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What we learned from Section 1&2.

• For a system of linear autonomous equations ẋ = Ax, the solutions

live on invariant spaces that can be classified according to the

eigenvalues of A.

• The stable (resp. unstable, centre) linear subspace is the span of

eigenvectors whose eigenvalues have a negative (resp. positive, null)

real part.

• For nonlinear systems, we define the notion of asymptotic sets (α

and ω limit set), the notion of attracting set, and basin of attraction.

• We define two important notions of stability for a fixed point:

(Lyapunov) stability (i.e. “solutions remain close”) and exponential

stability i.e. (“fixed point is stable AND all nearby solutions

converge to the fixed point asymptotically for long time”).

• Lyapunov functions can be used to test stability. But, finding a

Lyapunov function can be difficult.
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What we learned from Section 3.

• For a system of autonomous equations ẋ = f(x), we are interested in

the trajectories and asymptotic sets in phase space.

• At a fixed point, we can define local stable, unstable, and centre

manifolds based on the corresponding linear subspaces of the

linearised system.

• From the local stable and unstable manifolds, we can define the

global stable and unstable manifolds by extending them to all times.

• If the unstable manifold is non-empty, the fixed point is unstable.

• If the unstable and centre manifolds are empty, the fixed point is

asymptotically stable.

• If the unstable manifold is empty but the centre manifold is

non-empty, we can study the dynamics on the centre manifold by

centre manifold reduction.

• The same notions can be defined for iterative mappings and for

periodic orbits.
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What we learned from Section 4.

• For a system ẋ = f(x, µ), we are interested in bifurcations.

• Bifurcations are parameter values where a qualitative change occurs.

• For local bifurcations (at fixed points), it implies the existence of

eigenvalues of the Jacobian matrix crossing the imaginary axis.

• At the bifurcation value, there is a centre manifold. Hence, we can

use centre manifold techniques.

• Adding the parameter as a variable, we can define an extended

centre manifold and use results of Section 3.

• We find generic behaviours of bifurcations changing the type or

number of fixed points (saddle-node, transcritical, pitchfork).

• The Hopf bifurcation leads to the possibility of transforming a fixed

point into a limit cycle.

• The same notions apply to mappings and periodic orbits.

• Bifurcation of maps show the new possibility of period-doubling

(leading to chaos).
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4.1 The problem



The problem

Consider the first-order system of differential equations

ẋ = f(x) + εg(x, t) where x : E ⊂ Rn, (1)

and assume that g is periodic in t (∃ T > 0, s.t. g(x, t + T ) = g(x, t).)

Assuming, we know the dynamics of the system when ε = 0 and that it

supports periodic and homoclinic orbits.

Problem:

What happens when ε > 0?

Are there still periodic orbits?

Homoclinic orbits?

New orbits?
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4.2 A paradigm



An important example: the Duffing oscillator

ẍ = x − x3 + ε (δẋ + γ cos(t)) (2)

For ε = 0.
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An important example: the Duffing oscillator

ẍ = x − x3 + ε (δẋ + γ cos(t)) (3)

For ε > 0, γ = 0, δ > 0.

What happens when ε > 0, γ > 0, δ > 0? =⇒ CHAOS!

For what values? What does chaos mean?
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Main idea

Our construction will be in four steps of increasing complexity

Step 1: Bernoulli shift (the simplest dynamical system with chaos)

Step 2: Smale’s horseshoe (a geometric construction)

Step 3: Homoclinic chaos in ODEs

Step 4: Melnikov’s method (an explicit method to detect chaos)
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4.3 Step 1: Bernoulli Shift



A simple dynamical system

To define a dynamical system we need:

- A phase space Σ.

- The dynamics on Σ (how elements of Σ are mapped to other elements).

1. The phase space.

For the Bernoulli shift we define Σ as the set of bi-infinite sequence of 0

and 1:

s ∈ Σ : s = {. . . , s−n, . . . , s−1|s0, s1, . . . , sn, . . .} , (4)

where si is equal to 0 or 1.
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Bernoulli Shift

s ∈ Σ :

s = {. . . , s−n, . . . , s−1|s0, s1, . . . , sn, . . .} , (5)

where si is equal to 0 or 1.

Notion of distance on Σ. Take two elements s, s ′ ∈ Σ:

d(s, s ′) =
∑
i∈Z

|si − s ′i |
2|i|

(6)

Tow elements are close if their central blocks agree,
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Bernoulli Shift

2. The dynamics on Σ

Define the shift map σ : Σ 7→ Σ. If

s = {. . . , s−n, . . . , s−2, s−1|s0, s1, . . . , sn, . . .} , (7)

then

σ(s) = {. . . , s−n, . . . , s−1, s0|, s1, . . . , sn, . . .} , (8)

Equivalently

(σ(s))i = si+1. (9)

Possible orbits?
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Bernoulli shift

Theorem 4.1

The shift map has:

1. a countable infinity of periodic orbits with arbitrary periods;

2. an uncountable infinity of non-periodic orbits;

3. a dense orbit.

What is a dense orbit?

Definition 4.2

A dense orbit for the shift map is a particular orbit sd ∈ Σ such that for

any s ∈ Σ and ε > 0, ∃n ∈ N such that d(σn(sd), s) < ε.
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Bernoulli shift

Theorem 4.3

The shift map has:

1. a countable infinity of periodic orbits with arbitrary periods;

2. an uncountable infinity of non-periodic orbits;

3. a dense orbit.

Proof:
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Sensitive dependence to initial conditions

Two important notions in dynamical systems.

Let Λ be an invariant compact set for an invertible iterative map

f :M→M.

Definition 4.4

f has sensitivity to initial conditions on Λ if ∃ε > 0 such that for any

p ∈ Λ and any neighbourhood U of p, there exists p′ ∈ U and n ∈ N
such that |f n(p)− f n(p′)| > ε.

Definition 4.5

f is topologically transitive on Λ if for any open sets U,V ∈ Λ n ∈ Z
such that f n(U) ∩ V 6= ∅.
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Sensitive dependence to initial conditions

Together they lead to the notion of chaos:

Definition 4.6

Let Λ be an invariant compact set for an invertible iterative map

f :M→M. Then f is chaotic on Λ if it has sensitivity to initial

conditions on Λ and is topologically transitive on Λ.

Theorem 4.7

The shift map is chaotic on Σ.
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Smale’s horseshoe

The construction of Smale’s horseshoe is given in the file

B56-Section5b.pdf

16


	Motivation
	The problem
	A paradigm
	Step 1: Bernoulli Shift
	Step 2: Smale's horseshoe


