the deformation is specified by a constitutive law
that relates stresses to strains and provides information on the elastic nature of the
material. For illustrative purpose, we start by assuming, a Hookean bahaviour, that
is the simplest spring-like response proportional to the displacement and characterised
by a single parameter, the Young modulus E. Then, we have

σ = Eε = E(α− 1). (11)

where ε is the displacement associated with changes in length. If E is homogeneous
(independent of the material and current position), this last relation completely spec-
ifies the deformation. For example, consider a beam deforming under its own weight.
let the beam be originally of length L, have uniform density ρ, and cross-sectional area
A.

Sagging under self-weight

We conclude that the current length is

l = L− ρgL2

2EA
(12)

The Hookean law (11) is only typically valid for small deformations. For large
deformations, the theory of three-dimensional elasticity (developed later in this module)
applied to the uniaxial extension of an incompressible rectangular neo-Hookean bar
suggests the following nonlinear law

σ = µ(α2 − α−1), (13)

where µ is the shear modulus. Close to α = 1, we recover the behaviour of the Hookean
material (11) and we can identify E = 3µ (as shown in Fig. 19). More generally,
materials that show strain-stiffening (increase in stiffness for large deformations) or
strain-softening (decrease in stiffness) can be modeled by various function of the stretch,
in which case the constitutive response in one dimension will be given by a general
function

σ = f(α), (14)

with the requirement that f(1) = 0 and that the derivative of f at α = 1 exists. For
such systems, the Young modulus E = f ′(1) is then simply the linearized behavior for
small deformations around the stress-free state.
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Figure 19: Comparison between the linear (dash) and nonlinear (solid) Hookean re-
sponse for µ = 1, E = 3.

2.2 Growth without elastic response.

If the rod has grown and there is no applied load, the rod also increases in length. This
increase in length can be specified by a local growth stretch analogous to the elastic
stretch. That is, we write λ = γ. The question is now to find a suitable description of
the function γ which models a growth process taking place in time so that γ = γ(t).
It is easier and more natural to describe a growth process as a rate representing the
changes occurring in a small increment in time. Therfore, we postulate the existence
of an evolution law of the form

∂γ

∂t
= G(γ, s, S0). (15)

For instance, uniform linear growth is achieved by taking G = 1 and, in the absence of
other loads, we have at time t, s = tS0 and the rod at time t has length l(t) = (t+1)L0.

As a simple but important example, if the rod is made of cells that reproduce at
a constant rate (as found, for instance, in the bacterial fibers of Bacillus subtilis, the
rate of growth is proportional to the local growth stretch that is,

∂γ

∂t
= kγ, (16)

which results in exponential growth of the rod

s = S0e
kt, l(t) = L0e

kt. (17)

2.3 Application to spheroid tumor growth

2.3.1 Background

As an application of the idea of linear growth, we consider a simple model for tumor
growth where a spherically shaped tumor expands its radius depending on the level
of nutrient diffusing through its boundary. This model is part of a large class of
experimental and theoretical models used in oncology referred to as spheroid models
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b

a

Figure 20: Multicellular tumour spheroids. Left: three-dimensional structure. Center:
Cross section reproduced WITHOUT permission from [66]. The inner necrotic core is
surrounded by a layer of quiescent cells. This layer is surrounded by a layer of active
cellsÑthe bar is 250 mm. Right: Geometry of the problem

[110]. Experimentally, cancer cells can be cultured in vitro to grow on a gel or in a
pool of nutrients and form a sphere-like shape, the spheroid [67, 111] (See Fig. 20).
These spheroids are of great interest as they can be used in a variety of settings to
understand the response of cancer cells under different physical, chemical, and genetic
treatments [68, 70]. Mathematically, the spherical symmetry of these aggregates allows
for a reduction of the problem difficulty by only considering the evolution of the radius
[69].

2.3.2 The model

We model tumour spheroid as perfect sphere of radius b(t) as a function of time t.
Initially, the radial position of a material point inside the tumor is R0 with radius
B0 and we are interested in the evolution of each point as a function of time, that is
r = r(R0, t) and, in particular, the radius of the tumor b(t).

Since, we assume radial symmetry, we can focus our attention on any line from the
origin to the boundary of the sphere. We assume that growth is isotropic, that is, there
is no preferred direction of growth, a volume element dV0 initially located at a point
R0 will grow to a new volume element dv at the point r = r(R0, t) with a volumetric
growth coefficient η = η(r, R0) which could depend on the type of cells (dependence
on the original R0) or its position r in the sphere.
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Growth strain

That is,
γ = ηR2

0r
−2. (18)

In the absence of elastic response, the problem is equivalent to the growth of a rod.
We assume that at each point, growth is exponential but proportional to the nutrient
concentration u(r, t), so that

∂η

∂t
= kηu(r, t), (19)

∂r

∂R0

= γ, (20)

where u(r, t) satisfies a diffusion equation

∂u

∂t
=
D

r2
∂

∂r

(
r2∂u

∂r

)
−Q. (21)

Here D is the diffusion constant and Q is a constant nutrient uptake. The tumor is
assumed to sit in a well-mixed bath of nutrients so that the concentration at the outer
surface is u(b, t) = ub.

2.3.3 Analysis

Starting with a small size tumor, we expect the nutrient to penetrate all the way to
the origin. However, as the tumor grows, it will reach a critical size bcr at time tcr
so that the concentration at the origin vanishes u(0, tcr) = 0. Since the concentration
remains positive for all time, for t > tcr, the concentration will vanish at a point a with
0 < a < b (see Fig. 21).
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Concentration profile

That is,

u(r) =
Q

6D
(r2 − b2) + ub (22)

if b < bcr and

u(r) =

{
0, r < a,
Q
6D
r2 + Q(b3−a3)−6Dbub

6(a−b)D + abQ(a2b2)+6abDub
6(a−b)D

1
r

r > a.
(23)

if b > bcr

The critical radius bcr is found as the first radius for which u(0) = 0 which leads to

bcr =

√
6Dub
Q

. (24)

For b ≥ bcr, the inner radius a is determined by the condition ∂u
∂r
|r=a = 0, that is the

first positive root of the polynomial

P (a, b) = Q(2a3 − 3a2b+ b3)− 6bDub. (25)

In Fig 21, the nutrient profile is shown for different values of the external radius. The
inner shell of radius a can be associated with the so-called necrotic core3, a region
inside the spheroid where the cells die due to lack of nutrient. As the radius increases,

3We comment again on the fact that this is an over-simplified view of the problem as a quiescent
zone can also formed where the cells do not proliferate but remain alive and are in a state of dormancy
[112, 113]. Nevertheless, this toy model captures the essence of the problem and give a basis for the
concepts of penetration length, proliferating zone, and necrotic core frequently used in the study of
tumor growth [114].
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Figure 21: Nutrient profile as a function of the radius. For t < tcr, the nutrient
penetrates in the spheroid to the origin. For t = tcr, the profile vanishes at the origin
and for t > tcr, a necrotic core.

the proliferating zone (b − a) tends rapidly to a constant determined by the solution
of (25) for large b, that is

∆ = lim
b→∞

(b− a) =

√
2Dub
Q

. (26)

Once the nutrient profile is known, the growth of the tumor can be computed by
integrating (19).

Growth profile

That is, the equation for the outer radius is

∂b(t)

∂t
= kb−2

∫ b

0

u(ρ, t)ρ2dρ. (27)

Initially, the entire spheroid is proliferating and we observe exponential growth
(see Fig 22). As the necrotic core forms, growth is still exponential but in a region
of constant width. Therefore, following the argument in the previous section on tip
growth, we conclude that, for large b, the radius should increase linearly in time as
shown in Fig. 22.
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2.3.4 Discussion

Apart from the effect of nutrient, it is believed that mechanical stress has also an
effect on growth as high stress may limit the ability of cells to divide through contact
inhibition[70, 115]. However, in order to investigate the effect of mechanics on growth,
an analysis of the full stress tensor at any point in the spheroid needs to be performed.

b(t)

Exponential 
growth

Linear
growth

tcr

bcr t

Figure 22: Left: Nutrient profile as a function of the radius. For t < tcr, the nutrient
penetrates in the spheroid to the origin. For t = tcr, the profile vanishes at the origin
and for t > tcr, a necrotic core. Right: Evolution of the radius as a function of time.
For short time, the tumor grows exponentially, for t > tcr, a necrotic cored develops
and only a spherical shell proliferates.

2.4 Growth with elastic response

So far, we have considered growth and elastic deformations as two independent pro-
cesses involved in changing locally the length of a filament. In general, growth may
induce stresses. For instance, if we let a filament grow between two rigid plates, the
ends cannot move as the rod grows and compressive stresses are generated. By con-
trast, growth may be triggered or influenced by stresses in the material. Therefore,
growth and elasticity may be coupled and and we must integrate them within a single
framework. The fundamental assumption of morphoelasticity is that the change in
length is due to both processes so that we can write

λ = αγ. (28)

This apparently simple multiplicative decomposition is rather subtle and needs to be
further discussed and justified in the general context of nonlinear elasticity. Before
discussing this problem in more detail, it is of interest to explore the consequences of
such a decomposition by considering different situations.
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2.4.1 Growth of a rod constrained between two plates

First, we consider a growing rod between two plates. That is, we allow no displacement
of the ends. If the rod grows uniformly and linearly in time (that is, γ = 1 + t), it
creates a uniform compressive stress. Therefore, we have λ = αγ = 1 and α = 1/(t+1)
which implies, if we assume again a constitutive relationship (11),

σ = − Et

t+ 1
(29)

and, paradoxically, it appears that the stress saturates asymptotically to −E as t→∞.
This is due to the fact that, within the assumption of the Hookean law (11), it takes a
finite stress (namely −E) to compress a rod to zero length. Clearly, real materials will
not follow this behavior and corrections to the Hookean law will enter the constitutive
relation when compression (or tension) becomes sufficiently large. For instance, using
the neo-Hookean law (13), we obtain

σ = µ

(
1

1 + t2
− t+ 1

)
, (30)

and an infinite compressive force (σ → −∞) is generated as the bar elongates indefi-
nitely as t→∞.

The rod is grown to a length L(t)

Virtual con!guration

Initial con!guration

Growth deformation γ Elastic deformation α

Current con!guration

The rod has length L0 The rod has length l=L0

Figure 23: The growth of a constrained rod between two plates can be thought of as
the composition of two distinct processes: a growth deformation which creates a stress-
free virtual configuration, followed by an elastic deformation necessary to enforce the
boundary conditions.

A slightly different way to understand the coupling between growth and elasticity is
to separate the response of the material into two distinct processes. First, we apply the
growth deformation, that is we let the rod grow without the external constraints of the
plates, so that at any given time, it is in an unstressed state but grown in such a way
that the material point S0 is now at a position S(S0, t) = S0(1 + t) with total length
L(t) = L0(1+t). Since, this state is not realized in the experiment in question, we refer
to it as a virtual configuration, that is, a useful mathematical construct needed to find
a solution of the problem. Second, we place the grown configuration back in between
the plates, that is we find the elastic stretch α = 1/(t + 1) necessary to compress the
rod.
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This example also provides a simple illustration of one of the fundamental problems
related to the modeling of growth, that is the evolution of the reference configuration.
In order to evaluate the elastic deformation and the stresses in a growing material,
one needs to define the strain which is a measure of the deformation with respect to a
reference configuration which is a configuration where the material is unstressed. As
growth takes place, the reference configuration of the material evolves. For instance,
in our example, the reference configuration is not the initial configuration but the
virtual configuration obtained by removing stresses, that is, α = 1, which corresponds
to a filament of length L = L0(t+ 1). In this book, we will use the following notation:
lowercase denotes a variable in the current configuration, whereas uppercase designates
the similar variable in the unloaded configuration either initially (with subscript 0) or
at any given time (without subscript or with a subscript t is necessary).

The standard picture of elasticity is to consider an initial reference configuration
without stresses and a current configuration where loads are applied and stresses can
be computed from the mechanical balance and constitutive equations. We see on this
simple example that an understanding of the stresses in a growing elastic medium re-
quires yet another configuration, namely the virtual configuration, where the material
has grown but in which there is no stress. In the case of one dimensional extension, the
experiment of removing the stresses by unloading the material can always be carried
out. However, we will see that in many situations this configuration cannot be achieved
by a physical experiment but can only be defined locally, hence the name virtual con-
figuration, a mathematically useful, but often physically unattainable construct.

2.4.2 Stress dependent growth.

We now consider a situation where growth and stresses are coupled. We assume that
the filament has a natural homeostatic stress σ∗, that is, a stress that the filament,
through the active process of growth, tends to recover when disturbed out of its natural
state. Here, for illustrative purpose, we assume that this process can be modeled by
the evolution law

∂γ

∂t
= γ(σ − σ∗), (31)

which implies that exponential growth (or resorption4) will take place until the stress
σ reaches the homeostatic stress σ∗.

Assuming again a Hookean stress-strain relationship σ = E(α − 1), we see that
there is a unique homeostatic strain α∗ = 1 + σ∗/E. We now consider the following
problem: we assume that at time t = 0, the filament is happily resting in a state of
homeostatic stress with a length l0. The filament is instantaneously extended to a
constant length l. How will the filament evolve to reestablish its homeostatic stress?

4Again, growth is understood as either an increase (positive growth or densification) or decrease
(negative growth or resorption) of mass or volume.
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Growth with stress

That is,

γ(t) =
l

l0
+

(
1− l

l0

)
e−(E+σ∗)t. (32)

γ(t)

t

l/l0=2

l/l0=1/2

l/l0=1

Figure 24: Growth evolution of a filament with homeostatic stress σ∗ of length l0
either extended to a filament of length l = 2l0 or compress to a filament of length
l = l0/2 (σ∗ = 1).

As expected the filament grows as to recover its homeostatic stress σ∗. The notion
of homeostatic stress is central in understanding normal maintenance and function of
many tissue (homeostasis).
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3 A growing rod

� Overview

We can generalise the ideas of growth to the case where the rod can evolve in
space while growing axially.

3.1 Kinematics of a growing rod

Based on the general approach of growth in nonlinear elasticity through a multiplicative
decomposition [116, 106], we consider three different configurations for the rod. The
initial configuration B0 is the unstressed configuration of the rod at time t = 0, all
quantities in this state are denoted by a subscript 0. The reference configuration
V is the unstressed configuration at a given time t and the current configuration B
of the rod is the actual configuration of the rod at time t for given external loads,
body loads and boundary conditions. Note that at time t the unstressed configuration
may not be realizable in the Euclidian space. For instance, starting initially with a
ring of radius one and unstressed curvature one and increasing the rod length while
keeping the unstressed curvature constant would lead to a stress-free configuration
that would be self-penetrating. However, unlike the three-dimensional case, there is no
problem with local compatibility and generation of residual stress associated with the
local definition of a growth and elastic tensor [105]. Therefore, all local quantities are
well-defined and the reference configuration is appropriate for the computation of the
current configuration.

At time t = 0, the rod is described by its unstressed shape û0 = û(S0, t = 0) with
arc length S0, total length L0, density ρ0(S0), cross-sectional surface area A0(S0) and a
stiffness matrix K0. This unstressed shape evolves so that at any given time t the rod
has unstressed shape û = û(S0, t), with arc length S, total length L(t), density ρ(S0, t),
cross-sectional surface area A(S0, t) and a stiffness matrix K. In this description, S0 is
now a material parameter. It is related to arc length S of the virtual configuration V
by the growth stretch γ, i.e.

γ(S0, t) =
∂S

∂S0

, (33)

so that γ characterizes the local increase of length of a material segment located at a
material point S0 at time t. This virtual configuration is required in order to compute
the current shape of the rod for given loads and boundary conditions (See Figure 25).
In the current configuration, the rod has arclength s and total length l(t).

3.2 Mechanics

We define α to be the elastic stretch and λ the total stretch between the initial and
current configuration, so that the decomposition of growth follows from the simple
chain rule

λ = αγ ⇐⇒ ∂s

∂S0

=
∂s

∂S

∂S

∂S0

. (34)
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B0
B

V

Figure 25: Schematic of the 3 configurations, initial B0, reference V , and current B.
The reference configuration is stress-free and evolves in time and reflects the change due
to growth (shown here, initially the rod has intrinsic curvature; as growth proceeds the
cross-section is allowed to grow inhomogeneously and the length of the rod increases).
The reference configuration can also intersect itself as it does not represent a possible
realization of the rod; rather, it defines its local properties. The current configuration
is the actual configuration with correct boundary conditions (here periodic boundary
conditions) and body loads.

At time t, the balance of force and moment in the reference configuration yields

∂n

∂S
+ f = 0, (35)

∂m

∂S
+
∂r

∂S
× n + l = 0, (36)

where f and l are the body force and couple per unit reference length. The reference
arc length S is the natural choice to express all quantities as the constitutive equations
are given in the reference configuration. Explicitly, the resultant moments are

m = EI1(u1 − û1)d1 + EI2(u2 − û2)d2 + µJ(u3 − û3)d3 (37)

where E is the Young’s modulus, µ is the shear modulus, J is a parameter that depends
on the cross-section shape and and I1 and I2 are the second moments of area. In this
case, in addition to (37), we have an equation relating the elastic stretch α ≡ v3 ≡ ∂s

∂S

to the tension

n3 = EA(α− 1). (38)

Note that the Darboux vector u is defined in the reference configuration, so that

u = α(κ sinϕ, κ cosϕ, τ +
1

α

∂ϕ

∂S
) (39)
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where κ and τ are the usual Frenet curvature and torsion. For a straight rod under uni-
axial tension, the constitutive equation (38) is simply Hooke’s law. Note that although
the Darboux vector u is scaled by a factor α in (39), the unstressed Darboux vector û
is given by the unstressed geometric curvatures in the reference configuration (it is not
scaled by α since it is a material property of the rod in the reference configuration).

A change of independent variable leads to an alternative formulation in the current
and initial configuration. Namely, we have

∂n

∂s
+ α−1f = 0, (40)

∂m

∂s
+
∂r

∂s
× n + α−1l = 0, (41)

where α−1f and α−1l are now the body force and couple per unit current length.
Finally, in the initial configuration, we have

∂n

∂S0

+ γf = 0, (42)

∂m

∂S0

+
∂r

∂S0

× n + γl = 0, (43)

where γf and γl are the body force and couple per unit initial length.

3.3 Remodelling

By remodelling we refer to a change in material parameters without a change in mass.
For instance, we might consider a change in the rod’s intrinsic curvature. An interesting
phenomenon that can be well-modelled with this approach is gravitropism – see Fig 26.
In gravitropism, a plant reorients itself to align with a gravitational field. This involves
a complicated process that links activities at the cell level to tissue-level differential
growth (cells on one side of the plant grow more than those on the other side). However,
when viewed at the organ level, i.e. treating the plant or stem as an elastic rod, the
length may not change, and we can understand the kinematics of this process as a
remodelling of intrinsic curvature in response to gravity.

We describe the plant stem as a planar inextensible elastic rod given by r(s, t) =
x(s, t)ex + y(s, t)ey, and suppose that gravity is in the negative y-direction. Defining
φ(s, t) as the angle between the tangent and the vertical, we have d3 = sinφex+cosφey,
d1 = cosφex − sinφey. The rod only bends about the d2 = −ez, and the curvature
vector is u = u2d2 with u2 = ∂φ/∂s. Suppose further that the plant is clamped at one
end (s = 0) at the origin and with fixed angle φ = φ0.

The idea is that the intrinsic curvature changes locally (at each point along the
stem) in response to how well-aligned the current tangent direction is with ey. A
classic model for this is the ‘sine-law’, which states

∂û2
∂t

= −β sinφ (44)

where β is a constant parameter characterising the rate of the response. Neglecting the
deformation due to gravity, the curvature is exactly given by the intrinsic curvature,
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Figure 26: In gravitropism a plant oriented horizontally develops curvature to align
with gravity.

i.e. u2 = û2, and thus the kinematics is described by

∂φ

∂s
= u2 (45)

∂u2
∂t

= −β sinφ (46)

Given φ(s, t), the shape of the stem can be determined from the geometry. If φ0 is
small, so that the plant is close to vertical, as asymptotic solution can be attained.

Gravitropism in nearly vertical limit

That is,

x(s, t) =
φ0sJ1(2

√
βst)√

βst
(47)
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where J1 is the Bessel function of the first kind.

3.4 Mechanical pattern formation

One of the primary ways that biological systems “use” mechanics is to generate pat-
terns. The idea is simple: mechanical forces that appear in a growing system can
generate stresses that take the system from a ‘trivial’ base state to a ‘complex’ pat-
terned state. For example, in a growing embryo, a hand begins as a uniform nearly
spherical body; it is through differential growth and mechanical forces that a bifur-
cation occurs which eventually leads to the formation of fingers. This basic notion
at some level underlies nearly all the structural patterns we observe, from the corti-
cal folds in the brain to the shape of leaves to the fractal edge of lettuce, and many
more. Here, it is important to distinguish between a biochemical pattern, i.e. a Turing
pattern (which you may have studied in a previous mathematical biology course), in
which chemical concentrations go from a homogeneous to a patterned state through
reaction and diffusion. Here we refer to a biomechanical pattern, a structural pattern
defined by the deformation of a material to a structural pattern. Though in practice,
the patterns we see often will involve a combination of biochemical and biomechanical
effects!

3.4.1 Rod on a foundation

A good model system for investigating structural pattern formation is a growing rod on
a foundation. We consider the buckling of a planar rod on a substrate, or ‘foundation’.
The idea is that the rod models a growing tissue, but it is constrained by attachment
to an underlying tissue; this constraint generates stresses in the system which are even-
tually relieved by a buckling pattern. This scenario is very common in the literature,
and forms the basic idea underlying the morphogenesis of many patterns: e.g. wrinkles
in the skin, ridges and spines in seashells, and the wavy epithelial pattern in airways
and intestine. It is instructive to proceed in detail and see how the buckling pattern
emerges from our morphoelastic rods framework. The rod is naturally straight, initially

Figure 27: Setup of the buckling of a straight planar rod on a foundation. A rod is
attached to a foundation and is allowed to deform only in the plane. An increase in
length leads to a buckling instability.

planar and constrained in the plane so that with respect to the reference configuration
V the Darboux vector is u = (0, ακ, 0), where κ is the Frenet curvature. A convenient
representation of the rod is obtained by assuming that it lies in the x-y plane and
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introducing the angle θ between the tangent vector and the x-axis. That is

τ = d3 = cos θex + sin θey, (48)

which implies

κ =
∂θ

∂s
= α−1

∂θ

∂S
(49)

and d2 = ez. By writing n = Fex + Gey, f = fex + gey, r = xex + yey, we can
simplify the equilibrium equations (35-36) to a system of 5 equations in the current
configuration

∂x

∂S
= α cos θ,

∂y

∂S
= α sin θ, (50)

∂F

∂S
+ f = 0,

∂G

∂S
+ g = 0, (51)

EI
∂2θ

∂S2
+ αG cos θ − αF sin θ = 0. (52)

These equations are supplemented by the constitutive law for the foundation (see be-
low) and a constitutive law for tension F cos θ + G sin θ = EA(α − 1) where A is the
cross sectional area as before. We use this last relationship to express α in terms of
F,G and θ in the equations above.

We consider the case of a clamped uniformly growing rod of initial length L0 = 1
and whose end positions are fixed for all time, that is

x(0) = 0, x(L) = 1, y(L) = y(0) = y0, θ(0) = θ(L) = 0. (53)

where y0 is the distance between the rod and the rigid foundation taken to be the
segment of the x-axis between 0 and 1. Different assumptions on the nature of the
attachment between the rod and the foundation can be made. We consider here the
case where the rod is initially glued to the axis. Therefore, a point (S0, 0) on the
x-axis is attached to a point (S0, y0) on the rod. In the current configuration the two
points are still connected elastically and are now located at (S/γ, 0) and (x(S), y(S)).
Therefore, the body force acting on the rod from the foundation is

f =
h(∆)

γ∆
[(x− S/γ)ex + (y − y0)ey] (54)

where the rest length of the foundation is y0 and ∆ =
√

(x− S/γ)2 + (y − y0)2 is
the distance in the current configuration between two material points connected in
the initial configuration. Note the factor 1/γ which indicates that the attachment
was made in the initial configuration and no subsequent remodeling takes place. The
function h(∆) is chosen such that h(0) = 0 and h′(0) = −Ek < 0.

A bifurcation analysis (see Problems) shows that there is a critical value of γ at
which the solution (on an infinite domain) becomes unstable. In a finite domain, the
amplitude of this periodic solution is modulated as shown in Fig. 28.



4. A brief review of classical nonlinear elasticity 43

Figure 28: Buckling of a clamped growing rod on an elastic foundation. The rod is
constrained to lie in the unit interval L0 = 1 and is clamped at the boundary (with
y0 = 1/2). Here k = 1, r = 0.02, and γ2 = 1.19934. The amplitude is arbitrary and
chosen here to be C1 = −0.2 and the centreline is indicated by a dashed line.

4 A brief review of classical nonlinear elasticity

� Overview

Before incorporating growth in a general mechanical theory, it is worthwhile
recalling the basic equations that describe the response of a continuum material
under loads. This is a very brief review of classical nonlinear elasticity based on
the lecture notes of Solid Mechanics.

When dealing with tissues and organs, it is now well appreciated that many such sys-
tems operate in large deformations. For instance, large arteries are typically stretched
between 20% to 60% from their unloaded configurations [117]. It is also known from
the work of biomechanicians that the nonlinear response of soft-tissues differs qual-
itatively from the response of elastomers (rubbers). A striking example is shown in
experiments first performed in the 19th Century [118]. A cylindrical or spherical elastic
membranes is pressurised (See Fig. 29). At a critical pressure, an elastomer will sud-
denly jump to a new spherical equilibrium whereas a soft-tissue (here a dog bladder)
will reach an asymptotic radius. This difference in behaviour is due to the composition
of many soft-tissues. Typically, soft-tissues are a blend of an elastic matrix reinforced
by fibres (elastin and collagen respectively in the case of animal tissues) and the lim-
iting behaviour is obtained when the stiff fibres are fully extended and resist further
deformations. Further, biological materials are highly inhomogeneous and typically
anisotropic (again due to the particular orientation of the reinforcing fibres). There-
fore, a continuum theory for the mechanical response of biological tissue requires the
general theory of nonlinear elasticity, which, by contrast to the theory of linear elastic-
ity neither assumes small deformations, a particular choice of constitutive law, nor a
particular symmetry of the material (note however, that we will mostly be concerned
here with the case of isotropic response). It is also the natural framework to develop a
theory of growth and remodelling.
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Figure 29: The important of nonlinearities and large deformations is demonstrated in
a pressure experiment as originally investigated by Mallock in 1890 [118] (top picture).
The experiment consists in increasing the pressure inside a tube or a sphere while
recording the radius of the bulge. In the case of rubber (Left), a sudden limit-point
instability is observed at a critical pressure in an experiment by Osborne and Sutherland
[119]. The radius past that critical pressure will suddenly increase. However, in the
case of a biological tissue, the behaviour is qualitatively different and the instability
disappears (Right). In that case it will be increasingly harder to increase the size of
the bulge by increasing the pressure.
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4.1 Kinematics

In nonlinear elasticity one considers two configurations for the description of a body.
A body, B is a set whose elements can be put into 1-1 correspondence with points in
a region B ⊂ E3. Since the body moves or deforms, it can change with time t ∈ R.
We denote by Bt the configuration of B at time t. In particular if we look at static
systems, we will use B0 for the initial configuration and B for the current configuration.
The initial configuration B0 is parameterised by points relative to the position vector
X0 and the current configuration by the position vector x. Since the body retains its
integrity and material points do not overlap, both B0, Bt are bijections of B. Therefore
there exists an invertible mapping, called deformation or motion χ : B0 → Bt such
that

x = χ(X0, t), ∀ X0 ∈ B0 and X0 = χ−1(x, t), ∀ x ∈ Bt. (55)

This mapping is pictured in Fig. 30. It is convenient to use two orthonormal Cartesian

X0 E2

E3

E1

e2

e3

e1

B0 B
x

c(X0)

Current
configuration

Initial 
configuration

c

Figure 30: Basic kinematic of nonlinear elasticity. Two configurations are defined (with
possibly different sets of coordinates). The deformation is a 1-1 map between points
of the reference configuration B0 and points of the current configuration B.

bases to represent vectors in the initial and current configuration

x = xiei, X0 = X0,iEi, (56)

where summation over repeated indices is assumed. The natural choice of representa-
tion in solid mechanics for the relevant geometric and physical quantities (deformation
gradient, stresses) are tensors. The tensor product of two vectors u⊗ v of two vectors
u and v is a tensor such that

(u⊗ v)a = (v · a)u, (57)

where (v · a) denotes the scalar product between the two vectors. In components,
u = uiei and v = viei so that u ⊗ v = uiei = uivjei ⊗ ej. In general, denoting the
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components of a tensor in a basis {ei}, we have

T = Tijei ⊗ ej ⇐⇒ Tij = ei ·Tej, (58)

we have (u ⊗ v)ij = uivj. If we define the matrix of components by [Tij], most linear
algebra identities and definitions carry readily over to tensors, for instance,

det T = det([Tij]) tr T = tr ([Tij]) (59)

and TT = T ⇐⇒ Tij = Tji. Similarly, the product of two tensors ST is defined as
(ST)v = S(Tv) and, not surprisingly, [ST ] = [S][T ].

Next, we define derivatives of scalar, vector, and tensorial fields. Let φ, u, T be
scalar, vector and tensor fields respectively over x, that is

φ = φ(x), u = ui(x)ei, T = Tij(x)ei ⊗ ej. (60)

We define first the gradient of a scalar and vector by, that is

grad φ =
∂φ

∂x
=
∂φ

∂xi
ei, (61)

grad u =
∂u

∂x
=

∂u

∂xj
⊗ ej =

∂(uiei)

∂xj
⊗ ej =

∂ui
∂xj

ei ⊗ ej. (62)

The gradient above is defined as the operation grad( · ) = ∂( · )
∂xj
⊗ ej. Similarly, we

define the gradient of a tensor by

grad T =
∂

∂xk
(Tijei ⊗ ej)⊗ ek =

∂Tij
∂xk

ei ⊗ ej ⊗ ek (63)

And we define the divergence by contracting tensors,

div T =
∂Tij
∂xk

ej (ei · ej) =
∂Tij
∂xi

ej. (64)

We can now introduce the central geometric object of nonlinear elasticity that
describes locally relative deformations, the deformation gradient obtained as the spatial
derivative of the mapping χ. Given a vector x = xi(Xo)ei, the deformation gradient
tensor is F = Gradχ, that is

F =
∂

∂X0,j

(xiei)⊗ Ej =
∂xi
∂X0,j

ei ⊗ Ej ≡ Fijei ⊗ Ej. (65)

Note that the bases in which the gradient is taken are mixed. Geometrically, F is a
linear map that transforms a vector v at a point p ∈ B0 to a vector Fv at the same
material point but in the current configuration (See Fig. 31).

It is standard to show [120] that the determinant J = det F > 0 of the deformation
gradient represents the local change of volume, that is the image of an infinitesimal
volume element dv at a material point p is dv = JdV .

Similarly, it can be shown that an infinitesimal element of area defined in the
reference configuration by a normal N and surface area dA is transformed into another
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X0 E2
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E1

e2

e3

e1

B0 B
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Figure 31: The deformation gradient maps vectors on the tangent space at a mate-
rial point in the initial configuration to vectors in the tangent space in the current
configuration at the same material point.

element of area in the current configuration defined by a vector n with area da and
related to the reference one by Nanson’s formula, that is

nda = JF−TNdA (66)

Now consider a local infinitesimal vector dX tangent to a material line in B0 at p,
then its image dx = FdX0. If M is the unit vector along dX0 then

dX0 = M dS0 = M|dX0| and dx = m ds = m|dx| (67)

which implies that m ds = FM ds. Now take the norm of each side:

|ds|2 = (FM · FM)|dS0|2 = (FTFM) ·M|dS0|2 (68)

⇐⇒ ds

dS0

=
√

(FTFM) ·M ≡ λ(M), (69)

where ds/dS0 is the change of length of a material line in the direction M and λ is a
stretch. This implies that the material is unstrained in the direction M if and only if
λ(M) = 1. We also see the appearance of an important tensor to describe strain in a
body, namely, the right Cauchy-Green tensor

C = FTF, (70)

and a material is unstrained if C = 1. Geometrically, it can be seen that C is a metric
on B as it provides a way to measure distances and angles on the new body (See Section
??).
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4.2 Balance of mass

Next to describe a material, we attach physical properties to our continuum. We define
a scalar field ρ = ρ(x, t), the volume density at each point of the body in its current
configuration and assume that mass is conserved, which leads to the usual continuity
equation for the evolution of density [121]

ρ̇+ ρ div v = 0. (71)

4.3 Balance of linear and angular momentum

The forces distributed on a body B include a contact-force density tn and a body-
force density b. In accordance with Euler’s laws of motion [122], the balance of linear
momentum is ∫

Bf
ρ(x, t)b(x, t)dv +

∫
∂Bf

tnda =

∫
Bf
ρ(x, t)v̇(x, t)dv, (72)

where v̇ is the time derivative of the velocity vector such that v(x, t) = χ̇(X0, t).
According to Cauchy’s theorem, the contact-force density depends linearly on the unit
normal n, given by tn = Tn, where T is referred to as the Cauchy stress tensor. Using
Cauchy’s theorem and applying the divergence theorem to (72) yields the equilibrium
equation

div(TT) + ρb = ρv̇. (73)

Balancing the moments of the forces acting on the body B reveals that the stress tensor
is symmetric, that is TT = T and we obtain Cauchy’s equation for the balance of stress:

div(T) + ρb = ρv̇, (74)

where the divergence is taken with respect to x in the current configuration. The solu-
tions to the equilibrium equations must satisfy the conditions imposed on the boundary
which can be in the form of dead-loading, rigid-loading, or mixed-loading. Dead-loading
prescribes the components of the stresses at the boundary, rigid-loading imposes a fixed
deformation at the boundary, and mixed-loading imposes fixed deformations on some
part of the body and stresses on the remaining boundary.

4.4 Constitutive equations

We assume that the body is hyperelastic. That is, the material can be described by
a strain-energy function W = W (F) and the Cauchy stress is related to the elastic
deformation by

T = J−1F
∂W

∂F
− p1, (75)

where p is a Lagrange multiplier associated with the internal constraint of incompress-
ibility and J = det(F) as before. For an incompressible material, J = 1 and p is the
hydrostatic pressure. If the material is compressible, then p = 0.

If we restrict our attention to isotropic materials, we can write the strain-energy
function either in terms of the principal stretches λ1, λ2, λ3 (the square roots of the
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principal values of FFT) or, equivalently, in terms of the first three principal invariants
of the Cauchy-Green strain tensors, given by

I1 = tr(C) = λ21 + λ22 + λ23, (76)

I2 =
1

2

(
I21 − tr(C2)

)
= λ22λ

2
3 + λ23λ

2
1 + λ21λ

2
2 (77)

I3 = det(C) = λ21λ
2
2λ

2
3, (78)

and we write W = W (I1, I2, I3) for an isotropic compressible material and W =
W (I1, I2) for an isotropic incompressible material. The explicit form of the Cauchy
stress tensor in terms of the invariants and their derivatives is

T = w01 + w1B + w2B
2 (79)

where B = FFT is the left Cauchy-Green tensor and

w0 = 2
∂W

∂I3
− p, w1 = 2J−1

∂W

∂I1
+ 2J−1

∂W

∂I2
I1, w2 = −2J−1

∂W

∂I2

As before we choose p = 0 for compressible materials and J = I3 = 1 for incompressible
ones.

4.5 Choice of strain-energy density function

The choice of strain-energy density functions for elastomers and soft-tissues W = W (F)
is a controversial and difficult problem. Typically, phenomenological models are used to
capture the essential features of the material (its behaviour under shear or its strain-
hardening or strain-softening properties), while respecting basic material properties
such as convexity and material-frame indifference. A few key popular models that
capture specific features and are widely used are given in Table 1).

4.6 Summary of equations

We can now collect the different equations from the previous chapters to obtain a closed
set of equations

ρ̇+ ρdiv v = 0, mass conservation (80)

div T + ρb = ρv̇, linear momentum conservation (81)

TT = T, angular momentum conservation (82)

T = J−1F
∂W

∂F
− p1 constitutive law (83)

Since the elements of F are related to the motion χ by F = Gradχ, and v = ∂tχ(x, t),
there are 10 unknowns left: 1 in ρ, 3 in vector χ and 6 in the symmetric tensor T for
10 equations (excluding the third equation that reduces the number of unknowns in
T).
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Name Definition soft tissues elastomers

neo-Hookean Wnh =
µ

2
(I1 − 3)

Mooney-Rivlin Wmr = µ
(I1 − 3) + ν(I2 − 3)

2(1 + ν)

1-term Ogden Wog =
2µ

β2
(λβ1 + λβ2 + λβ3 − 3) β ≥ 9 β ≈ 3

Fung Wfu =
µ

2β
[exp β(I1 − 3)− 1] 3 < β < 20

Gent Wge = − µ

2β
log[1− β(I1 − 3)] 0.4 < β <3 0.005 < β < 0.05

Table 1: A list of strain-energy functions. Note that the materials have been written
so that they share the same infinitesimal shear modulus µ. The limits ν → 0, β → 2 in
Ogden and, β → 0 in Fung and Gent all lead to the neo-Hookean potential. Estimates
are taken from: 1-term Ogden is [123, 124], Gent [125, 126, 127, 128], Fung [129, 130].

4.6.1 An example: the inflation of an incompressible cylinder

As an illustrative example, we consider the classical problem of an incompressible
hyperelastic cylindrical shell subject to inflation [131]. The tube of initial inner radius
A0 and outer radius B0 > A0 is deformed into a tube with radii a, b and the same
height. We consider a finite deformation in which the cylinder is allowed to inflate and
extend while remaining cylindrical at all time irregardless of possible stability issues
[132]. The deformation x = χ(X0, t), in cylindrical coordinates reads

r = r(R0), θ = Θ0, z = Z0, (84)

so that the position vectors are (respectively)

X0 = R0ER + Z0EZ , x = r(R0)er + Z0ez. (85)

The deformation gradient in cylindical coordinates is thus given by

F ≡ diag(λr, λθ, λz) = Grad(χ) = diag(r′, r/R0, 1), (86)

where the gradient is taken in the initial reference configuration, the prime denotes
differentiation with respect to R0. Using the incompressibility condition det(F) = 1
leads to r′r = R0 that is r =

√
a2 +R2

0 − A2
0 and λ = λθ is given by

λ =
r

R0

=
1

R0

√
a2 +R2

0 − A2
0. (87)

Therefore the deformation is fully specified by the radial stretch of the inner wall
λa = a/A0: once a is known the outer radius is determined by inserting r = b, R0 = B
in (87).
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Since the deformation is diagonal in cylindrical coordinates and only depends on
R0, it follows from Eq. (79) that the Cauchy stress tensor is also diagonal in these
coordinates so that T ≡ diag(tr, tθ, tz). We consider a simple thought experiment in
which the tube inflates due to an internal pressure P . Taking tr(r = b) = 0, the two
boundary condition is

tr(r = a) = −P, tr(r = b) = 0 (88)

This relates the radial stress to the pressure jump across the tube wall.
Note that the Cauchy equation div T = 0 in cylindrical coordinates leads to a single

scalar equation
dtr
dr

+
1

r
(tr − tθ) = 0. (89)

To close the system, we also have the constitutive law:

tr = λr
∂W

∂λr
− p, tθ = λθ

∂W

∂λθ
− p. (90)

We now proceed to construct a solution in the case of a neo-Hookean strain energy.

Inflation of a neo-Hookean cylinder

Thus the deformation is determined by finding the value of a satisfying

P = µ

∫ B

A

λ(R)2 − λ(R)−2

r(R)2
RdR := f(a) (91)
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5 Volumetric growth

� Overview

Having introduced the general elastic and kinematic equation in the absence of
growth, we can now develop a general theory for growing material based on the
same decomposition as the one we introduced in one dimension.

5.1 Kinematics of growth: The multiplicative decomposition

The existence of residual stress in biological materials can be attributed and described
through a growth process. As different elements of a body change in size, they create
stresses independently of the applied loads. The main postulate of morphoelasticity is
that residual stresses are solely created by a local growth deformation tensor mapping
the initial reference configuration to a new virtual reference configuration V . This
tensor describes locally the change of shape and volume at all points in the body due
to growth.

Virtual stress-free configurationIntial reference configuration

Bo VG

Figure 32: The action of the growth tensor. The growth tensor maps vectors in the
tangent space of the initial configuration to vectors in the tangent space of the virtual
configuration. Both configurations are stress-free.

The second step in the process is to map the virtual configuration back to Euclidean
space by introducing an elastic deformation at each point. This map Ar ensures the
integrity and compatibility of the body so that

Fr(X0, t) = Ar(X0, t)G(X0, t). (92)

is a local deformation gradient between two compatible configurations of the same body
B. By construction Fr is the gradient of an invertible differentiable map between the
initial reference configuration and the residually stressed configuration

xr = χr(X0, t), (93)
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Virtual stress-free configurationIntial reference configuration

V
G

Ar

Residually stressed configuration

Br
χ r

Fr

Fl

Bl
χl

Loaded and residually 
stressed configuration

Bo

Figure 33: The creation of residual stress

where xr denotes the position of a point p in the current configuration with position
X0 in the initial reference configuration (Fig. 33). Finally, if one is interested in the
deformation of the grown body under loads, an extra step mapping the residually
stressed configuration to the loaded current configuration is considered

Fl : TBr → TB. (94)

Physically the two elastic steps Ar and Fl in the growth process can be thought
of as the local shrinking, growing, and rigid-body motion of the dislocated sub-bodies
associated with V so that they again form a compatible configuration and match the
external loads. These two steps can be written as a single elastic step

A = FlAr : TV → TB. (95)

Doing so, we can view growth as the the following two steps: first, the growth
tensor G takes the initial configuration to a virtual stress-free configuration, possibly
incompatible. Second, a local elastic tensor A restores compatibility of the body and
enforces the boundary conditions so that the body is in a compatible configuration and
in mechanical equilibrium. That is, we have

F(X, t) = A(X, t)G(X, t), (96)

where both A and G have strictly positive determinants.

5.2 Elastic constitutive laws

To describe the elastic deformation, a constitutive law is needed again to relate the
stress to the deformation. We will assume again that the material as it grows remains
hyperelastic. However, the reference configuration for elastic deformation (that is the



5. Volumetric growth 54

Virtual stress-free configuration
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G A
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F

B

Loaded and residually 
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Initial stress-free 
reference configuration

Bo
χ

Figure 34: The multiplicative-decomposition

configuration in which no deformation leads to no stress) is not the initial configuration
but the virtual configuration. Therefore, the elastic energy depends only on the elastic
deformation tensor A, so that W = W (A) and the stresses are then given by

T = J−1A A
∂W

∂A
− p1 (97)

where W is the strain energy function. If the material is elastically incompressible,
JA = 1 and p is the hydrostatic pressure; for an elastically compressible material
p = 0.

5.3 Particular forms and symmetry of the growth tensor

In many problems, it is useful to restrict the form of the growth tensor. Similar to
the decomposition used to describe material symmetries, we can use general tensorial
form of increasing complexity to describe growth process occurring with a prescribed
symmetry.

• Isotropic growth. The simplest non trivial form for the growth tensor is to
take it as multiple of the identity, that is

G = g1. (98)

In such case, we have JG = g3 representing the isotropic change of a volume. It
can be shown that a theory of multiplicative decomposition is not really needed in
the sense that the effect of growth can be completely taken into account through
a proper definition of the determinant of F as is customary in the theory of
swelling gels [133].

• Bi-directional growth. A rather useful and general way to describe growth is
to identify two direction in which growth can take place differentially. That is,
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in the initial configuration, we identify two unit vectors g1 and g2 and introduce
the particular (but rather large) class of growth tensors

G = g01 + (g1 − 1)g1 ⊗ g1 + (g2 − 1)g2 ⊗ g2. (99)

where g0 represents the isotropic part of the growth process and g1 and g2 the
anisotropic parts. The advantage of such a representation is that it reduces the
number of growth descriptors to three functions for the increase in volume and
two unit vectors for the directions in which growth takes place anisotropically.
Further restrictions of this growth tensor are also of interest.

• Transversely isotropic growth. In transverse isotropic growth, we assume
that, locally, growth takes place both isotropically and in a given direction char-
acterised by a single unit vector g so that

G = g01 + (g1 − 1)g ⊗ g. (100)

This description of growth is particularly useful for fibre-reinforced system with
growth along the fibres.

Note that in the forms above, there is also a distinction between homogeneous
growth, for which the growth is independent of position, and heterogeneous growth,
in which the growth varies with position.

5.4 The growing ring

As an illustrative example, we return to the inflation of an incompressible cylindrical
tube (without extension) due to an internal pressure, but with added radial and circum-
ferential growth. That is, we assume the growth tensor has the form G = diag(γr, γθ, 1),
where γr corresponds to radial growth and γθ to circumferential growth.

The deformation gradient tensor, expressed in cylindrical coordinates, is F =
diag(r′(R0), r/R0, 1). The elastic strain tensor is A = diag(αr, αθ, 1). Since F = AG,
we have

αr =
r′

γr
, αθ =

r

R0γθ
. (101)

Material incompressibility implies detA = 1, that is αrαθ = 1 which implies rdr =
R0g(R0)dR0, that is

r2 = a2 + 2

∫ R0

A0

g(ρ)ρdρ (102)

where g(R0) = det G = γrγθ.
In the reference configuration, the equilibrium conditions have not been modified

from the ones derived in Example 4.6.1. They are still given by the first non-vanishing
Cauchy equations dtr

dr
+ 1

r
(tr − tθ) = 0 and the applications of the boundary condition∫ b

a

tθ − tr
r

dr = P (103)
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The difficulty is that the bounds of the integrals a and b are functions of the growth
terms γi. It is therefore simpler to reformulate these integrals in the initial configura-
tion.

Inflation of a growing neo-Hookean cylinder

Thus the deformation is determined by finding the value of a satisfying

P = µ

∫ B

A

α(R)2 − α(R)−2

r(R)2
γrγθRdR := f(a) (104)

If growth is chosen to be transversely isotropic (γr = γθ), no residual stress is
created and the new ring is a dilation of the original one, that is r = γrR0. If however
we consider anisotropic homogeneous growth (γr 6= γθ), then residual stress is created
as shown in Fig. 35B where excess of radial growth with respect to hoop growth induces
a compressive residual radial stress in the material. In terms of the hoop stress, the
inner radius is in compression while the outer radius is in tension. Circumferential
growth, or equivalently radial resorption, creates a tensile radial stress, this is the case
γr < 1 (not shown). Next, we consider hoop stress in the material when P < 0 (internal
pressure) as shown in Fig. 35C. In the absence of growth, one observes a steep profile
as a function of R0 whereas with suitable growth, this profile completely flattens. It is
this simple but crucial observation that first indicated that residual stress could play an
important role in physiology. Indeed, in arteries, the residual stress acts very much in
the same way suggesting that differential growth in arteries could take place to reduce
gradients of hoop stress preventing material failure associated with tissue separation
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Figure 35: A: Growth of disk elements. A disk sector remains a disk sector when
either grown through hoop only growth and/or radial growth. B: Residual stress due
to growth. Even in the absence of loads, both radial and hoop growth are chosen and
result in a compressive radial stress and non-vanishing hoop stress. C: Under pressure
and in the absence of residual stress, large hoop stress gradients are observed. With
appropriate growth, the hoop stress profile flattens out. (In both cases µ = 1 is chosen
without loss of generality).

[134, 84, 135].

5.4.1 The opening-angle method

The growth of a ring and the residual stress it generates can be directly observed by
cutting the ring and observing that it relaxes to a sector as shown schematically in
Fig. 36 and experimentally in Fig. 16 for arteries. In the present case, assuming again
an homogeneous body and no deformation in the axial direction and if we further as-
sume that the open body has the shape of a ring sector and that it is stress free, then
the residual stress can be fully described by the geometry of this open configuration
and a suitable growth tensor can be identified. Indeed, in such cases, the virtual con-
figuration is locally compatible and is, for positive opening-angles, globally compatible
too. Therefore, we can find a set of coordinates describing the body and an invertible
mapping between the initial and virtual configuration given by

R = R0, Θ = ϕ+ (1− ϕ/π)Θ0, Z = Z0, (105)

and choose without loss of generality A = A0, B = B0. The growth tensor is then
easily identified, in cylindrical coordinates, as

G = diag(1, ϕ/π, 1). (106)
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B=R(B0) A=R(A0)
b

a

2

Figure 36: Schematic of a radial cut in an ring and the corresponding opening angle ϕ.

Once the growth tensor is known, the stress field of the closed disk under load can be
calculated as before.
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