B5.6 Nonlinear Systems

2. Nonlinear systems

Alain Goriely 2018

Mathematical Institute, University of Oxford

- 1. Nonlinear systems
- 1.1 Existence and uniqueness
- 1.2 Flows, asymptotic sets, and invariant sets
- 1.3 Stability
- 1.4 Lyapunov functions

What we learned from Section 1.

- Solutions of linear autonomous system x
 = Ax are given by the matrix exponential e^{tA}.
- The matrix exponential defines a linear flow (mapping sets to sets in ⁿ).
- The set of eigenvalues of A can be used to define three subspaces based on their real part.
- The stable (resp. unstable, centre) linear subspace is the span of eigenvectors whose eigenvalues have negative (resp. positive, null) real parts.
- These linear subspaces are invariant spaces (initial conditions in an invariant set define solutions that remain for all time within that set).
- The solution of linear maps can be classified in a similar way.

2. Nonlinear systems

2. Nonlinear systems

2.1 Existence and uniqueness

Consider the nonlinear, autonomous, first-order system of differential equations:

$$\begin{cases} \dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}) \\ \mathbf{x}(t_0) = \mathbf{x}_0 \end{cases}$$
(1)

where $\mathbf{f} : E \subset \mathbb{R}^n \to \mathbb{R}^n$ is the vector field. In general, this equation cannot be solved. **Problems**:

What are the possible solutions (from a geometric point of view)? What is the stability of such solutions (behaviour of nearby solutions)? **Theorem 2.1** Let $f \in C^1(E)$ and $\mathbf{x}_0 \in E$, then there exists c > 0 s.t.

$$\begin{cases} \dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}) \\ \mathbf{x}(t_0) = \mathbf{x}_0 \end{cases}$$
(2)

has one and only one solution $\mathbf{x}(t)$ on [-c, c].

NB1: For the rest of this course, unless otherwise specified, we will assume that the maximum interval of existence is \mathbb{R} (we are interested in global behaviour).

NB2: The general conditions guaranteeing the existence of global solutions are not obvious.

2. Nonlinear systems

2.2 Flows, asymptotic sets, and invariant sets

Flows

The space $E \subset \mathbb{R}^n$ on which the solutions live is called the *phase space*. We assume that the maximum interval of existence is \mathbb{R} (i.e. solutions are defined for all time for all initial conditions). An *orbit* based on \mathbf{x}_0 is the curve $\Gamma_{\mathbf{x}_0} \subset E$ defined by

$$\Gamma_{\mathbf{x}_0} = \{\mathbf{x}(t) \in \mathbb{R}^n; t \in \mathbb{R}, \mathbf{x}(t_0) = \mathbf{x}_0, \dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})\}$$
(3)

The *flow* is the map $\varphi_t : E \to E$ such that

$$\varphi_t(\mathbf{x}_0) = \mathbf{x}(t, \mathbf{x}_0) \qquad \forall \ \mathbf{x}_0 \in \mathcal{K} \subset E \tag{4}$$

Flows

Properties of flows:

- $\varphi_0 = \mathbf{1}$ (the identity map)
- $\varphi_{t+s}(\mathbf{x}) = \varphi_t(\varphi_s(\mathbf{x})) = \varphi_s(\varphi_t(\mathbf{x})), \quad \forall \ \mathbf{x} \in \mathbb{R}^n$
- Let U be a neighborhood of \mathbf{x}_0 and $V = \varphi_t(U)$, then

$$\varphi_{-t}(\varphi_t(\mathbf{x})) = \mathbf{x}, \qquad \forall \ \mathbf{x} \in U \tag{5}$$

$$\varphi_t(\varphi_{-t}(\mathbf{y})) = \mathbf{y}, \qquad \forall \ \mathbf{y} \in V$$
 (6)

Invariant sets

Definition 2.2

Consider a vector field $\mathbf{f} \in C^1(E)$, defining a flow $\varphi_t : E \to E$. Then $S \subset E$ is an *invariant set* of such that φ_t if

$$\varphi_t(S) \subset S \quad \forall \ t \in \mathbb{R}.$$
(7)

Example:

$$\begin{cases} \dot{x} = -x \\ \dot{y} = y + x^2 \end{cases}$$
(8)

Definition 2.3

A point $\mathbf{p} \in E$ is an ω -limit point of φ_t if there exists a sequence of time $t_1 < t_2 < \ldots < t_n$, with $t_i \to \infty$ as $i \to \infty$ such that

$$\lim_{i\to\infty}\varphi_{t_i}(\mathbf{x})=\mathbf{p}.$$
(9)

Similarly, a point $\mathbf{p} \in E$ is an α -limit point of φ_t if there exists a sequence of time $t_1 > t_2 > \ldots > t_n$, with $t_i \to -\infty$ as $i \to \infty$ such that

$$\lim_{i\to-\infty}\varphi_{t_i}(\mathbf{x})=\mathbf{p}.$$
 (10)

Asymptotic sets

Example:

$$\begin{cases} \dot{x} = -y + x(1 - x^2 - y^2) \\ \dot{y} = x + y(1 - x^2 - y^2) \end{cases}$$
(11)

Definition 2.4

An attracting set is a closed invariant set A such that there exists a neighborhood U of A with the properties

$$\begin{cases} \varphi_t(\mathbf{x}) \in U & \forall \ t \ge 0\\ \varphi_t(\mathbf{x}) \xrightarrow[t \to \infty]{} A & \forall \ \mathbf{x} \in U \end{cases}$$
(12)

Domain of attraction

For a given attracting set A, with neighborhood U as above, the *domain* of attraction is the set of all initial conditions that have A as ω -limit set. That is

$$D(A) = \bigcup_{t \le 0} \varphi_t(U) \tag{13}$$

Attracting sets

Example:

$$\dot{x} = \begin{cases} -x^4 \sin(\pi/x) & x \neq 0\\ 0 & x = 0 \end{cases}$$
(14)

2. Nonlinear systems

2.3 Stability

We consider a system $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$ with $\mathbf{x} \in E \subset \mathbb{R}^n$, $f \in C^1(E)$. The simplest solutions are fixed points.

A fixed point \mathbf{x}_0 is a constant solution of the system, that is $\mathbf{f}(\mathbf{x}_0) = \mathbf{0}$.

We want a definition of the intuitive idea of stability:

"solutions close to a given invariant set remains close to that set for all time."

Lyapunov stability

Let $B_r(\mathbf{x})$ denote a closed ball of radius r around \mathbf{x} (the set of points with a distance less than r from \mathbf{x}).

Definition 2.5

The fixed point \mathbf{x}_0 is *(Lyapunov) stable* if $\forall \epsilon > 0$, $\exists \delta > 0$ such that $\forall \mathbf{x} \in B_{\delta}(\mathbf{x}_0)$ and $t \ge 0$, we have $\varphi_t(\mathbf{x}) \in B_{\epsilon}(\mathbf{x}_0)$.

Lyapunov stability

Example:

$$\begin{cases} \dot{x} = y \\ \dot{y} = -4x \end{cases}$$
(15)

Asymptotic stability

A stronger notion of stability:

Definition 2.6

The fixed point \mathbf{x}_0 is asymptotically stable if it is Lyapunov stable and $\exists \ \delta > 0$ such that $\forall \ \mathbf{x} \in B_{\delta}(\mathbf{x}_0)$ we have $\varphi_t(\mathbf{x}) \xrightarrow[t \to \infty]{} \mathbf{x}_0$.

Asymptotic stability

Example:

$$\begin{cases} \dot{r} = r(1-r) \\ \dot{\theta} = \sin^2 \frac{\theta}{2} \end{cases}$$
(16)

For linear systems $\dot{\mathbf{x}} = A\mathbf{x}$, $\mathbf{x}_0 = \mathbf{0}$ is always a fixed point.

If A is a semi-simple matrix, we have

- $\mathbf{x} = \mathbf{0}$ is asymptotically stable if $\operatorname{Re}(\lambda) < 0$, $\forall \lambda \in \operatorname{Spec}(A)$.
- $\mathbf{x} = \mathbf{0}$ is stable if $\operatorname{Re}(\lambda) \leq 0$, $\forall \lambda \in \operatorname{Spec}(A)$.

NB: The first property remains true in the general case, but not the second one (can you find a counter-example?).

2. Nonlinear systems

2.4 Lyapunov functions

We consider a system $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$ with $\mathbf{x} \in E \subset \mathbb{R}^n$, $\mathbf{f} \in C^1(E)$. Assume that this system has a fixed point \mathbf{x}_0 (so that $\mathbf{f}(\mathbf{x}_0) = \mathbf{0}$).

Definition 2.7

A function $V: W \subset E \to R$, $V \in C^1(W)$ is a Lyapunov function if there exists a neighborhood W of \mathbf{x}_0 on which it satisfies

1.
$$V(\mathbf{x}_0) = 0$$
, and $V(\mathbf{x}) > 0 \ \forall \ \mathbf{x} \in W \setminus \{x_0\}$.
2. $\dot{V}(\mathbf{x}) \le 0 \ \forall \ \mathbf{x} \in W \setminus \{x_0\}$.

Lyapunov functions

If a Lyapunov function is known, the following stability results hold:

Theorem 2.8

- 1. If V is Lyapunov function of f in a neighborhood of $x_0,$ then x_0 is stable.
- 2. If, in addition, $\dot{V}(\mathbf{x}) < 0 \ \forall \ \mathbf{x} \in W \setminus \{x_0\}$, then \mathbf{x}_0 is asymptotically stable.

Proof (Perko, p.131):

Lyapunov functions

Example: The damped nonlinear spring

$$m\ddot{x} + k(x + x^3) + \alpha \dot{x} = 0, \qquad \alpha > 0.$$
 (17)

Extra material from the following books

- [S] Strogatz, Nonlinear Dynamics and Chaos with Applications to Physics, Biology, Chemistry and Engineering (Westview Press, 2000).
- [D] Drazin, Nonlinear Systems (Cambridge University Press, Cambridge, 1992).
- [P] Perko, Differential Equations and Dynamical Systems (Second edition, Springer, 1996).
 - 2 Nonlinear Systems
 - 2.1 Fundamental theorems. [P70]
 - 2.2 Flow, asymptotic behaviour. [P87,95]
 - 2.3 Stability theory, Lyapunov function [P129]