STRING THEORY J

[5] Strings in background fields

- 5.1 Background field expansion and the Weylammy
- 5.2 Including other marslers modes ~
- 5.3 Spacetime effective actions
- 5.4 The dilaton revinited
- 5.5 Energy scales

constructed a 2 dim NLTM

 $S = S^{(G)} + S^{(B)} + S^{(\overline{\Phi})}$

Cogneral 2 din QFT which is reparametritation invariant (* renormalizable)

S(G) + S(B) is clamically Weyl invariant

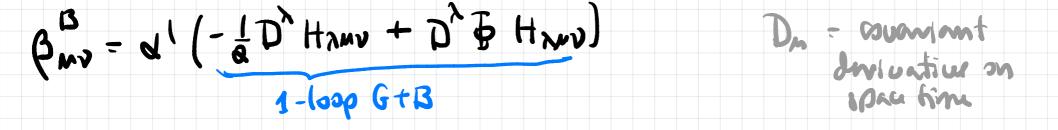
but S(2) is not(unless &= constant)

Sis hand to analyx becaux analings (Gnv, Bmv k \$) depend on X

 $\Rightarrow We analyzed the action S in turns of the background$ $field expansion <math>\chi^{M} = \chi^{M}_{O} + \chi^{M}_{O}$ yrom turn fluctuation testical EON

This gives a proturbative exponsion of the NLOM in rowers of the functuations.

Chinally we demanded that the resulting 2 dim QFT be Weyl invariant at the quantum level.

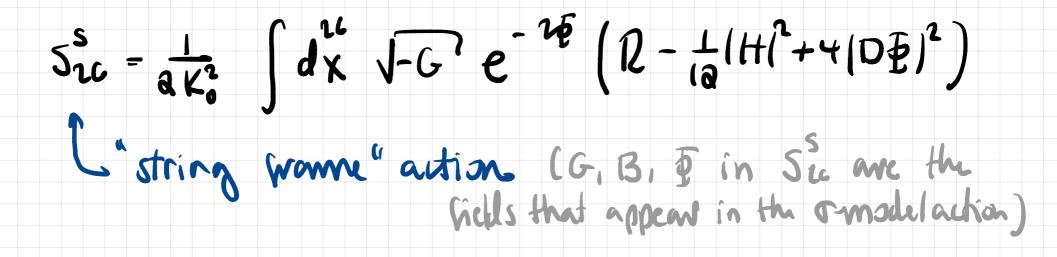

This requirement leads to the computation of the B-functional. The preservation of

the Weyl symmetry at the grantime level, ic $\beta^{(G)}=0$, $\beta^{(B)}=0$, $\beta^{(B)}=0$, $\beta^{(F)}=0$

thin imposses constraints on the spacetime fields G, B & \$ which are interpreted as EOM for those fields (eg to first order in d' Rms = 0, etc.) Necale (lecture 12)

An involved computation of the Q-functional extending the one-top computation for $S^{(G)}$ gives for the full T-model action $S^{(G)} + S^{(T)} + S^{(T)}$:

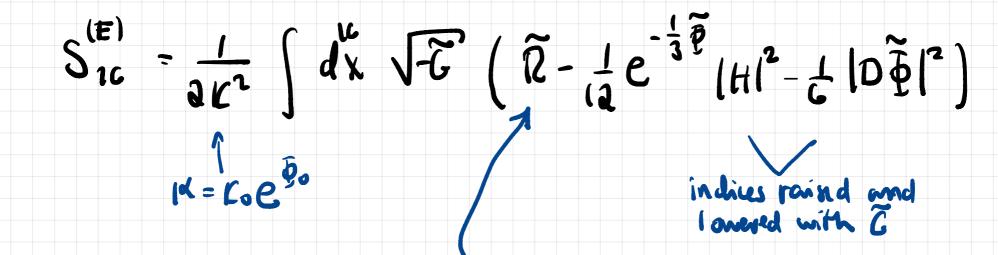
$$G_{\mu\nu} = \alpha' \left(\frac{1}{2\mu\nu} - \frac{1}{4} \frac{1}{4\mu\nu} + \frac{1}{2\nu} \frac{1}{2} \frac{1}{2\mu\nu} + \frac{1}{2\nu} \frac{1}{2} \frac{1}{2}$$



$B^{\frac{1}{2}} - \frac{1}{6}(D-26) + \alpha'((D_{m}\frac{1}{2})(D^{m}\frac{1}{2}) - \frac{1}{4}D^{2}\frac{1}{2} - \frac{1}{4}H_{mup}H^{mup})$ 1 - 100p + 6+B1 - 100p + 100 + 1

reletonus: Friedan's theis; Callan & Thollacius "higher models & string thony"; Tsytlin "Conformal anomaly in a Idim T-model"

[5.3] Space-time effective action


- We want to interpret the vanishing of the p-function as spacetime equations of motion.
- Indeed, one can show that they arise as the Euler-Lagrange equations for the effective action

Ko related to Newton's comstant: see rext

For space-time computations one after uns the "Einstein frame":

Einstein - Hilbert time takes the commical sour with quavitational sampling K = (\$(IGN)" M3 = 11/2"

The spacetime action should capture the dashed einit when E2<Ms. The string porrections to this com or seen from the orrected & functions

The corrected Q-functional gets interpreted as Euler-lagrange equations for an d-corrected action

S26 = S2c + d' S2c + (d')² S2c + --P EFT (expansion Ms turns Ms turns Ms turns with cutoff scale Ms) Ls effective action obtained after integrating out massive modes

(5.4) The dilaton revisited

Necall

$S^{\Phi} = \frac{1}{4\pi} \int d^2 \sigma \, \sqrt{8} \, R^{(2)}(\sigma) \, \overline{\phi}(\chi)$

Previously we had ignored this terms for $\Phi = constant$ becases then the integrand is a total derivative. This however is not the right way to look at this term in an interacting theory in a background with $\Phi = \Phi_{o} = constant$. Theorem (differential topology): Gauss-Bonnet theorem

Let Z be a 2-din myface. Then

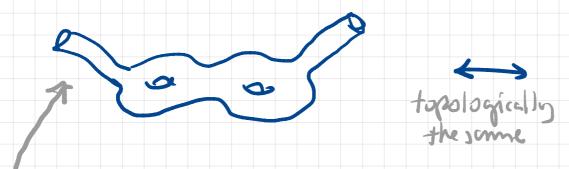
If $\Sigma = Z_{q}$ is a Riemann méau with no boundaries and genus qes $\frac{1}{\Sigma_{1}}$ $\int dA R^{(2)} = N(Z_{q}) = 2 - 2q$ Z_{q}

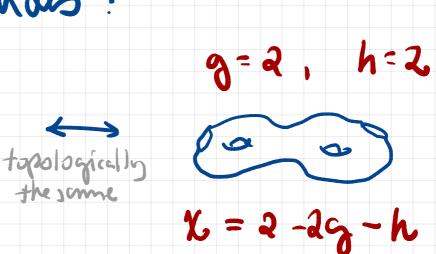
If Z= Zqin is a Riemann surface with zmus g and h boundaries

eg O disk g=0, h=1 $\frac{1}{\sqrt{11}} \int dA R^{(2)} + \frac{1}{dTT} \int dS K = K(Z_{g,n}) = 2-2g-h$ annulus K=1 $\frac{1}{\sqrt{11}} \int Z_{g,n}$ $\frac{1}{2Z_{g,k}} = \frac{1}{2Z_{g,k}} \int dS K = K(Z_{g,n}) = 2-2g-h$ O K=0 $\frac{1}{2g=0, h=2}$ O K=1 $\frac{1}{2g=0, h=3}$ $\frac{1}{2Z_{g,k}} = \frac{1}{2} \int dS K = K(Z_{g,n}) = 2-2g-h$

X = Euler charaderistic (<u>topological</u> invariant) for a myace Z with Z handles and h boundaries

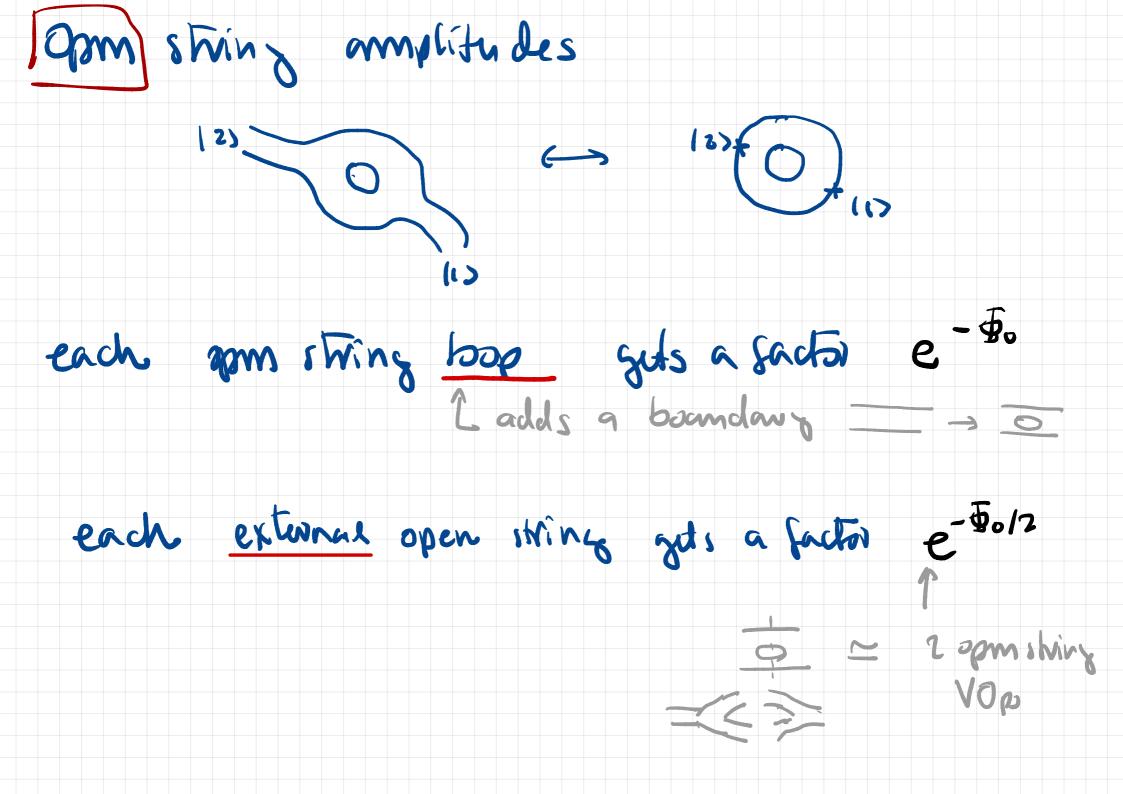
This means that in a background $\overline{9} = \overline{2}_0$

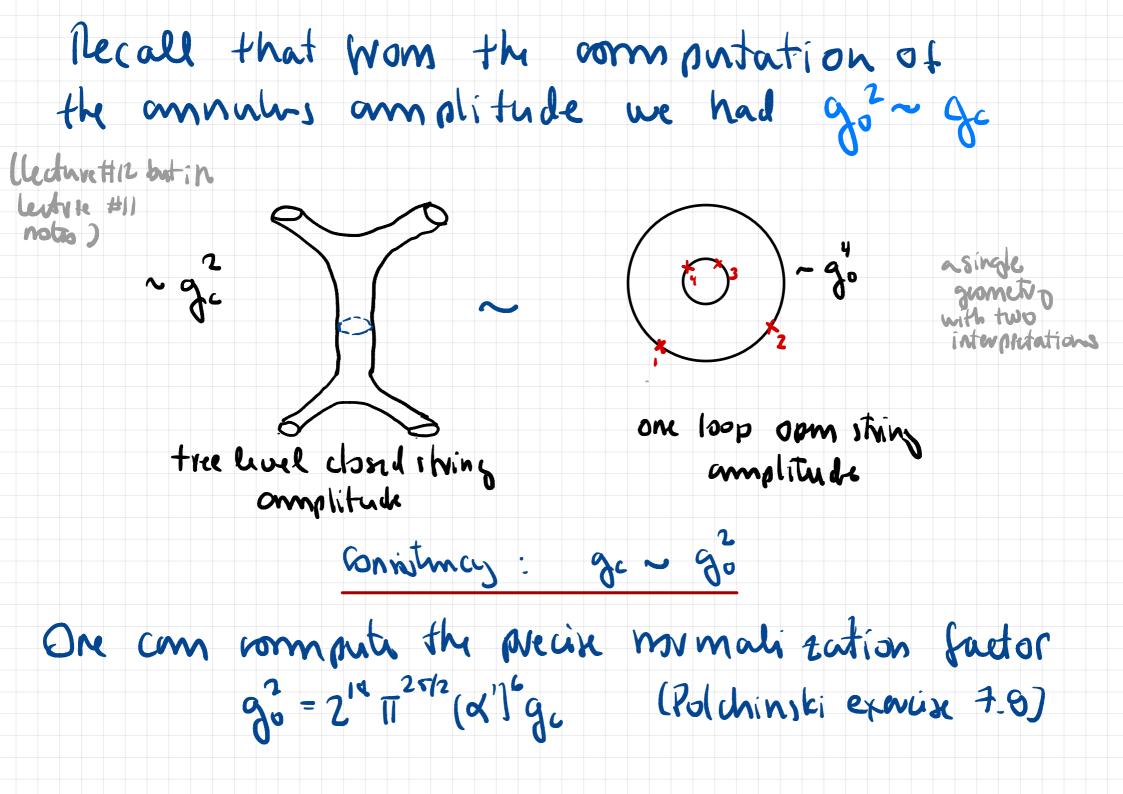

S= Jox on L


where χ_{sh} is determined by this theorem and depends on of and h.

Change this term in the total action $S = S^{(6)} + S^{(8)} + S^{\oplus}$

adds to the amplitudes a factor of et to some paver determined by K.




inomning & autoping state introduce outra boundaris

ench loop guts a factor e-230

each external dond string gets a factor e-to

These factors match powers of the approxima (go) k chand string (gc) compling comptants consider shifting the dilaton Φ by $\Phi \rightarrow \Phi + c$, where c is an arbitrary constant, corresponds to a rounding of the suplings $e^{-s^2} \rightarrow e^{-s^2} e^{-s^2} - \frac{3}{2} - \frac{3$ so the value of 3c (or go) can be absorbed into a shift in the expectation value of \$. This means that the string coupling constants are not prometenes of the theory and are given in terms of the expectation value \$ of \$ (in fact they are dynamical) \$ (X)= \$(X)=\$(X)=\$, + $\Phi(X) = \Phi(x_0 + x) = \Phi_0 + \cdots$

These considurations illustrates the fact that in string theory there are no continuous parameters.

Parametics appear then as rectation values of dynamical spacetime fields.

→ Obswisations about the energy scales involved in the space-time effective action obtained hys requiring that its EOM one the same as the samining of the Bota functions.

For the one-1000 Beta Sunction we obtained the effective action to leading order in d'. We bund in the string prome

 $S_{1c}^{(s)} = \frac{1}{a \kappa_{0}^{2}} \int d^{2} \kappa \sqrt{-G} e^{-\frac{1}{2}} \left(\frac{R - 1}{a} |tt|^{2} + 4 |D \neq|^{2} \right)$ $H^{2} dB$

where $\tilde{G}_{RV} = e^{\vec{c}\cdot\vec{\Phi}}G_{RN}$, $\tilde{\Xi} = \bar{\Phi} - \bar{\Phi}_{o}$, $K = K_{0}e^{\Phi_{0}}$

(and indivision variand & busered with G)

The Einstein frame is constructed such that the Einstein-Hilbert Turns takes the constrical form with gravitational supling $K = (\$ \tar G_N)^{1/2}$

> The gravitational compling

 $K = K_0 \mathcal{C}^{\oplus} = (9\pi G_N)^{lh} \sim (M_{Pe})$

compols spacifine quantum effects

Ne also have the string scale d'~ Ms

(Accel that we obtained an effective throng from the NLTM Ray radius expansion with cutost Ms)

The string scale control string arrichions (world sheet quantum corrections).

The quantitational suppling K and string scale α' one related by the expectation value of the dilaton ($e^{\frac{\pi}{2}6}$)

We have a dimmionless ratio

 $\frac{M_s}{M_{pl}} \sim e^{\frac{2}{0-1}\overline{\phi}_0}$

e to gives a classical limit in space time

So we have the effective action for enviges E << Ms in the limit Ms -> 0 (suppres space time quantums Mpe effects)

