STRING THEORY T

Lecture 12

5 String in back wand fields
5.1 Backaround field expansion and the Waylanomato

We have identified various massless fields in the boxnic string spectrum. In particular, we identified a graviton in the dosed string spectrum.
We expect then that a the ry of space-fime gravity should emacs, so we suppose that spacetime should be allowed a mon trivial metric (or indeed mn Wivicl topology).
Indeed we expect a $D=26$ dim than o of gravity orrerging with a Bilbut-Einitvin action

The action for a stving maving in a spacefime with metric $G_{\mu v}(X)$ is

$$
S_{p}[\gamma, X]=-\frac{1}{4 \pi \alpha^{\prime}} \int d^{2} \sigma \sqrt{\gamma} \gamma^{a b} \partial_{a} X^{M} \partial_{b} X^{\nu} \underbrace{G_{\mu}(X)}
$$

tareet pace metrio
where, so gar, we have only connidered a Slat space ime metric $\left(\sigma_{m u}=\eta_{m u}\right)$
Clasrically this is Wey inuwiant so taking $\gamma_{a b}=e^{\eta \phi(\sigma)} \eta_{a b}$

$$
\underset{\substack{\text { NON-LINEAR } \\ \sigma-M O D E L}}{ } S_{p}[X]=-\frac{1}{4 \pi \alpha^{\prime}} \int d^{l} \sigma \partial_{a} X^{H} \partial^{a} X^{\nu} G_{\mu \nu}(X)
$$

NLOH deswibes an interading 2dim QFT with couplings encoded in the towget space metric $G_{\mu v}(X)$ complicated! comuaver $G_{m \nu}=\eta_{m \nu} \Rightarrow$ free firle thooir

In this chaptro we discuss how a $D=26 \mathrm{dim}$ gravitational theory energies: we will do this woo the elective field theory point of view.
KEY: require that the quantum theory is Why l invariant

First however use this action to try to make suse of the graviton states in the string ipectrom.
(we will gmuralix the action later to include the other masilens states)

Consider a spacetime manifold with metric

$$
G_{\mu \nu}(x)=\eta_{\mu \nu}+\gamma_{\mu \nu} \longrightarrow \frac{\text { small av fur bation }}{\text { of slat space }}
$$

We can compute amplitudes in this background treating the fluctuation as a perturbative parameter:

$$
S_{p}[G]=S_{p}[\eta]-\frac{1}{4 \pi \alpha^{\prime}} \int d^{2} \sigma \partial_{a} X^{m} \partial^{a} X^{\nu} \gamma_{\mu \nu}
$$

Then Fourier fransform to momentum space

Returning to the action $S_{\rho}[G]$:
We would like to require that the $2 \operatorname{dim} Q F T$ on the world sheet (ic NLG-M) to be Wegl invariant at the quantum level.
This implies, in particular, that the thesis is combsmally inoaviont.
why? essential bor the consisticy of the thor (construction of stats, vertex operatos and amplitudes baxd on having a CFT on the WS
This requirement places intrictions on target space fields. Howe ow the NLG-M is not so cary to amalybe.

To amalyse the quantomn NLOM we us the covaviant backoround fiell expantion, which is a porturbation throvg in which on separatis the 2 dim fields

$$
x^{\mu}(\xi)=x_{0}^{M}(\xi)+x^{\mu}(\xi)
$$

back orround pawts
or "expectation value"
" quanntunn part
satisfying EOM
Next, one expands the NLFM action a round X_{0}^{M} to get an expanion in powers of the quantamfield x^{n} \Rightarrow σ-model Anturbation thes ry (il Arrturbative QFJ in 2 dim)

To expand $G_{\operatorname{mu}}(X)$ we use Riemann mound sordinats
Normal coordinates:

$$
\left.\Gamma^{m} v \rho\right|_{\alpha}=0
$$

$$
G_{\mu \nu}(x)=\sigma_{\omega \nu}\left(x_{0}\right)-\frac{1}{3} \underbrace{Q_{\text {of }} M \text { at } x_{0}}_{\lim _{n \rho \nu \sigma}\left(x_{0}\right)} x^{\rho} x^{\sigma}+v\left(x^{3}\right)
$$

we get an infinite set of selling constants

$$
\left\{G_{m v}\left(X_{0}\right), R_{m \rho v r}\left(X_{0}\right), \ldots\right\}
$$

Thus the σ-model exposition is given by

$$
\begin{aligned}
S_{\sigma}[X] & =-\frac{1}{4 \pi \alpha^{\prime}} \int d^{2} \sigma\left(G_{m v}\left(X_{0}\right) \partial_{a} x^{\mu} \partial^{b} x^{\nu}\right. \text { - Minatictivm } \\
& -\frac{1}{3} \underbrace{R_{m \rho \sigma \sigma}\left(X_{0}\right) \partial_{a} x^{\mu} \partial^{a} x^{v} x^{\rho} X^{\sigma}}_{\text {quartic interaction twas }}+v\left(x^{\sigma}\right)\}
\end{aligned}
$$

interacting $\Delta F \sigma$

Remouls: what is the expansion parameter?
To be dear about the meaning of the expansion we reed to arpand in terms of a dimensionless parameter.

$$
\left(x^{\mu}=x_{0}^{\mu}+x^{\mu} \rightarrow x_{0}^{\mu}+\sqrt{\alpha} y^{\mu}\right)
$$

The quantumn outurbation thessy is in fact amexpan on in pavers of α !
Note that rescalingthe metric $\quad G_{m v} \rightarrow L^{L} G_{\mu \nu}$ in the Polyalcou action is the same as $\alpha^{\prime} \rightarrow L^{-2} \alpha^{\prime}$ Then a small d' expantion corvesponds to a large disfance in space-time so
the dimenrionless expannion pavaneter is $\frac{1}{r} \sqrt{\alpha}$ with $r \rightarrow$ characteristic radius of cuncuature of tangt spae
In spacetime we obtain an something like an BFT fic a lowge radius expannion with cutoff $M_{s} \sim\left(\alpha^{\prime}\right)^{-1 / 2}$
weallo coupled
It is a (omodel perturbation thersis in the usual smse of a perturbative QFT framework, and worm this oncanslead off the Fergnman ruls fir diagranns.
However, gruwally the suplings in QFT get runorwalized. The o-xsodel action can be regulawized bo dimenrional regulavitation but this violates scalle inuariance

The lack of scale invariance in a QFT is deswibed in terms of the B-sunction which arises Nom UV divergerums in Feynman diagrams.
Recall $T_{a b}=-\frac{2}{T} \frac{1}{\sqrt{8}} \frac{\delta S}{\delta \sigma^{66}}=0$ in pocticulaw $T_{T-}=0$
dasticalty $\quad J_{+}=0 \leftrightarrow$ Wed invariance (see next pase)
At the q-leved $T_{+-} \sim \frac{\partial S}{\delta \gamma} \sim \beta$-function
r gets q- corrections at one-toop
We owe interested in computing the (ore loop) β-function to obtain conditions on the fields necessono to presence Wed inuariana at the quantum level lie $\beta=0$)

On the traulsinus of T\& Weal invariance (from BLT) let s be an action
$S[\gamma, \phi]$
metricons coblevition of hills $\dot{\phi}^{\circ}$
st Werg action is

$$
\begin{aligned}
\gamma_{a b} \rightarrow \tilde{\gamma}_{a b} & =e^{2 \omega} \gamma_{a b} ; \phi^{i} \rightarrow \tilde{\phi}^{i}
\end{aligned}=e^{\text {di w }} \phi^{i} .
$$

$=\phi^{i}+d_{i s} \phi^{i}+-$
If the action is scale inv, then

$$
S[\tilde{\gamma}, \tilde{\phi}]=S[\gamma, \phi] \quad \text { first twin }
$$

so

$$
0=\delta S=\int d^{2} \xi\left\{-2 \frac{\delta S}{\delta \gamma^{a s}} \gamma^{a b}+\sum_{i} d_{i} \frac{\delta S}{\delta \phi^{i}} \phi^{i}\right\} \delta \omega
$$

Eon so r $\phi^{i}: \frac{\delta S}{\partial \phi^{i}}=0$; first tom: recall $T_{u b} \propto \frac{8 S}{\partial \gamma^{a b}} \Rightarrow \gamma^{a b} T_{a b}=0$
$\gamma^{\text {th }} T_{a b}=0$ billows without the use of EOM for ϕ^{i} ift $d_{i}=0$ which is the can bo $\operatorname{Se}[X]$.

Deturming to the g-model expantion:

$$
\begin{aligned}
S_{\sigma}[X]= & -\frac{1}{4 \pi d^{\prime}} \int d^{2} \sigma\left(E_{\mu v}\left(X_{0}\right) \partial_{a} x^{\mu} \partial^{b} x^{\nu}\right. \text { - Ginatictwm } \\
& -\frac{1}{3} \underbrace{R_{m \rho \nabla \sigma}\left(X_{0}\right) \partial_{a} x^{\mu} \partial^{a} x^{v} x^{\rho} X^{\sigma}}_{\text {quartic intevaction twns }}+v\left(x^{\sigma}\right)\}
\end{aligned}
$$

interativing $\triangle F T$ with m infinitis set of suplings

We ave now ready to read off Fegnman ruls pi diagromms and do Auturbation theov. Mopeover we can compute ore bop diver gmas that contribute to renormalization of couplings.

Exercise in QFT! us dimensional regulomization: $2+E$ dimension
one lop bganithnic
divergmics in $2 t e$ dims
(read off Feynman vales hoo S_{σ})

Kinetic town

$$
R_{\text {miNk }} \int \frac{d^{z t} p}{(\imath \pi)^{2 t e}} \frac{\eta^{k k}}{p^{2}}
$$

term is that need to be subtracted from the action to obtain a finite theory

$$
\begin{aligned}
& -\frac{1}{2 \in} R_{\mu \nu}\left(X_{0}\right) \partial X^{m} \partial X^{\nu} \\
& R_{\text {sci tensor }}
\end{aligned}
$$

$$
\frac{1}{g} R_{m \lambda v \sigma} R_{\rho}^{\lambda} \varepsilon^{\sigma} \int \frac{d^{2 r e}}{\left(2 \overline{L^{2}}\right)^{n t}} \frac{p^{2}}{p^{4}} \quad-\frac{1}{18 \epsilon}\left(R^{2}\right)_{m \lambda v k} \partial x^{\mu} \partial x^{\nu} x^{\lambda} x^{k}
$$

These divergmas land thos crom higher bsops!) ($\begin{aligned} & \text { ensima- } \\ & \text { litation }\end{aligned}$ can be abrorbed by (unt antivels easy amputation)
\rightarrow a wave sunction innormalization of the fields x

$$
x^{M} \longrightarrow x^{M}+\frac{1}{6 \epsilon} R^{M} v x^{v}+\theta\left(x^{2}\right)
$$

together with

- a functiond rerrormatization of the supling

$$
G_{m \nu} \rightarrow G_{m \nu}-\frac{1}{\partial \epsilon} R_{\mu \nu}
$$

This gives the one-bop β-functional

$$
\beta_{m 0}(x)=-\frac{1}{2 \pi} R_{n v}
$$

The comblition for comsormal inuaviance toleading ordes ind is

$$
\begin{array}{ll}
\beta_{M \nu}=0 \quad & \text { o } \quad R_{M \nu}=0 \\
\text { ? } \\
\\
\text { tavjet space must be Rici-flat? } \\
\text { (spac-fine eq of motion] }
\end{array}
$$

that is, the string moves in a backowand spacetime which satisfies vacuum Einsteins eqs We have recovered rpaceti me dynamies Wom a world shect conritening comdition
Highew ovders in α^{\prime} : ome gets stringy corrections to cinstain

$$
\begin{aligned}
& R_{\mu \nu}+\underbrace{\frac{\alpha^{\prime}}{\alpha} R_{\mu k} \pi \tau R_{\nu}^{k \lambda C}}_{\text {sWing throar ancchicts iperfic conale }}=0 \text { to } \theta\left(\alpha^{\prime 2}\right)
\end{aligned}
$$ corrcutions to Eintain's in $D=26$ of laver ratius.

Remark
Thus far we have been dis cussing a perturbative two dimensional QFT on the would sheet. Notice howeow that we can see an exact version devebping

5.2 Including other massless modes

Apart wow the graviton, we identified other massless fields in the coed string boromi spectrum:

- The Ramond-calis antirymmetric field

$$
B_{\mu v} d x^{\mu} d x^{v}
$$

One can add to the Polyakou action the Term power minting $S^{(B)}[x]=-\frac{1}{4 \pi \alpha^{\prime}} \int d^{2} \sigma \epsilon^{a b} B_{\mu \nu}(x) \partial_{a} X^{\mu} \partial_{b} X^{\nu}$ which is reparametrization and Weal invariant Moreover under spacetime gang transformations

$$
B \rightarrow B+d \cap, \cap \text { a } 1 \text {-form }
$$

the action $S^{(B)}$ changes by a total derivative (exevast)

- The dilaton background we add

$$
S^{[\Phi]}\left[x_{i} \gamma\right]=\frac{1}{4 \pi \alpha^{\prime}} \int d^{2} \sigma \sqrt{\gamma} \Phi(x] R^{(2)}(\gamma) \alpha^{\prime}
$$

[We had previously ignored this term for $\Phi=$ sass ant as in this case the integrand is a total derivative.] The integrand not a total derivative if $\Phi \neq$ constant
This two m however is not Way invariant:

$$
\gamma \rightarrow e^{2 \omega(\sigma)} \gamma \Rightarrow R^{(\gamma)} \rightarrow e^{-2 \omega}\left(\mathbb{R}^{(2)}-\partial \nabla^{2} \omega\right)
$$

One can show however that a lastical Wage variation of S^{Φ} can be cancelled by an $\theta\left(d^{\prime}\right)$ variation of $S^{(\sigma)}+S^{(B)}$!

$$
S=S^{(G)}+S^{(B)}+S^{(\Phi)}
$$

An involved computation of the β－functional extending the one－toop computation for $S^{(G)}$ gives for the foll σ－model action $S^{[G]}+S^{[⿰[𠃌)}+S^{[5]}$ ：

$$
\begin{aligned}
& \beta_{\mu \nu}^{G}=\alpha^{\prime}(\underbrace{R_{\mu \nu}-\frac{1}{4} H_{m \lambda \sigma} H_{\nu}{ }^{\lambda \sigma}}_{1-\text { loop }}+\underbrace{2 O_{\mu} D_{\nu} \Phi}_{\text {dasincal } 巨}) \\
& H=d 3 \\
& H_{\text {the }}=3 \partial_{\text {[M }} B_{\text {vp] }} \\
& \beta_{\mu \nu}^{B}=\alpha^{\prime}(\underbrace{-\frac{1}{2} D^{\lambda} H_{\lambda \mu \nu}+D^{\lambda} \Phi H_{\lambda \mu \nu}}_{1-\operatorname{lop} G+B}) \\
& D_{\mu} \text { - suowiant } \\
& \text { derivative on } \\
& \text { space time } \\
& \beta^{\Phi}=\underbrace{\frac{1}{6}(D-26)}_{1-\text { loop } 6+3}+\alpha^{\prime}(\underbrace{\left(\partial_{n} \Phi\right)\left(D^{m} \Phi\right)}_{1-100 \rho \Phi}-\frac{\frac{1}{a} D^{2} \Phi-\frac{1}{\partial 4} H_{\mu \nu \rho} H^{\mu \nu \rho}}{+000 \text { loop } G+B}
\end{aligned}
$$

references：Friedan＇s thesis；Callan \＆Thollacius＂rigma models o string theory＂ Toytlin＂Conformal anomaly in a 2 dim σ－model＂

Next; strings in background fields continued. spacetime effective action

