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What we learned from Section 1.

• Solutions of linear autonomous system ẋ = Ax are given by the

matrix exponential etA.

• The matrix exponential defines a linear flow (mapping sets to sets in

Rn).

• The set of eigenvalues of A can be used to define three subspaces

based on their real part.

• The stable (resp. unstable, centre) linear subspace is the span of

eigenvectors whose eigenvalues have negative (resp. positive, null)

real parts.

• These linear subspaces are invariant spaces (initial conditions in an

invariant set define solutions that remain for all time within that set).

• The solution of linear maps can be classified in a similar way.
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2. Nonlinear systems

2.1 Existence and uniqueness



The problem

Consider the nonlinear, autonomous, first-order system of differential

equations: {
ẋ = f(x)

x(t0) = x0
(1)

where f : E ⊂ Rn → Rn is the vector field.

In general, this equation cannot be solved.

Problems:

What are the possible solutions (from a geometric point of view)?

What is the stability of such solutions (behaviour of nearby solutions)?
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Existence theorem

Theorem 2.1

Let f ∈ C 1(E ) and x0 ∈ E , then there exists c > 0 s.t.{
ẋ = f(x)

x(t0) = x0
(2)

has one and only one solution x(t) on [−c , c].

NB1: For the rest of this course, unless otherwise specified, we will

assume that the maximum interval of existence is R (we are

interested in global behaviour).

NB2: The general conditions guaranteeing the existence of global

solutions are not obvious.
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2. Nonlinear systems

2.2 Flows, asymptotic sets, and

invariant sets



Flows

The space E ⊂ Rn on which the solutions live is called the phase space.

We assume that the maximum interval of existence is R (i.e. solutions

are defined for all time for all initial conditions).

An orbit based on x0 is the curve Γx0 ⊂ E defined by

Γx0 = {x(t) ∈ Rn; t ∈ R, x(t0) = x0, ẋ = f(x)} (3)

The flow is the map ϕt : E → E such that

ϕt(x0) = x(t, x0) ∀ x0 ∈ K ⊂ E (4)
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Flows

Properties of flows:

• ϕ0 = 1 (the identity map)

• ϕt+s(x) = ϕt(ϕs(x)) = ϕs(ϕt(x)), ∀ x ∈ Rn

• Let U be a neighborhood of x0 and V = ϕt(U), then

ϕ−t(ϕt(x)) = x, ∀ x ∈ U (5)

ϕt(ϕ−t(y)) = y, ∀ y ∈ V (6)
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Invariant sets

Definition 2.2

Consider a vector field f ∈ C 1(E ), defining a flow ϕt : E → E .

Then S ⊂ E is an invariant set of such that ϕt if

ϕt(S) ⊂ S ∀ t ∈ R. (7)

Example: {
ẋ = −x
ẏ = y + x2

(8)
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Asymptotic sets

Definition 2.3

A point p ∈ E is an ω-limit point of ϕt if there exists a sequence of time

t1 < t2 < . . . < tn, with ti →∞ as i →∞ such that

lim
i→∞

ϕti (x) = p. (9)

Similarly, a point p ∈ E is an α-limit point of ϕt if there exists a

sequence of time t1 > t2 > . . . > tn, with ti → −∞ as i →∞ such that

lim
i→−∞

ϕti (x) = p. (10)
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Asymptotic sets

Example: {
ẋ = −y + x(1− x2 − y2)

ẏ = x + y(1− x2 − y2)
(11)
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Attracting sets

Definition 2.4

An attracting set is a closed invariant set A such that there exists a

neighborhood U of A with the propertiesϕt(x) ∈ U ∀ t ≥ 0

ϕt(x) −−−→
t→∞

A ∀ x ∈ U
(12)
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Domain of attraction

For a given attracting set A, with neighborhood U as above, the domain

of attraction is the set of all initial conditions that have A as ω-limit set.

That is

D(A) =
⋃
t≤0

ϕt(U) (13)
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Attracting sets

Example:

ẋ =

{
−x4 sin(π/x) x 6= 0

0 x = 0
(14)
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2. Nonlinear systems

2.3 Stability



Stability

We consider a system ẋ = f(x) with x ∈ E ⊂ Rn, f ∈ C 1(E ).

The simplest solutions are fixed points.

A fixed point x0 is a constant solution of the system, that is f(x0) = 0.

We want a definition of the intuitive idea of stability:

“solutions close to a given invariant set remains close to that set for all

time.”
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Lyapunov stability

Let Br (x) denote a closed ball of radius r around x (the set of points

with a distance less than r from x).

Definition 2.5

The fixed point x0 is (Lyapunov) stable if ∀ ε > 0, ∃ δ > 0 such that

∀ x ∈ Bδ(x0) and t ≥ 0, we have ϕt(x) ∈ Bε(x0).
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Lyapunov stability

Example: {
ẋ = y

ẏ = −4x
(15)
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Asymptotic stability

A stronger notion of stability:

Definition 2.6

The fixed point x0 is asymptotically stable if it is Lyapunov stable and

∃ δ > 0 such that ∀ x ∈ Bδ(x0) we have ϕt(x) −−−→
t→∞

x0.
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Asymptotic stability

Example: {
ṙ = r(1− r)

θ̇ = sin2 θ
2

(16)
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Asymptotic stability

For linear systems ẋ = Ax, x0 = 0 is always a fixed point.

If A is a semi-simple matrix, we have

• x = 0 is asymptotically stable if Re(λ) < 0, ∀ λ ∈ Spec(A).

• x = 0 is stable if Re(λ) ≤ 0, ∀ λ ∈ Spec(A).

NB: The first property remains true in the general case, but not the

second one (can you find a counter-example?).
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2. Nonlinear systems

2.4 Lyapunov functions



Lyapunov functions

We consider a system ẋ = f(x) with x ∈ E ⊂ Rn, f ∈ C 1(E ).

Assume that this system has a fixed point x0 (so that f(x0) = 0).

Definition 2.7

A function V : W ⊂ E → R, V ∈ C 1(W ) is a Lyapunov function if there

exists a neighborhood W of x0 on which it satisfies

1. V (x0) = 0, and V (x) > 0 ∀ x ∈W \ {x0}.
2. V̇ (x) ≤ 0 ∀ x ∈W \ {x0}.
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Lyapunov functions

If a Lyapunov function is known, the following stability results hold:

Theorem 2.8

1. If V is Lyapunov function of f in a neighborhood of x0, then x0 is

stable.

2. If, in addition, V̇ (x) < 0 ∀ x ∈W \ {x0}, then x0 is asymptotically

stable.

Proof (Perko, p.131):
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Lyapunov functions

Example: The damped nonlinear spring

mẍ + k(x + x3) + αẋ = 0, α > 0. (17)
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Extra reading material

Extra material from the following books

[S ] Strogatz, Nonlinear Dynamics and Chaos with Applications to

Physics, Biology, Chemistry and Engineering (Westview Press,

2000).

[D ] Drazin, Nonlinear Systems (Cambridge University Press,

Cambridge, 1992).

[P ] Perko, Differential Equations and Dynamical Systems (Second

edition, Springer, 1996).

2 Nonlinear Systems

2.1 Fundamental theorems. [P70]

2.2 Flow, asymptotic behaviour. [P87,95]

2.3 Stability theory, Lyapunov function [P129]
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