PART A TOPOLOGY
 HT 2019

 EXERCISE SHEET 4

 EXERCISE SHEET 4}

Vacation sheet

Simplicial complexes

Exercise 1.
(1) Show that the following space (the 'Dunce hat') can be triangulated.

(2) Show that the following subspace of \mathbb{R}^{2} cannot be triangulated:

$$
\{(x, y): 0 \leq y \leq 1, \text { and } x=0 \text { or } 1 / n, \text { for some } n \in \mathbb{N}\} \cup([0,1] \times\{0\})
$$

[Hint: It is helpful to show that, for any finite simplicial complex K, any point $x \in|K|$ and any open set U containing x, there is a connected open set V such that $x \in V \subseteq U$.]
Exercise 2. Let K be a simplicial complex (that need not be finite). Prove that $|K|$ is Hausdorff.
[Hint: Recall that a subset of $|K|$ is open if it intersects every simplex in an open set. Note also that the standard simplex has a natural metric as a subset of $\left.\mathbb{R}^{n}\right]$.

Surfaces

Exercise 3. Let X_{1}, X_{2} be disjoint copies of \mathbb{R}^{2}. We define an equivalence relation \sim on $Y=$ $X_{1} \amalg X_{2}$ by: $\left(x_{1}, y_{1}\right) \in X_{1}$ is equivalent to $\left(x_{2}, y_{2}\right) \in X_{2}$ if and only if $x_{1}=x_{2}, y_{1}=y_{2}$ and $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ are not equal to $(0,0)$. Show that every point in Y / \sim is contained in an open set homeomorphic to an open subset of \mathbb{R}^{2} but Y / \sim is not a surface.

Exercise 4. Find an example of a connected, finite, simplicial complex K that is not a closed combinatorial surface, but that satisfies the following three conditions:
(1) It contains only 0 -simplices, 1 -simplices and 2 -simplices.
(2) Every 1 -simplex is a face of precisely two 2 -simplices.
(3) Every point of $|K|$ lies in a 2 -simplex.

Exercise 5. A simple closed curve C in a space X is the image of a continuous injection $S^{1} \rightarrow X$. Find simple closed curves C_{1}, C_{2} and C_{3} in the Klein bottle K such that
(1) $K \backslash C_{1}$ has one component, which is homeomorphic to an open annulus $S^{1} \times(0,1)$.
(2) $K \backslash C_{2}$ has one component, which is homeomorphic to an open Möbius band.
(3) $K \backslash C_{3}$ has two components, each of which is homeomorphic to an open Möbius band.
[An open Möbius band is the space obtained from $[0,1] \times(0,1)$ by identifying $(0, y)$ with $(1,1-y)$ for each $y \in(0,1)$.]

Exercise 6. The following polygon with side identifications is homeomorphic to which surface?

Exercise 7. Suppose that the sphere \mathbb{S}^{2} is given the structure of a closed combinatorial surface. Let C be a subcomplex that is a simplicial circle. Suppose that $\mathbb{S}^{2} \backslash C$ has two components. Indeed, suppose that this is true for every simplicial circle in \mathbb{S}^{2}. Let E be one of these components. [In fact, $\mathbb{S}^{2} \backslash C$ must have 2 components, but we will not attempt to prove this.]

Our aim is to show that \bar{E} is homeomorphic to a disc. This is a version of the Jordan curve theorem.

We'll prove this by induction on the number of 2 -simplices in \bar{E}. Our actual inductive hypothesis is: There is a homeomorphism from \bar{E} to \mathbb{D}^{2}, which takes C to the boundary circle $\partial \mathbb{D}^{2}$.
(1) Let σ_{1} be a 1 -simplex in C. Since \mathbb{S}^{2} is a closed combinatorial surface, σ_{1} is adjacent to two 2 -simplices. Show that precisely one of these 2 -simplices lies in \bar{E}. Call this 2 -simplex σ_{2}.
(2) Start the induction by showing that if \bar{E} contains at most one 2-simplex, then $\bar{E}=\sigma_{2}$.
(3) Let v be the vertex of σ_{2} not lying in σ_{1}. Let's suppose that v does not lie in C. Show how to construct a subcomplex C^{\prime} of \mathbb{S}^{2}, that is a simplicial circle, and that has the following properties:

- $\mathbb{S}^{2} \backslash C^{\prime}$ has two components;
- one of these components F is a subset of E;
- \bar{F} contains fewer 2 -simplices than \bar{E}.

Show in this case that there is a homeomorphism from \bar{E} to \mathbb{D}^{2}, which takes C to the boundary circle $\partial \mathbb{D}^{2}$.
(4) Suppose now that v lies in C. How do we complete the proof in this case?
[The actual Jordan curve theorem is rather stronger than this. It deals with simple closed curves C in \mathbb{S}^{2}, which need to be simplicial. It states that $\mathbb{S}^{2} \backslash C$ has two components, and that, for each component E of $\mathbb{S}^{2} \backslash C$, the closure of E is homeomorphic to \mathbb{D}^{2}, with the homeomorphism taking C to $\partial \mathbb{D}^{2}$.]

