Communication Theory MT17

Sheet 0

1. You are given 12 balls, all indistinguishable by size and appearance. All balls have the same weight except for one that is either lighter or heavier. You are given a balance scale and can put any number of balls on the left and right pan of the scale. There are three possible readings: left and right have same weight, left is lighter than right, right is lighter than left.
(a) Find a strategy to determine the odd ball with as few readings as possible (Hint: think about the "information gained" in one reading).
(b) Represent your strategy as a tree. At each node in the tree, record how much information was gained and how much information is missing.
(c) How much information is gained if we weigh 6 balls against 6 balls in the first reading; how much information is gained, if we weigh 4 balls against 4 balls?
2. Pick your prelims lecture notes on probability and recall the
(a) definition of a random variable (discrete and continuous),
(b) the law of large numbers and the central limit theorem,
(c) the definition of independence and conditional probability.
3. Recall Lagrange multipliers: given $f: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $g_{1}, \ldots, g_{k}: U \rightarrow \mathbb{R}$ we wish to minimize $f(x)$ subject to constraints $g_{i}(x)=0$ for $i=1, \ldots, k$. Assuming sufficient smoothness of f, g_{1}, \ldots, g_{k} one can introduce the Lagrangian $\mathcal{L}\left(x, \lambda_{1}, \ldots, \lambda_{k}\right):=f(x)-\sum_{i=1}^{k} \lambda_{i} g_{i}(x)$ and find a minimizer $x \in U$ by solving $\frac{\partial \mathcal{L}}{\partial \lambda_{i}}=0, i=1, \ldots, k$.
(a) Give an informal argument why this works. One way to think about this $(\operatorname{wlog} k=1)$ is to consider $g^{-1}(0), f^{-1}(v)$ for $v \in \mathbb{R}$ as surfaces. Start with v being much bigger than the minimum constrained by $g(x)=0$ and visualize what happens to the surfaces as v decreases and approaches a constrained minimum. What does this tell us about the relation of the gradient ∇f to ∇g ?
(b) Pick up your favourite analysis textbook and look up the formal proof and the assumptions on f, g_{1}, \ldots, g_{k}.
(c) Let $X_{1}, \ldots X_{n}$ be independent, real valued variables with $\mathbb{E}\left[X_{i}\right]=\mu$, $\operatorname{Var}\left(X_{i}\right)=\sigma_{i}^{2}$. Find c_{1}, \ldots, c_{n} that minimize $\operatorname{Var}\left(\sum_{i=1}^{n} c_{i} X_{i}\right)$ subject to $\mathbb{E}\left[\sum_{i=1}^{n} c_{i} X_{i}\right]=\mu$ for given $\mu \in \mathbb{R}$.
4. Let X be a real-valued random variable.
(a) Assume additionally that X is non-negative. Show that for every $x>0$

$$
\mathbb{P}(X \geq x) \leq \frac{\mathbb{E}[X]}{x}
$$

Find a random variable for which above estimate is sharp.
(b) Let X be a random variable of mean μ and variance σ^{2}. Show that $\mathbb{P}(|X-\mu|>\epsilon) \leq \frac{\sigma^{2}}{\epsilon^{2}}$.
(c) Let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of identically distributed, independent random variables with mean μ and variance σ^{2}. Show that for every $\epsilon>0$

$$
\lim _{m \rightarrow \infty} \mathbb{P}\left(\left|\frac{1}{m} \sum_{n=1}^{m} X_{n}-\mu\right|>\epsilon\right)=0
$$

(d) Let X be uniformly distributed on $\left[0, \frac{\pi}{2}\right]$. Find the density of $Y=\sin X$.

