STRINE THEORY I

Lecture 14
\qquad

6 Compactifications
conrider S'-smpactifications of the bonnic string

$$
\mathbb{R}^{1,2 r} \longrightarrow \mathbb{R}^{1,24} \times S_{R}^{1}
$$

aricle of radius R
Silds $\quad x^{n}<\begin{aligned} & x^{i} \quad i=0, \ldots, 24 \\ & x^{2 s} \sim x^{2 s}+2 \pi R\end{aligned}$
λ parametions circle of rations R

We will discuss this Won our two sevisectives
(1) From the pacetime EFT
\longrightarrow Kaluza-Klein mechanism to obtain an effective theory on $\mathbb{R}^{1,24}$
(2) From the world sheet CFT pevipective

Stanget space will "look" the same cos for slat $\mathbb{R}^{1,25}$ but with mon-trivial bopobsy BLT
(see D Tony lecture notes)
6. 1 Spacetime EFT approach
for the closed boomic swing theory
v Kaluza - kain ansatz for the fields to obtain an effective action in (1,24)-dimenrions.
Fields $X^{4}<\begin{array}{ll}X^{i} & i=0,-, 24 \\ X^{25} & \text { cosolinate on } s_{18}^{\prime}\end{array}$
metric $G_{\mu \nu} d X^{\mu} d x^{\nu}=G_{i j}^{\sigma_{i j}} d x^{i} d X^{j}+e^{2 \sigma}\left(d X^{2 r}+A_{i} d x^{i}\right)^{2}$
(so $G_{r r, 2 r}=e^{2 \sigma}, G_{r r, i}=e^{2 \sigma} A_{i}$)
TK field $B_{m u} d X^{n} \wedge d X^{v}=B_{i j} d X_{i}^{i} d X^{i}+\tilde{A}_{i} d X^{i} \wedge d X^{n}$
(b $\left.B_{i r r}=\tilde{A}_{i}\right)$
dilation $\Phi=\Phi_{(2 r)}+\frac{1}{2} \sigma$

- One then rewrites the effective action $S_{(26)}$ in tams of

$$
\begin{aligned}
& G_{i j}, A_{i}, e^{2 \sigma} \\
& B_{i j} \tilde{A}_{i} \\
& \Phi_{(1 r)}
\end{aligned}
$$

- This is a long computation, but that is ok.

Thane $S_{2 C}^{s}=\frac{1}{2 k_{0}^{2}} \int d x \sqrt{-G} e^{-\nu \mathcal{L}}\left(R-\frac{1}{12}\left(\left.H\right|^{2}+4 \mid \nabla \Phi\right)^{2}\right)$
Fol example:

$$
R\left(G_{l c}\right)=R\left(G_{2 r}\right)-\frac{1}{2} e^{2 \sigma} F(A)^{i j} F(A)_{i j}-2 e^{-\sigma} \nabla^{i} \nabla_{i} e^{\sigma}
$$ etc

All these fields depend on X^{i} but also on $X^{2 r}$ Due to the i dentification $X^{2 \sigma}(\sigma, \sigma) \sim X^{2 r}(\sigma, \sigma)+2 \pi R$ we can expand thess fields in Fourier modes with with respect to $X^{2 r}$:

$$
F\left(X^{i}, x^{2 r}\right)=\sum_{n \in \mathbb{Z}} F_{n}\left(x^{i}\right) e^{i n \frac{1}{R} x^{2 r}}
$$

- Finally we integrate SILT over $X^{2 r}$ to obtain a thesis in 25-dimenvions

We will mot be able to do all this explicitly (but sub below fort the dilation)
\rightarrow long computation indeed!
as we will se

$$
\begin{aligned}
& n=0 \text { in Fourier series for } \\
& \text { the fields }
\end{aligned}
$$

the fields
Note however (see below) that the zeNo modes typically give the massless sector of the theory

These tero moles ave:
wetric

$$
G_{i j}\left(x^{i}\right)
$$

KR field

$$
B_{i j}\left(X^{i}\right)
$$

2×1-coum gaugs fields A and \tilde{A}
\uparrow what is the gausi sommetry?
A (awaviphst on) $\ell \hat{A}$ (KR-photon)
corresmond to $u(1) \times u(1)$ gange fields
(A: syminetry dexends Won 26-dim diffeormiphism
A: exercix)
2 scalaw $\sigma_{1} \Phi_{(20)}$

Let's bol at the dilation more carefully.

$$
\Phi\left(x^{m}\right)=\Phi\left(x^{i}, x^{2 r}\right) \quad \text { rale } x^{2 r} \sim x^{2 r}+a \pi \pi
$$

We can expand this field Land ans at hes bields) in Fourier miles with import to x^{15} :

$$
\Phi\left(x^{\mu}\right)=\sum_{n \in \mathbb{B}} e^{i n \frac{1}{\mathbb{R}} x^{2 r}} \phi_{\text {increment of } x^{k r}}^{\phi_{n}\left(x^{i}\right)}
$$

$$
\underbrace{\phi_{n}=\phi_{-n}^{*}}_{\text {beccunn is is real-valuel }}
$$

Dilation Tuns in the action $S_{(26)}$:

$$
\begin{aligned}
& \left|\nabla_{u^{2}} \Phi\right|^{2}=\partial_{i} \Phi \partial^{i} \Phi+\left(\partial_{2} \Phi\right)^{2} \\
= & \cdots=\sum_{n, m} e^{i(n+m) \frac{1}{2} x^{2 r}} \underbrace{\left\{\partial_{i} \phi_{n} \partial^{i} \phi_{m}-\frac{n m}{R^{2}} \phi_{n} \phi_{m}\right\}}_{\text {Interment of } x^{2 r}}
\end{aligned}
$$

Then

$$
\int d^{2 b} X^{\sqrt{l}}\left|\bar{\nabla}_{20} \Phi\right|^{2}=\int d^{n} x 2 \pi R \sum_{n=-}^{\infty}\{\partial_{i} \phi_{n} \partial^{i} \phi_{-n}+\frac{n^{2}}{R^{2}} \underbrace{\phi_{n} \phi_{-n}}_{\left|\phi_{n}\right|^{2}}\}
$$

\Rightarrow the massless dilation $\Phi\left(X^{\mu}\right)$ of the $2 L$-dimensional EFT gives rise to a discucte infinite tower of scalow fields ϕ_{n}, the Kaluta-Kleinumdes, with mass $M_{n}^{2}=\frac{1}{R^{2}} n^{2}$
For small R all are heavy modes except the massless mode ($n=0$) con ignore for dist anu scales $\gg R$

Now, note that under a spacetime diffeomorphism

$$
\delta x^{\mu}=\epsilon^{\mu}(X)
$$

the metric change as

$$
\delta G_{\mu \nu}=\partial_{\mu} E_{\nu}+\partial_{\nu} \epsilon_{\mu} .
$$

This under

$$
\delta X^{25}=\epsilon\left(X^{i}\right) \quad \begin{gathered}
\text { reparamatrisation of } \\
\text { diction }
\end{gathered} X^{t r}
$$

we find

$$
\delta A_{i}=\partial_{i} \epsilon \quad\left(A_{i}=G_{r, i} \Rightarrow \partial a_{r i}=\partial i \epsilon\right)
$$

So indeed we intupret A_{i} as a $u(1)$ ganse field and the gang symmetry desands From the 26-dimencional diffesmornligm inuaviance.
A_{i} is called the graristoton.

The massive KK modes $\Phi_{n}(n \neq 0)$ are changed undo this gang field A_{i}

$$
\begin{aligned}
& \Phi\left(x^{\mu}\right) \rightarrow \sum_{n \in \mathbb{R}} e^{i n \frac{1}{2}\left(x^{i r}+\epsilon\right)} \Phi_{n}\left(x^{i}\right] \\
& \text { hence } \phi_{n} \rightarrow e^{i n \in \mathbb{R} \phi_{n}}
\end{aligned}
$$

That is the KK-momentum is change bo the grawishoton.
One can show that there are no excitations charged under the $\mathcal{L}(1)$ symmetry associated to the Rommonl-Kalb-photon.

Massless sector of the eflective 25 -dimensional theory:
$\Phi(x) \rightarrow \Phi\left(x^{i}\right) \quad 2 r$ dim dilation

Remark: we have introduced a new scale

$$
M_{k K} \sim \frac{1}{12}
$$

We should mt trust the EFT analysis for $M_{k L} \sim M_{s}$ (small radius R).

How ewer, in this case one can orrbrm an bact amalynis of the world sheet CFI.
[. 2 Woved-sheet suspective (Cbsed stving)
The taw yet space fov the two dimantional NLFM is $\mathbb{R}^{1,25}$ howewn $X^{2 r}$ is a field on S_{R}^{\prime} which is peviodic ic $x^{2 r} \sim x^{25}+2 \pi R$
This man trivical lopobsy has vely intevesting ansequences.
 shoud act as identity:

$$
\left.\begin{array}{rl}
e^{\operatorname{vir} R \hat{P}_{2 r}}\left(\ldots, K_{2 r}\right) & \left.=e^{\operatorname{irin} K_{2 r}}, \ldots, K_{k}\right\rangle
\end{array}=\left(\cdots, K_{2 r}\right\rangle\right)
$$

(2) $\quad x^{2 \sigma}(\sigma, \sigma+\pi)=x^{2 \pi}(\sigma, \sigma)+2 \pi R \omega \quad \omega \in \mathbb{Z}$
(that is $X^{2 r}$ ont needs to be periodic $\sigma \rightarrow \sigma+\pi$ up to $2 \pi R$ shifts)
ω is called the winding number
Term 2 ante gives fix to closed strings wrapped on S_{B}^{\prime} and counts how man g times the string wraps around δ_{2}^{\prime}

windings is a stringy effect: there is nothing like this in the EFT we discussed
(In the 2 dim EFT: these ave britons !)
spectrum of the string with tar get space $\mathbb{R}^{1.14} \times S_{\mathbb{R}}^{\prime}$ Mode expansion of X^{25} (which meats $X^{2 r}(\sigma, \sigma+\pi)=x^{2 r}(\sigma, \sigma)+$ ur i $\left.R \omega\right)$

$$
\left.\begin{array}{rl}
X^{k r}(\sigma, \sigma) & =x^{2 \sigma}+\tau p^{k \pi}+2 \omega R \sigma+\frac{i}{2} \quad \sum_{n=0} \frac{1}{n}\left(\alpha_{n}^{k r} e^{-2 i m \sigma}+\alpha_{n}^{n} e^{-i n \sigma_{+}}\right) \\
= & X_{R}^{2 r}\left(\sigma_{-}\right)+X_{L}^{L r}\left(\sigma_{+}\right)
\end{array}\right\}
$$

$$
\text { and } p_{L}^{25}=p^{2 \pi}+2 R \omega \quad p_{l}^{25}=p^{25}-2 R \omega
$$

This is just as in $\Omega^{\text {Mir }}$ erupt that $\alpha_{0}^{2 r}=\frac{1}{2} P_{R}^{1 r}, \chi_{0}^{2 r}=\frac{1}{2} R^{25}$

The mole expansion of $x^{i} \quad i=0, \ldots, 24$ remains unchanged.

The string stats are similar to those of $\mathbb{R}^{1,25}$ except that now we have quantised KK-nusdes and winding on the circle:
(Recall in $\mathbb{R}^{1 i 2 r}$ we had $\pi \alpha_{-n}^{m} \pi^{\nu} \tilde{\alpha}_{-m}^{\nu} 10 ; k>$)
$\pi \underline{\alpha}_{n}^{i} \pi \tilde{\alpha}_{m}^{i}\left|K_{j} m j \omega\right\rangle$
25 dim

$$
\begin{aligned}
p_{25}=\frac{m}{R} & \begin{array}{l}
\text { foo } \\
\\
\\
\\
= \\
x^{25}(\tau, \sigma+\pi) \\
x^{25}(\tau, \sigma)+2 \pi R \omega
\end{array}
\end{aligned}
$$

Phegrical spectrum: Virassio powators \& comstraints

$$
L_{0}=\frac{1}{2}\left(\alpha_{0} \cdot \alpha_{0}+\left(\alpha_{0}^{2 r}\right)^{2}\right)+\sum_{n>0}^{1} \sum_{\substack{(1+n 4) \\ \text { piodimict inner }}} \alpha_{-n} ; \alpha_{n}+\left.\sum_{n>0} \alpha_{-n}^{2 r} \alpha_{n}^{2 r}\right|_{1} ^{\prime} N N
$$

$$
L_{m}=\frac{1}{2} \sum_{n} \alpha_{m-n} \cdot \alpha_{n}+\frac{1}{2} \sum \alpha_{m-n}^{2 r} \alpha_{n}^{l r}
$$

Similar expres rions bo \tilde{L}_{m}

Mass-shell and level matching conditions

$$
\begin{aligned}
& \left(L_{0}-1\right)|p\rangle=0 \\
& \left(\tilde{l}_{0}-1\right)|\phi\rangle=0 \\
& L_{0-1}=\frac{1}{8}\left(p_{25}^{2}+p_{B}^{2}\right)+N-1 \longrightarrow M_{25}^{2}=p_{16}^{2}+8(N-1) \\
& \tau_{0}-1=\frac{1}{8}\left(p_{c r}^{2}+p_{c}^{2}\right)+\tilde{N}-1 \quad \rightarrow \quad \mu_{1 s}^{2}=p_{i}^{2}+8(\tilde{N}-1) \\
& p_{2}=p_{0}+2 n_{w}
\end{aligned}
$$

For $\omega=0$ this matches results from EFT lowest enevors tate: tachyon: $N=\tilde{N}=0, m=0, \omega=0: M_{n}{ }^{2}=-8$

Massless spectram: for $N=\tilde{N}=1(\Rightarrow m \omega=0)$
ar-dim graviton: $\left.\left.\gamma_{i j} \alpha_{1}^{i} \vec{\alpha}_{-1}^{j} 10 ; K^{e}\right\rangle \otimes 10,0\right\rangle \overbrace{}^{m=\omega=0}$
25-dim B-ficld: $\left.\quad B_{i j} \alpha_{-1}^{i} \hat{\alpha}_{-1}^{j} 10 ; K^{e}\right\rangle \otimes 10,0>$
graviphotow and $\left.\left(\rho \cdot \alpha_{-1} \tilde{\alpha}_{-1}^{2 r} \pm \rho \cdot \tilde{\alpha}-\alpha_{-1}^{2 r}\right)\left(0 ; k^{l}\right\rangle \otimes 10,0\right\rangle$ extra photon

radion

$$
\alpha_{-1}^{2 r} \tilde{\alpha}_{1}^{2 s}\left|0 ; k^{2}\right\rangle \otimes|0,0\rangle
$$

$i d e n t i f i e d$ with the scalow σ
 reduction of EFT
$m \omega \neq 0$ gmewically give masivive ifates (latio)

States with mon-trivial m, w are obtrined bo acting with oscillators on the state

$$
\begin{array}{ll}
\left.10, k^{1}\right\rangle \otimes|m, \omega\rangle & N=\tilde{N}=0 \\
\omega \quad m w=0
\end{array}
$$

$$
>M_{(w r)}^{2}=\frac{m^{2}}{\Omega^{2}}+4 \Omega^{2} \omega^{2}-8
$$

when $m=0 \quad M_{R(r)}^{2}=4 R^{2} \omega^{2}-8 \quad$ winding tachyon eth.
chucking that KK-modes with $n \neq 0$ \& winding males ave chowed under the $u(1) \times u(1)$ gangs symmetries:

$$
\operatorname{graviphation~}_{A_{i}^{3}}^{A_{i}} \hat{A_{i}}
$$

\rightarrow compute the 3-point function in which

read off change of the state: sefficimet in Wont' of the coupling of the fir ls

Convider then the 3-amplitude

TKalb-Ramond photon

$$
\left(\xi \cdot \alpha_{-1} \tilde{\alpha}_{-1}^{2 r}-\rho \cdot \hat{\alpha}_{-1} \alpha_{-1}^{1-}\right)|0, k\rangle \otimes|0,0\rangle
$$

Vertas spowator for the KR piston

$$
V_{k R}(k) \sim \int d i d \sigma 5 \cdot\left(\partial_{+} x \partial_{-} x^{2 \pi}-\partial_{-} x \partial_{+} x^{2 s}\right) e^{i k \cdot x}
$$

Vertex opwatos fo the tachyon:

$$
V_{m, w}(p) \sim \int d i d \sigma e^{i p \cdot X} e^{i p_{L} X^{L s}+i p_{2} X^{L r}}
$$

astrigns (m, ω) to amo ofato

Compute the amplitude:

$$
\begin{aligned}
A & =\left\langle 0,-K_{3} ; 0, \omega\right|\left(\rho \cdot \partial_{+} x \partial_{2} X^{2 r}-\rho \cdot \partial_{-} X \partial_{+} X^{2 r}\right) e^{i K_{2}-x} \left\lvert\, \frac{\left|0, K_{1} ; 0,0\right\rangle}{}\right. \\
& =\left(0,-K_{3} ; 0, \omega\left|\left(\rho \cdot \tilde{\alpha}_{0} \alpha_{0}^{2 r}-\rho \cdot \alpha_{0} \tilde{\alpha}_{0}^{2 r}\right)\right| 0, K_{1}+K_{2} ; 0,0\right\rangle \\
& =\rho \cdot\left(K_{1}+K_{2}\right)\left\langle 0,-K_{3} ; 0, \omega\right|\left(\alpha_{0}^{2 r}-\tilde{\alpha}_{0}^{2 r}\right)\left|0, K_{1}+K_{1} ; 0,0\right\rangle \\
& =(2 \Omega \omega) \quad \xi \cdot K_{3} \delta^{(r r)}\left(K_{1}+K_{2}+K_{3}\right)
\end{aligned}
$$

- winding tachyon chary under \tilde{A}_{i} (o ming ham $\mathbb{T}_{\text {w }}$)

Similow corm nutation for the graviphoton: morrentum $\frac{m}{R}$ is the change monde A_{i} This agrees with the KK reduction

Remark: we have introduced a new scale R

In fact, we have a are parmaneteo family of compactifications with $R \in(0, \infty)$
or do we?
next: T-duality

