Numerical Solution of Differential Equations II. QS 2

Question 1. Consider the system

$$
L_{h}\left(y_{j}\right)=-\frac{y_{j+1}-2 y_{j}+y_{j-1}}{h^{2}}+f\left(x_{j}, y_{j}, \frac{y_{j+1}-y_{j-1}}{2 h}\right)=0 \text { for } j=1,2, \ldots, n
$$

with boundary values $y_{0}=\alpha$ and $y_{n+1}=\beta$. This nonlinear system can be expressed in vector notation as $\Phi(y)=0$ where the $i^{t h}$ row of the system is given by $L_{h}\left(y_{j}\right)$ above. Write Newton's method for computing an approximate solution to this system. Determine conditions on $f(\cdot, \cdot, \cdot)$ so that the linear system in Newton's method can be solved at each iteration.
Question 2. Consider the finite difference approximation

$$
L_{h}\left(y_{j}\right)=-\frac{y_{j+1}-2 y_{j}+y_{j-1}}{h^{2}}+f\left(x_{j}, \frac{y_{j-1}+y_{j+1}}{2}, \frac{y_{j+1}-y_{j-1}}{2 h}\right)=0 \text { for } j=1,2, \ldots, n
$$

to $L(y)=-y^{\prime \prime}+f\left(x, y, y^{\prime}\right)=0$ with boundary values $y\left(x_{0}\right)=y_{0}=\alpha$ and $y\left(x_{n+1}\right)=y_{n+1}=\beta$.
(a) Show that the operator has second order truncation error.
(b) Show that, under suitable conditions, L_{h} is stable.
(c) Combine the results from (a) and (b) to show that $\max _{j}\left|y\left(x_{j}\right)-y_{j}\right|=\mathcal{O}\left(h^{2}\right)$.

Question 3. Consider the iteration

$$
y_{j}^{m+1}=\frac{1}{2}\left(y_{j-1}^{m}+y_{j+1}^{m}\right)-\frac{h^{2}}{2} f\left(x_{j}, \frac{y_{j-1}^{m}+y_{j+1}^{m}}{2}, \frac{y_{j+1}-y_{j-1}^{m}}{2 h}\right) \text { for } j=1,2, \ldots, n
$$

with boundary values $y_{0}=\alpha$ and $y_{n+1}=\beta$. Show that the iteration converges with m. List any conditions imposed to ensure convergence.

