QR Factorisation

Lemma: Given any two vectors $u, v \in \mathbb{R}^{n}$ with $\|u\|_{2}=\|v\|_{2} \exists w \in \mathbb{R}^{n}$ s.t. $H(w) u=v$.

Proof: take $w=r(u-v)$, any $r \in \mathbb{R} \backslash\{0\}$, so

$$
\begin{aligned}
w^{T} w & =r^{2}\left(u^{T} u-2 v^{T} u+v^{T} v\right) \\
& =2 r^{2}\left(u^{T} u-v^{T} u\right) \\
& =2 r^{2}(u-v)^{T} u=2 r w^{T} u
\end{aligned} \quad \text { as }\|u\|=\|v\|
$$

so $w^{T} u=(1 / 2 r) w^{T} w$. Thus

$$
\left(I-\frac{2}{w^{T} w} w w^{T}\right) u=u-\frac{2}{w^{T} w} \frac{w^{T} w}{2 r} r(u-v)=v
$$

In particular
$v=\left(\|u\|_{2}, 0, \ldots, 0\right)=H\left(r\left[u_{1}-\|u\|_{2}, u_{2}, \ldots, u_{n}\right]\right) u$.

Can be applied to matrices: if u is $1^{\text {st }}$ column of A : write $H(w)=H_{1}, \alpha=\alpha_{1}$
$\boldsymbol{H}_{1} \boldsymbol{A}=\left[\begin{array}{c|c}\alpha_{1} & \times \ldots \times \\ \hline 0 & \\ \vdots & B \\ 0 & \end{array}\right]$ and if $\boldsymbol{H}(\hat{w}) \boldsymbol{B}=\left[\begin{array}{c|c}\alpha_{2} & \times \ldots \times \\ \hline 0 & \\ \vdots & C \\ 0 & \end{array}\right]$
then

$$
H_{2}=\left[\begin{array}{cc}
1 & 0 \\
0 & H(\hat{w})
\end{array}\right]=H([0, \hat{w}])
$$

satisfies

$$
\left[\begin{array}{c|c|c}
\alpha_{1} & \times & \times \ldots \times \\
\hline 0 & \alpha_{2} & \times \ldots \times \times \\
\hline 0 & 0 & \\
\vdots & \vdots & C \\
0 & 0 &
\end{array}\right]
$$

continuing inductively for n steps if $\boldsymbol{m}>\boldsymbol{n}$ gives
$H_{n} \ldots H_{2} H_{1} A=\left[\begin{array}{ccc}\alpha_{1} & & * \\ & \ddots & \\ 0 & & \alpha_{n}\end{array}\right]=R \in \mathbb{R}^{m \times n}$
or for $m-1$ steps if $m \leq n$ gives
$H_{m-1} \ldots H_{2} H_{1} A=\left[\begin{array}{ccc}\alpha_{1} & & * \\ & \ddots & \\ 0 & & \alpha_{m}\end{array}\right]=R \in \mathbb{R}^{m \times n}$
Writing
$Q=\left(H_{n} \ldots H_{2} H_{1}\right)^{-1}=H_{1}^{T} H_{2}^{T} \ldots H_{n}^{T}=H_{1} H_{2} \ldots H_{n}$ as Householder matrices are symmetric gives
Theorem: Given any $\boldsymbol{A} \in \mathbb{R}^{m \times n}, \exists$ an orthogonal matrix $Q \in \mathbb{R}^{m \times m}$ and an upper triangular matrix $R \in \mathbb{R}^{m \times n}$ s.t. $\boldsymbol{A}=\boldsymbol{Q R}$
Proof: Just take $\boldsymbol{H}_{\boldsymbol{i}}=\boldsymbol{I}$ if $\boldsymbol{i}^{\boldsymbol{t h}}$ column is already zero below diagonal and the above procedure can not break down.

Remark: If $A=\left[\begin{array}{cccc}\mid & \mid & & \mid \\ a_{1} & a_{2} & \ldots & a_{n} \\ \mid & \mid & & \mid\end{array}\right]$ and $A=Q R$
then $Q=\left[\begin{array}{cccc}\mid & \mid & & \mid \\ \boldsymbol{q}_{1} & \boldsymbol{q}_{2} & \ldots & \boldsymbol{q}_{n} \\ \mid & \mid & & \mid\end{array}\right]$
and $\left\{q_{1}, q_{2}, \ldots, q_{n}\right\}$ is an orthonormal basis for $\operatorname{span}\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ if this set is linearly independent.
$\Rightarrow \boldsymbol{Q}$ factorization essentially same as Gramm-Schmidt.
Exercise: What happens to $Q R$ if $\left\{a_{1}, \ldots, a_{n-1}\right\}$ is linearly independent with $a_{n} \in \operatorname{span}\left\{a_{1}, \ldots, a_{n-1}\right\}$?

Example: given data y_{1}, \ldots, y_{m} at points x_{1}, \ldots, x_{m} find parameters in a model e.g. linear model $y=a x+b$ (parameters a, b) such that
$\sum\left[y_{i}-\left(a x_{i}+b\right)\right]^{2}$ is min (regression)
same as

$$
\min _{a, b}\left\|\left[\begin{array}{cc}
x_{1} & 1 \\
x_{2} & 1 \\
\vdots & \\
x_{m} & 1
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]-\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right]\right\|_{2}
$$

QR Algorithm for eigenvalues (eig in matlab)

Set $\boldsymbol{A}=\boldsymbol{A}_{1}$
for $k=1,2, \ldots\left\{\begin{array}{rll}\text { factor } & A_{k}=Q_{k} R_{k} & \text { (QR factorisation) } \\ \text { set } & A_{k+1}=R_{k} Q_{k} & \text { (matrix multiply) }\end{array}\right.$
Lemma: $\left\{A_{k}\right\}$ are all similar matrices and so have same eigenvalues
Proof: $A_{k+1}=R_{k} Q_{k}=Q_{k}^{T} Q_{k} R_{k} Q_{k}=Q_{k}^{-1}\left(A_{k}\right) Q_{k} \square$
Fact: $\boldsymbol{A}_{\boldsymbol{k}} \rightarrow$ upper triangular matrix as $\boldsymbol{k} \rightarrow \infty$.
So for large $k, \operatorname{diag}\left(A_{k}\right)$ are good approximations to the eigenvalues.

When complex conjugate eigenvalues arise, 2×2 real diagonal blocks remain in $\boldsymbol{A}_{\boldsymbol{k}}$ which each have a pair of the complex conjugate eigenvalues.

Notes:

1. Speed of convergence depends on the size of gaps between the eigenvalues: more well separated \Rightarrow faster convergence.
2. Convergence is accelerated by the use of shifts (see problem sheet)
3. An orthogonal similarity reduction to Hessenberg form is always employed as a $1^{\text {st }}$ step before apply the QR algorithm with shifts.

Reduction to Hessenberg form

Want a similarity transform $H_{p} \ldots H_{2} H_{1} A H_{1} H_{2} \ldots H_{p}$ where H_{i} are Householder matrices but if

$$
\boldsymbol{H}_{1} \boldsymbol{A}=\left[\begin{array}{c|c}
\times & \times \cdots \times \times \\
\hline 0 & \times \cdots \times \times \\
\vdots & \vdots \vdots \\
0 & \times \cdots \times
\end{array}\right]
$$

then $H_{1} A H_{1}$ is full i.e. postmultiplication destroys zeros created (otherwise a direct method for eigenvalues!)

So instead let

$$
H_{1}=\left[\begin{array}{c|c}
1 & 0 \cdots 0 \\
\hline 0 & \\
\vdots & K_{1} \\
0 & \\
1 & n-1
\end{array}\right] \begin{gathered}
1 \\
n-1
\end{gathered} \quad, A=\left[\begin{array}{c|c}
a_{1} & v_{1}^{T} \\
\hline u_{1} & B_{1}
\end{array}\right] \text { then }
$$

$H_{1} A_{1} H_{1}=$

$$
\left[\begin{array}{cc}
a_{1} & v_{1}^{T} \\
K_{1} u_{1} & K_{1} B_{1}
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & K_{1}
\end{array}\right]=\left[\begin{array}{cc}
a_{1} & v_{1}^{T} K_{1} \\
K_{1} u_{1} & K_{1} B_{1} K_{1}
\end{array}\right]
$$

and choosing K_{1} to be a Householder matrix satisfying $K_{1} u_{1}=\left(\alpha_{1}, 0, \ldots, 0\right)^{T}$ we have

$$
A^{(2)}=H_{1} A H_{1}=\left[\begin{array}{ccc}
a_{1} & b_{1} & \hat{v}_{2}^{T} \\
\alpha_{1} & a_{2} & v_{2}^{T} \\
O & u_{2} & B_{2} \\
1 & 1 & n-2
\end{array} \begin{array}{c}
1 \\
1 \\
n-2
\end{array}\right.
$$

inductively (similar to before)

$$
A^{(n-1)}=H_{n-2} \ldots H_{2} H_{1} A H_{1} H_{2} \ldots H_{n-2}
$$

is in Hessenberg form
QR factorization can now be achieved by $n-1$ Givens rotation matrices (see problem sheet) and the Hessenberg form is preserved by the QR algorithm ie. all of the $\boldsymbol{A}_{\boldsymbol{k}}$'s are upper Hessenberg.

