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Chapter 10

WKBApproximation

We now come to a much different kind of approximation, the semi-classical approximation for stationary state wave
functions. This is also known as the WKB approximation, in honour of physicists Wentzel, Kramers, and Brillouin
who developed the method in the mid 1920’s. Unlike the approximation methods of the previous chapters, which were
formulated in the abstract language of Hilbert spaces and observables, the semi-classical approximation that we will
consider here is very much tailored to the study of wave functions in particular. Indeed, there is an entire branch of
the analysis of PDEs known as semi-classical analysis that is closely related to the methods presented here.

We begin by describing an informal “derivation” of what we will soon come to understand as the zeroth order WKB
approximation. Recall that the momentum operator acts on wave functions according to

(Pψ)(x) = −i!ψ′(x) . (10.1)

Now for a given potential energy function V(x) and a given energy E, the classical momentum of a particle with that
energy at a given x (assuming E > V(x)) would be given by

p(x) =
√

2m(E− V(x)) . (10.2)

One might then imagine that a wave function for a state with energy E would obey something like an equation of the
form

Pψ(x) ?
= ±p(x)ψ(x) , (10.3)

which is just a first order ordinary differential equation. This can be solved directly as follows,

ψ(x) ?
= exp



± i
!

Y∫

Y0

p(s) ds



 . (10.4)

In general, this analysis is obviously flawed; in particular, when we evaluate the kinetic energy operator P2/2m on such
a wave function, the second action of P will not only bring down another copy of p(x) but by the product rule will also
differentiate p(x). Consequently, this analysis exactly valid only when p(x) is a constant, in which case we just have a
plane wave solution, i.e., a generalised momentum/energy eigenstate.

Nevertheless, there is some appeal to the idea that the operator P should more or less look like the classical momentum
as a function of x, at least in some kind of limit. Indeed, if there is a limiting situation in which quantum mechanics
starts to systematically reduce to classical mechanics, one might very well expect such a relation to hold. It turns out
there is often such a limit—it is known as the semi-classical limit—and the above ad hoc wave function is just the first
approximation in a systematic expansion.

10.1 The semi-classical expansion andWKB approximation

The starting point for making the previous procedure more systematic is to rewrite a stationary state wave function in
terms of (the exponential of) its logarithm,

ψ(x) = exp
(

iS(x)
!

)
. (10.5)

In light of the heuristic discussion before, we anticipate that the phase S might be related to the integral of the classical
momentum in some regime. The time-independent Schrödinger equation in terms of this polar expression takes the
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form (after dividing through by ψ(x) and rearranging some terms),53

S′(x)2 − i!S′′(x) = 2m(E− V(x)) = p2(x) . (10.6)

The key assumption that we make at this point is that as an expansion in !, we have

S(x) = S(0)(x) + !S(1)(x) + . . . . (10.7)

This is sometimes referred to as a semi-classical expansion, since the parameter ! can be thought of as characterising a
scale where quantum effects become important, so the !→ 0 limit should in some sense be a classical limit.54

Solving order by order in !, we find that the first two terms in the semi-classical expansion of (10.6) and are given by

S′0(x)2 = p(x)2 , (10.8)
2S′0(x)S′1(x) = iS′′0 (x) . (10.9)

The first equation (10.8) can be solved to give

S0(x) = ±
Y∫

Y0

p(s) ds , (10.10)

where, as before, p represents the classical momentum as a function of position (and, implicitly, energy). This repro-
duces our heuristic result (10.4), as promised. Continuing to the first correction (10.9), we compute

iS′1(x) = −
p′(x)
2p(x) , (10.11)

which we can integrate to find
iS1(x) = − log

(√
p(x)

)
. (10.12)

The WKB approximation refers to the situation where we truncate the series at this order, giving us the approximate
WKB wave functions

ψ±(x) =
1√
p(x)

exp



± i
!

Y∫

Y0

p(s) ds



 . (10.13)

In general, this is a local approximation for the wave function and we need to be careful about what happens in the
various regions of space, as we will see in a bit. However, there is a simple example where the analysis to this point is
entirely sufficient to proceed.

Example 10.1.1 (WKB for particle in a box with a bumpy bottom). Consider the case of infinite potential barriers at,
say, x = a and x = b with a < b, and assume E > V(x) for x ∈ (a, b), though V(x) may be a nontrivial function. We
then have WKB wave functions that, by our previous analysis, take the form

ψWKB(x) = C+ψ+(x) + C−ψ−(x) , a ! x ! b , (10.14)

and we need to impose the boundary conditions ψ(a) = ψ(b) = 0. Letting x0 = a in our expressions (10.13), the
boundary condition at x = a requires that we set C+ + C− = 0, so we have

ψWKB(x) =
C√
p(x)

sin



 1
!

Y∫

B

p(s) ds



 . (10.15)

53This equation is an instance of the so-called 3JDDBUJ FRVBUJPO for 4′(Y).
54In a physical context, one must be wary about the notion of taking ! → 0, since ! is a dimensionful parameter with units of angular

momentum; one should instead take an appropriate collection of other dimensionful parameters in the problem and form a dimensionless
combination involving ! that can then be taken to zero by scaling the other variables relative to !. For our analysis here it won’t be important to
keep track of this issue and we will instead treat ! as a small parameter; this is what is usuall done in the mathematical treatment of this subject.
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Then the requirement ψ(b) = 0 gives the quantisation condition,

1
!

C∫

B

p(x) dx = nπ , n = 1, 2, 3, . . . . (10.16)

For the case of constant potential V = V0, this is just the conventional particle in a box and the WKB wave functions
are the true stationary states; (10.16) gives exactly the correct energy levels:

√
2m(E− V0)(b− a) = nπ! =⇒ E = V0 +

n2π2!2
2m(b− a)2 . (10.17)

In the case of a non-constant potential, (10.16) gives an approximation to the energy levels of the system.

Estimating the accuracy of the WKB approximation can require some subtle analysis, but to produce a rough proxy for
the domain of the validity of the approximation we can inspect when the typical term in the leading equation (10.8) is
much larger than the typical term in the subleading equation (10.9),

(S′0(x))
2 % ! |S′′0 (x)| . (10.18)

Putting in our solution for S0(x), we have
p(x)2 % ! |p′(x)| , (10.19)

which we rewrite presciently as
!

p(x)2 |p
′(x)| =

∣∣∣∣
d
dx

(
!

p(x)

)∣∣∣∣& 1 , (10.20)

Now if we introduce the local de Broglie wavelength λ(x) = h/p = 2π!/p, which represents the wavelength of the
generalised momentum eigenstate of momentum p(x), then we have for our condition (dropping a factor of 2π since
we are dealing with an extreme inequality), ∣∣∣∣

d
dx (λ(x))

∣∣∣∣& 1 . (10.21)

To reach an intuitive interpretation of our condition, we further multiply again by the de Broglie wavelength,

λ(x)
∣∣∣∣

d
dx (λ(x))

∣∣∣∣& λ(x) . (10.22)

This says that the WKB approximation has a chance of being reliable when the change of the local de Broglie wavelength
over the course of one such wavelength is small compared to that wavelength. So in terms of percentages, the local de
Broglie wavelength should be slowly varying.

We can re-express this condition directly in terms of energies. Using the expression for the classical momentum, we
have

p′(x) = mV ′(x)
p(x) =

mλ(x)V ′(x)
2π! , (10.23)

which, when we plug it into (10.19), yields the consistency condition (this time dropping a factor of 4π),

|λ(x)V ′(x)|& p(x)2
2m . (10.24)

This says that over the course of a de Broglie wavelength, the potential energy should be slowly varying relative to the
kinetic energy. Thus we expect the WKB approximation to do well for high energies and slow-varying potentials.

10.2 WKB in forbidden regions

For more general potentials (see Figure 4, for example), for a fixed value of E, E−V(x) will become negative for some
values of x. These regions in space are referred to as the classically forbidden regions, and as p2/2m = E − V < 0, for
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Figure 4. Example of a general potential with a single classically allowed region for the given value of energy (between x = a and
x = b). A WKB wave function for this type of potential and energy level will be defined in three separate regions and subjected to
connection conditions at the classical turning points x = a and x = b.

these regions the classical momentum defined by (10.2) becomes pure imaginary. Instead of the momentum we then
introduce the real quantity

q(x) =
√

2m(V(x)− E) , (10.25)

which is an analogue of the classical momentum in the forbidden region. We then solve (10.8) with an imaginary S0(x),

S0(x) = ±i
Y∫

Y0

q(s) ds . (10.26)

The O(!) term proceeds analogously, and we arrive at the WKB wave functions for classically forbidden regions,

ψforbidden
± (x) = 1√

q(x)
exp



± 1
!

Y∫

Y0

q(s) ds



 . (10.27)

Instead of being oscillatory, these are exponentially growing or decaying as a function of x. Though it is less intuitive,
the analysis of validity performed above still applies in this case, with the de Broglie wavelength being replaced by the
distance over which the exponentially growing/decaying solution increases/decreases by a factor of e.

10.3 WKB connection formulæ

We assume that, as in the figure, E − V(x) " 0 on the interval [a, b] with b > a, and is negative outside and vanishes
at a and b. These two points are referred to as the classical turning points, in reference to the classical trajectory at this
energy. In order for our approximate solution to be normalisable, the solution in the left-most classically forbidden
region must be exponentially growing with x (so decaying as x→ −∞), and in the right-most forbidden region must
be exponentially decaying with x. We therefore seek a solution of the form55

ψ(x) =






$*√
R(Y)

exp
(
− 1

!
∫ B
Y q(s) ds

)
, x < a ,

$+√
Q(Y)

exp
( J
!
∫ Y
B p(s) ds

)
+ $−√

Q(Y)
exp

(
− J

!
∫ Y
B p(s) ds

)
, a < x < b ,

$̃+√
Q(Y)

exp
(

J
!
∫ C
Y p(s) ds

)
+ $̃−√

Q(Y)
exp

(
− J

!
∫ C
Y p(s) ds

)
, a < x < b ,

$**√
R(Y)

exp
(
− 1

!
∫ Y
C q(s) ds

)
, x > b .

(10.28)

55Notice the strategic choice of limits of integration adopted here. We have given two versions of the wave function in the classically allowed
region, one adapted for comparing to the left-most forbidden region and the other adapted for comparing to the right-most forbidden region.
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There is a key subtlety having to do with deciding how to connect the exponentially increasing/decreasing solutions
across the classical turning points at a and b to the oscillatory WKB wave functions in the classically allowed region.
Indeed, all of our WKB wave functions actually diverge at a and b due to the denominator vanishing when E = V(x).
This represents is a breakdown in the WKB approximation in the vicinity of classical turning points.

To investigate the situation, we perform an additional approximate analysis in a small neighbourhood of the classical
turning point. For x ≈ b, say, we approximate the potential (assuming it is sufficiently smooth) as a linear function,

V(x) ≈ V(b) + (x− b)V ′(b) , (10.29)

where in this case V ′(b) is positive. We then consider the Schrödinger equation for this approximation. Setting y =
x− b and ψ̃(y) = ψ(x), we have

− !2
2mψ̃′′(y) = (E− V(b)− yV ′(b)) ψ̃(y) = −yV ′(b)ψ̃(y) . (10.30)

Introducing a further variable z =
(
2mV ′(b)/!2

)1/3 y and defining φ(z) = ψ̃(y), this becomes a famous ordinary
differential equation, the Airy equation,

φ′′(z) = zφ(z) . (10.31)

We will take for granted the following integral expressions for a basis of solutions of the Airy equation (you can try to
confirm for yourself that these solve the Airy equation by differentiating under the integral).

Ai(z) = 1
π

∞∫

0

cos
(

t3
3 + zt

)
dt ,

Bi(z) = 1
π

∞∫

0

(
sin
(

U3
3 + zt

)
+ exp

(
− U3

3 + zt
))

dt .

(10.32)

What will be important for our purposes here is the large |z| asymptotics of these functions, which take the form (again,
feel free to take this for granted),

Ai(z) ∼
exp

(
− 2

3z
3
2

)

2
√

πz 1
4

, Bi(z) ∼
exp

(
2
3z

3
2

)

√
πz 1

4
, z% 1 , (10.33)

Ai(z) ∼
cos
(

2
3 (−z) 3

2 − ʑ
4

)

√
π(−z) 1

4
, Bi(z) ∼

cos
(

2
3 (−z) 3

2 + ʑ
4

)

√
π(−z) 1

4
, z& −1 , (10.34)

We see that it is Ai(z) that behaves like a decaying exponential for large positive z, while Bi(z) instead behaves like a
growing exponential. This suggests that we should want to use the Ai(z) solution to interpolate between the forbidden
and allowed regions.56

Indeed, if we consider the forbidden-region decaying exponential WKB wave function in the right region and use the
same approximation (10.29) for the potential near x = b, then we find

C**√
q(x)

exp



− 1
!

Y∫

C

q(s) ds



 ≈ C**

(2mV ′(b)y)
1
4
exp



−
(

2mV ′(b)
!2

) 1
2

Y∫

0

s 1
2 ds



 ,

=
C** exp

(
− 2

3z
3
2

)

(2mV ′(b)!) 1
6 z 1

4
,

≈ C** κ Ai(z) .

(10.35)

56In a careful treatment, we should further subdivide our space to include turning point regions where we use this Airy approximation, and
these should overlap with the regions where the WKB wave functions are valid. This level of detail is important for an estimation of the size of
errors in the WKB approximation, but will not be necessary for us.
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where κ = 2
√

π/(2mV ′(b)!) 1
6 is a numerical constant that we could also have absorbed into our overall constant. This

matches precisely with the asymptotics of the Ai(z) function up to an overall numerical factor, so we will use Ai(z) to
interpolate from the forbidden to the allowed region.

In the allowed region, then, we have to match to an appropriate combination of oscillatory WKB wave functions. To
this end, we observe that in the allowed region we have, under the approximation (10.29) for x ≈ b,

2C**√
p(x)

cos



 1
!

C∫

Y

p(s) ds− π
4



 ≈ 2C**

(−2mV ′(b)y) 1
4
cos




(

2mV ′(b)
!2

) 1
2

0∫

Z

(−s) 1
2 ds− π

4





=
2C** cos

(
2
3 (−z) 3

2 − ʑ
4

)

(2mV ′(b)!) 1
6 (−z) 1

4
,

≈ κ C**Ai(z) .

(10.36)

We conclude that to interpolate with the Ai(z) Airy function, we should choose C̃± in the allowed region so that they
combine to give the first expression in (10.36). An analogous treatment at the turning point x = a implies that the
allowed-region WKB wave function on the right hand side of that turning point should be given by

ψ(x) = 2C*√
p(x)

cos



 1
!

Y∫

B

p(s) ds− π
4



 . (10.37)

The resulting connection formulæ are summed up in the following.

Proposition 10.3.1. For continuation to the exponentially decreasing solution past the turning point at b we must have

C̃+ = C** e−
ʑJ
4 , C̃− = C** e

ʑJ
4 =⇒ ψ(x) = 2C**√

p(x)
cos



 1
!

C∫

Y

p(s) ds− π
4



 , (10.38)

Similarly, for continuation to the solution that exponentially decays as x → −∞ past the turning point at a we must
have

C+ = C* e−
ʑJ
4 , C− = C* e

ʑJ
4 =⇒ ψ(x) = 2C*√

p(x)
cos
(

1
!

∫ Y

B
p(x) ds− π

4

)
, (10.39)

Remark 10.3.2. Though not important in this particular analysis, one does run into situationswhere onewants tomatch
onto the exponentially growing solution on the other side of the classical turning point. In this case we have, by an
analogous analysis, that if the wave functions in the forbidden regions are of the form

ψ*(x) =
D* exp

( 1
!
∫ B
Y q(s) ds

)
√

q(x)
, ψ**(x) =

D** exp
( 1
!
∫ Y
C q(s) ds

)
√

q(x)
, (10.40)

then the matching must be done with the Bi(z) Airy function and one has in the classically allowed region

C̃+ =
D**

2 e ʑJ
4 , C̃− =

D**

2 e− ʑJ
4 =⇒ ψ(x) = D**√

p(x)
cos



 1
!

C∫

Y

p(s) ds + π
4



 , (10.41)

for matching to the right and

C+ =
D*

2 e ʑJ
4 , C− =

D*

2 e− ʑJ
4 =⇒ ψ(x) = D*√

p(x)
cos



 1
!

Y∫

B

p(x) ds + π
4



 , (10.42)

for matching to the left. Taken together, this full set of connection formulæ allow us to match an arbitrary solution
across turning points.
Remark 10.3.3. An important feature of this result is that, when all is said and done, we can forget about the Airy
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functions and the interpolation region; the relation between the coefficients in the allowed and forbidden regions is
fixed universally subject to only the assumption that the potential is smooth at the turning points.
Remark 10.3.4. There is anotherway of deducing these connection formulæ that is quite elegant, though the justification
is not entirely transparent. The idea is to analytically continue the WKB wave functions around the classical turning
point, avoiding the singularity, and matching on either side. In other words, for (say) the turning point at x = a, set
x − a = ρeJʖ , with ρ sufficiently large that the WKB approximation can plausibly stays reliable. Starting with the
exponential solution in the forbidden region, we continue along the path in the upper half plane (φ ∈ (0, π)) and
this produces the coefficient C− near a; the C+ term is instead obtained by analytic continuation in the lower half
plane (φ ∈ (π, 2π)). In this treatment, the important phase shift by π/4 arises from the analytic continuation of the
1/√p + (x− a)− 1

4 factor. A similar analysis follows at x = b.

10.4 Bohr–Sommerfeld quantisation

We produced two expressions for the WKB wave function in the classically allowed region by matching to the appro-
priate exponential wave functions in both forbidden regions. The requirement that these two expressions agree gives
the Bohr–Sommerfeld quantisation rule, which generalises the quantisation condition from our example to the case
with finite potential in the classically forbidden regions.

Corollary 10.4.1 (Bohr–Sommerfeld quantisation rule). Normalisable semiclassical solutions satisfying the connection
formulæ at classical turning points exist if and only if

C∫

B

p(x) dx =

(
n +

1
2

)
π! . (10.43)

Proof. Equating the two expressions for the allowed-region WKB wave function we have

C*√p cos



 1
!

Y∫

B

p(s) ds− π
4



 =
C**√p cos



 1
!

C∫

Y

p ds− π
4



 . (10.44)

Rewriting

1
!

C∫

Y

p(s) ds− π
4 =

1
!

C∫

B

p(s) ds− 1
!

Y∫

B

p(s) ds− π
4 , (10.45)

and using evenness of cos, we have that one of the following must hold

C* = +C** ,
1
!

C∫

B

p(x) dx =
π
2 + 2πn , n = 0, 1, 2, . . .

C* = −C** ,
1
!

C∫

B

p(x) dx =
3π
2 + 2πn , n = 0, 1, 2, . . .

(10.46)

which, allowing for either sign, gives the expected condition

C∫

B

p(x) dx =

(
n +

1
2

)
π! , n = 0, 1, 2, . . . . (10.47)

The correction factor of 1/2 coming from the connection conditions is known as the Maslov correction. #

This condition is capable of giving surprisingly good answers. For example, it is exact for the simple harmonic oscillator.

A frequent interpretation/application of (10.43) arises from expressing the same quantity as an area integral. Indeed,
if we identify the region A(E) ⊂ R2

Y,Q where p2 ! 2m(E − V(x)), then we estimate the number of quantum states
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corresponding to the classical states whose trajectories are confined to this region in phase space by

# states(E) ≈ n(E) = 1
π!

C(&)∫

B(&)

p dx =
1

2π!

∫∫

"(&)

dp dx , (10.48)

where the final equality involves a factor of two because the area of the region includes both the area above the x-axis
and the area below it. Since wave functions decay exponentially fast outside the region, this number can also be thought
of as an estimate of the number of states whose wave functions are supported in A(E).

This formula is often summarised by saying that there is, roughly, a quantum state for each 2π! unit of area in phase
space; this can be generalised to systems in higher dimensions, in which case there is roughly one quantum state for
each (2π!)E unit of volume in phase space.

10.5 The radial WKB approximation

The WKB method we’ve been studying is particularly suited to the case of one-dimensional systems. We can easily ex-
tend this to three dimensional problems in the case where spherically symmetry allows us to restrict to definite angular
momentum eigenstates and then solve a one-dimensional radial problem. Indeed, with central potential V(x) = V(r),
we have for ψ(x) = R(r)YN

! (θ, φ) the radial (time-independent) Schrödinger equation,

− !2
2m

[
1
r
∂2

∂r2 (rR)
]
+

!2
2m

"("+ 1)
r2 R(r) = (E− V(r))R(r) , (10.49)

which can be rewritten as a one-dimensional Schrödinger equation for rR(r) (with a modified potential for nonzero
angular momentum),

− !2
2m

∂2

∂r2 (rR) =
(

E− V(r)− !2
2m

"("+ 1)
r2

)
(rR) . (10.50)

Consequently we have radial WKB wave functions given by

R±(r) =
1

rp(r) 1
2
exp



± i
!

S∫
p(r)



 , (10.51)

where
p(r)2 = 2m

(
E− V(r)− !2

2m
"("+ 1)

r2

)
. (10.52)

In the case where V(r) is a strictly increasing function of r (such as the harmonic oscillator or the Hydrogen atom),
there is an important distinction between the case where " = 0 (spherically symmetric states), for which there is no
inner turning point, and the case where " -= 0, for which for any energy there will be an inner turning point as long as
the potential diverges less than quadratically with radius at the origin. (See Figure 5.)

The semiclassical wave function must still satisfy the connection conditions of 10.3.1 at r = router. However, there is a
new ingredient in the case when " = 0, which is that for R(r) to be bounded, rR(r) should vanish at the origin. As a
result, we must have the sin combination of R± wave functions,

R(r) = C
rp(r) 1

2
sin



 1
!

S∫

0

p(s) ds



 =
C̃

rp(r) 1
2
cos



 1
!

Souter∫

S

p(s) ds− π
4



 , (10.53)

and to match both expressions we need

1
!

Souter∫

0

p(s) ds =
(

n +
3
4

)
π , n = 0, 1, 2, . . . . (10.54)

For the Hydrogen atom, this yields good estimates for the energies of s-orbitals, as you will see on Problem Sheet 4.
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Figure 5. Radial potentials (in this case similar to the Coulomb potential) with and without “centrifugal” term from angular mo-
mentum. In the case without, there is a single classical turning point at router, while for the case with angular momentum there is
also an inner turning point at rinner.

Remark 10.5.1. For states with nonzero angular momentum, one has an inner turning point so there is a naive quanti-
sation condition of the usual form,

1
!

Souter∫

Sinner

p(s) ds =
(

n +
1
2

)
π , n = 0, 1, 2, . . . . (10.55)

There is a subtlety here, because the resulting exponentially decaying WKB wave function in the interior forbidden
region won’t actually be bounded at r = 0 due to the enhanced singularity in the effective potential. There is a curious
correction known as the Langer correction that can be implemented to improve errors arising from this problem at the
origin, and you will encounter this as well on Problem Sheet 4.

10.6 Time-dependent WKB∗

The relationship between the WKB approximation and classical physics can be drawn out further by considering the
analogous approximation to solutions of the time-dependent Schrödinger equation. Below we will freely cite concepts
from B7.1 Classical Mechanics.

Lemma 10.6.1. Parameterising a quantum-mechanical wave function according to

Ψ(x, t) = A(x, t) exp
(

i
!S(x, t)

)
, (10.56)

where A and S are both real, the Schrödinger equation with Hamiltonian H = P2/2m + V(X) is equivalent to the
following pair of equations,

∂S
∂t +

|∇S|2
2m + V =

!2
2m
∇2A
A , (10.57)

∂A2

∂t +∇ ·
(

A2

m∇S
)

= 0 . (10.58)

Proof. Direct calculation yields

∇Ψ =

(
∇A
A +

i
!∇S

)
Ψ ,

∂Ψ
∂t =

(
1
A
∂A
∂t +

i
!
∂S
∂t

)
Ψ , (10.59)

and continuing,

∇2Ψ =

(
∇2A
A +

i
!∇

2S + 2 i
!
∇A
A ·∇S− 1

!2 |∇S|2
)

Ψ . (10.60)
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Substituting these into Schrödinger’s equation and dividing by Ψ yields a complex equation whose real and imaginary
parts are, after a little manipulation, the desired pair of equations. #

The probability density is |Ψ|2 = A2 and the probability current is

j := i !
2m
(
Ψ∇Ψ − Ψ∇Ψ

)
=

A2

m∇S , (10.61)

so we can interpret (10.58) as exactly the conservation of probability. The first equation is more subtle to interpret, and
is the site of the WKB assumption. Indeed, the !→ 0 limit is implemented by ignoring the right hand side of (10.57).
This yields:

Definition 10.6.2 (The semi-classical approximation of the time-dependent Schrödinger equation). This determines
the wave function Ψ = AeJ4/! satisfying

∂S
∂t +

|∇S|2
2m + V = 0 , (10.62)

known as the Hamilton–Jacobi equation, and

∂A2

∂t +∇ ·
(

A2

m∇S
)

= 0 , (10.63)

the continuity equation.

Remark 10.6.3. This approximation has the best chance to be valid when the right hand side !2∇2A/A of (10.57) is
small, so in particular, A -= 0.

We recall that the Hamilton–Jacobi equation arises in classical mechanics as the equation satisfied by the action of the
classical trajectory ending at the point x at time t. For our Hamiltonian, the classical equations of motion are

mẌ = −∇V , (10.64)

which arise as the Euler–Lagrange equations that follow from extremising the action functional,

S[X(t)] =
U∫

U0

L
(
X(s), Ẋ(s)

)
ds , where L(X, Ẋ) = m

2 |Ẋ|2 − V(X) . (10.65)

The solution to the Hamilton–Jacobi equation S(t, x) arises as the value of S[Xx(t)]whenXx(s) are a family of solutions
to the classical equations of motion (10.64) chosen so that Xx(t) = x. One might, for example, consider the family of
trajectories for which x(0) = y for a fixed y.

With the suggested boundary condition, evaluating S(x, t) requires us to integrate along the classical trajectory that
joins y to x. Thus the initial velocity is chosen so that the classical trajectory arrives at x at time t. The momentum of
the trajectory when it passes through x at time t is then determined by

p = ∇S . (10.66)

For a free classical particle (i.e., V = 0) our prescription leads to

S =

∫ U

0

m
2 ẋ2 dt = m|x− y|2

2t , where ẋ = (x− y)/t . (10.67)

It can be easily verified that this satisfies (10.62) with V = 0.

Theorem 10.6.4. Given a solution S(x, y) to the Hamilton–Jacobi equation with the aforementioned boundary condi-
tions, a solution to the continuity equation is given by

A2 = det
(

∂2S
∂xK∂yL

)
. (10.68)
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Proof. For simplicity we only prove the one-dimensional case, which follows from direct calculation. The calculation
in higher dimensions is more involved but not in a deep way.

∂A2

∂t =
∂3S

∂x∂y∂t ,

= − ∂2

∂x∂y

[
1

2m

(
∂S
∂x

)2
+ V

]
,

= − ∂

∂x

(
1
m

∂S
∂x

∂2S
∂x∂y

)
,

= − 1
m

∂

∂x

(
∂S
∂xA2

)
.

which gives the continuity condition. #

Thus for the free particle, we obtain
A2 = det

(
−m

t 13×3

)
= −

(m
t

)3
, (10.69)

so that the WKB wave function at a future time t is given by

Ψ(x, t) =
(m

t

)3/2
exp

(
im|x− y|2

2!t

)
. (10.70)

Comparing to our result for the propagator (2.53), we see that up to overall normalisation this is exactly the evolution
to time t of the generalised position eigenstate for position y at time zero. That we get the exact answer is actually no
surprise, because we can check that in this case ∇2A = 0, so the WKB equations reproduce the full time-dependent
Schrödinger equation.

For time-independent systems and states of definite energy, one can separate out the time dependence and, in the
one-dimensional case, recover our previous time-independent analysis.

Proposition 10.6.5. For a time-independent potential V(x, t) = V(x), the Hamilton–Jacobi equation has solutions of
the form

S(x, t) = W(x)− Et , (10.71)

provided that
|∇W|2

2m + V = E . (10.72)

The corresponding wave functions,

Ψ(x, t) = A(x, t) exp
(

i(W(x)− Et)
!

)
, (10.73)

give the approximate eigenstates of energy with eigenvalue E.

Proof. This follows by direct substitution. #


