Krylov Subspace Methods

$$
A \in \mathbb{R}^{n \times n}, r \in \mathbb{R}^{n}
$$

If \boldsymbol{A} sparse or specially structured, so easy to compute
i.e.

$$
\begin{aligned}
& A r, A(A r), \ldots \\
& r, A r, A^{2} r, \ldots
\end{aligned}
$$

are easy to compute, then Krylov subspaces

$$
\mathcal{K}_{k}(A, r)=\operatorname{span}\left\{r, A r, \ldots, A^{k-1} r\right\}
$$

are convenient nested vector subspaces (exercise: check).
Note

$$
y \in \mathcal{K}_{k}(A, r) \Leftrightarrow y=q_{k-1}(A) r_{0}
$$

where $\boldsymbol{q}_{k-1} \in \Pi_{k-1}$ (real polynomials of degree $\leq k-1$.)

If solving $A x=b,(A$ invertible $)$, guess $x_{0}, r_{0}=b-A x_{0}$, then look for

$$
\begin{gathered}
x_{k} \in x_{0}+\mathcal{K}_{k}\left(A, r_{0}\right) \quad, r_{k}=b-A x_{k}, k=1,2, \ldots \\
x_{k} \in x_{0}+\mathcal{K}_{k}\left(A, r_{0}\right) \\
\Leftrightarrow \quad x_{k}=x_{0}+q_{k-1}(A) r_{0} \\
\Leftrightarrow \quad x-x_{k}=x-x_{0}-q_{k-1}(A) r_{0} \\
\Leftrightarrow \underbrace{A\left(x-x_{k}\right)}_{\substack{b-A x_{k} \\
\|}}=\underbrace{A\left(x-x_{0}\right)}_{r_{0}}-A q_{k-1}(A) r_{0} \\
r_{k} \\
\text { i.e. } \quad r_{k}=p_{k}(A) r_{0} \quad, p_{k} \in \Pi_{k}, p_{k}(0)=1 \\
\Leftrightarrow A^{-1} r_{k}=p_{k}(A) A^{-1} r_{0} \text { i.e. } e_{k}=p_{k}(A) e_{0}, e_{k}=x-x_{k}
\end{gathered}
$$

Krylov Subspace Methods

Most common Krylov subspace methods are characterised by

$$
r_{k}=p_{k}(A) r_{0} \quad, p_{k} \in \Pi_{k}, p_{k}(0)=1
$$

AND some optimality condition
e.g. $\left\|r_{k}\right\|_{2}$ should be minimal over $x_{k} \in x_{0}+\mathcal{K}_{k}\left(A, r_{0}\right)$.

$$
\mathcal{K}_{k}\left(A, r_{0}\right)=\operatorname{span}\left\{r_{0}, A r_{0}, \ldots, A^{k-1} r_{0}\right\}
$$

First step is however to compute a good basis for $\mathcal{K}_{k}\left(A, r_{0}\right)$ since $\boldsymbol{A}^{k} r_{0}$ tends to point in a single direction:

If $r_{0}=\sum \alpha_{i} z_{i}, A z_{i}=\lambda_{i} z_{i}$ and if $\left|\lambda_{1}\right|>\left|\lambda_{j}\right|, j \neq 1$ then

$$
\begin{aligned}
A^{k} r_{0} & =\sum_{i=1}^{n} \alpha_{i} A^{k} z_{i}=\sum_{i=1}^{n} \alpha_{i} \lambda_{i}^{k} z_{i} \\
& =\lambda_{1}^{k}[\alpha_{1} z_{1}+\sum_{i=2}^{n} \alpha_{i} \underbrace{\left(\frac{\lambda_{i}}{\lambda_{1}}\right)^{k}}_{\rightarrow 0 \text { as } k \rightarrow \infty} z_{i}]
\end{aligned}
$$

Note also $\left\|A^{k} r_{0}\right\| \rightarrow 0$ or ∞ depending on whether $\left|\lambda_{1}\right|<1$ or $\left|\lambda_{1}\right|>1$

Arnoldi's method:

guess $x_{0}, r_{0}=b-A x_{0}, v_{1}=r_{0} /\left\|r_{0}\right\|_{2}$ for $l=1,2, \ldots$

$$
\begin{aligned}
& w=\boldsymbol{A} v_{l} \\
& \quad \text { for } j=1, \ldots, l \\
& \quad h_{j l}=v_{j}^{T} w \\
& \quad w=w-h_{j l} v_{j}
\end{aligned}
$$

$$
\begin{aligned}
& \boldsymbol{h}_{l+1, l}=\|w\|_{2} \\
& v_{l+1}=w / h_{l+1, l}
\end{aligned}
$$

end
is a way of generating an orthonormal basis $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ for $\mathcal{K}_{k}\left(A, r_{0}\right)$

In matrix form we can write Arnoldi as
$A V_{k}=V_{k} H_{k}+h_{k+1, k}\left[\begin{array}{cccc}\mid & \mid & & \mid \\ 0 & 0 & \cdots & v_{k+1} \\ \mid & \mid & & \mid\end{array}\right]=V_{k+1} \hat{H}_{k}$
where

$$
\begin{gathered}
V_{k}=\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
v_{1} & v_{2} & \cdots & v_{k} \\
\mid & \mid & & \mid
\end{array}\right], \text { has orthogonal columns, } \\
\boldsymbol{H}_{k}=\left[\begin{array}{ccccc}
h_{11} & h_{12} & \cdots & \cdots & h_{1 k} \\
h_{21} & h_{22} & \cdots & \cdots & h_{2 k} \\
0 & h_{32} & \ddots & & \vdots \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & h_{k, k-1} & h_{k k}
\end{array}\right] \in \mathbb{R}^{k \times k}
\end{gathered}
$$

is upper Hessenberg

$$
\text { and } \begin{aligned}
\hat{H}_{k} & =\left[\begin{array}{ccccc}
h_{11} & h_{12} & \cdots & \cdots & h_{1 k} \\
h_{21} & h_{22} & \cdots & \cdots & h_{2 k} \\
0 & h_{32} & \ddots & & \vdots \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & h_{k, k-1} & h_{k k} \\
0 & \cdots & 0 & 0 & h_{k+1, k}
\end{array}\right] \in \mathbb{R}^{(k+1) \times k} \\
& =\left[\begin{array}{ccccc}
& H_{k} & \\
0 & \cdots & 0 & 0 & h_{k+1, k}
\end{array}\right] \in \mathbb{R}^{(k+1) \times k}
\end{aligned}
$$

Note: $V_{k} \in \mathbb{R}^{n \times k}$ has orthogonal columns
$\Rightarrow V_{k}^{T} V_{k}=I \in \mathbb{R}^{k \times k}$ so
$A V_{k}=V_{k} H_{k}+h_{k+1, k}\left[\begin{array}{cccc}\mid & \mid & & \mid \\ 0 & 0 & \cdots & v_{k+1} \\ \mid & \mid & & \mid\end{array}\right] \Rightarrow V_{k}^{T} A V_{k}=H_{k}$
(Exercise: check)

Now

$$
x_{k} \in x_{0}+\mathcal{K}_{k}\left(A, r_{0}\right) \Leftrightarrow x_{k}=x_{0}+V_{k} y
$$

for some $\boldsymbol{y} \in \mathbb{R}^{k}$ since $\left\{v_{1} \ldots v_{k}\right\}$ is an orthonormal basis for $\mathcal{K}_{k}\left(A, r_{0}\right)$. Also

$$
\begin{aligned}
x_{k}=x_{0}+V_{k} y \Leftrightarrow \quad x-x_{k} & =x-x_{0}-V_{k} y \\
A\left(x-x_{k}\right) & =A\left(x-x_{0}\right)-A V_{k} y \\
\text { i.e. } \quad r_{k} & =r_{0}-A V_{k} y
\end{aligned}
$$

so $\left\|r_{k}\right\|_{2}$ is minimal $\Leftrightarrow y \in \mathbb{R}^{k}$ is such that $\left\|r_{0}-A V_{k} y\right\|_{2}$ is minimal.
$\left\|r_{k}\right\|_{2}$ is minimal $\Leftrightarrow y \in \mathbb{R}^{k}$ is such that $\left\|r_{0}-A V_{k} y\right\|_{2}$ is minimal.

But $r_{0}=\left\|r_{0}\right\| v_{1}=\left\|r_{0}\right\| V_{k} e_{1}=\left\|r_{0}\right\| V_{k+1} e_{1}$, $e_{1}^{T}=[1,0, \ldots, 0]$
and by above $\boldsymbol{A} \boldsymbol{V}_{\boldsymbol{k}}=\boldsymbol{V}_{\boldsymbol{k + 1}} \hat{\boldsymbol{H}}_{\boldsymbol{k}}$ so

$$
\left\|r_{k}\right\|_{2} \text { is } \min \Leftrightarrow\left\|V_{k+1}\left(\left\|r_{0}\right\| e_{1}-\hat{H}_{k} y\right)\right\|_{2} \text { is } \min
$$

but $V_{k+1}^{T} V_{k+1}=I \in \mathbb{R}^{(k+1) \times(k+1)}$ as $\left\{v_{1}, \ldots, v_{k+1}\right\}$
are orthonormal
so required vector y is that which minimises the linear least squares problem

$$
\left\|\left\|r_{0}\right\| e_{1}-\hat{\boldsymbol{H}}_{k} y\right\|_{2}
$$

Required vector y is that which minimises the linear least squares problem

$$
\left\|\left\|r_{0}\right\| e_{1}-\hat{H}_{k} y\right\|_{2}
$$

\Rightarrow need QR factorisation of the rectangular Hessenberg matrix $\hat{\boldsymbol{H}}_{k} \in \mathbb{R}^{k+1 \times k}$
which can be achieved by one additional Givens rotation for each \boldsymbol{k} since $\hat{\boldsymbol{H}}_{\boldsymbol{k}}$ is built up by appending the last column for each k.
(see Exercises)

This is the basis of the GMRES algorithm (Generalised Minimal Residual Method)
$x_{0}, r_{0}=b-A x_{0}, v_{1}=r_{0} /\left\|r_{0}\right\|$
For $k=1,2, \ldots$
do step k of the Arnoldi algorithm
(\Rightarrow have $\boldsymbol{v}_{1}, \boldsymbol{v}_{2} \ldots \underbrace{\boldsymbol{v}_{k+1}}_{\text {new }}$ and $\underbrace{\hat{\boldsymbol{H}}_{\boldsymbol{k}}}_{\text {last column new }})$
solve the Hessenberg linear least squares problem
$\boldsymbol{y}=\arg \min \| \| r_{0}\left\|e_{1}-\hat{\boldsymbol{H}}_{\boldsymbol{k}} \boldsymbol{y}\right\|_{2}$

$$
x_{k}=x_{0}+V_{k} y
$$

end

As before the Hessenberg least squares problem is solved by QR factorisation of $\hat{\boldsymbol{H}}_{k}$ using $k+1$ Givens rotations, but since $\hat{\boldsymbol{H}}_{k}$ is the same as $\hat{\boldsymbol{H}}_{k-1}$ except for one additional row and column this can be implemented as only 1 Givens rotation for each k. (see exercises)
Notes:

1. $\left\|r_{k}\right\|_{2}$ is the linear least squares error in the Hessenberg least squares problem.
2. x_{k} only needs to be calculated if $\left\|r_{k}\right\|$ satisfies the stopping criterion $\left\|r_{k}\right\| \leq$ TOL.
3. work at $k^{\text {th }}$ GMRES iteration is $O\left(k^{2}\right)$ for the least squares solution +1 matrix vector product + vector operations. So for a sparse matrix with $O(1)$ entries per row work $\simeq O\left(k^{2} n\right) \Rightarrow$ cheap method if only relatively few iterations (\boldsymbol{k}) are needed.

Notes (continued);
4. GMRES gets expensive in storage of $v_{1} \ldots v_{k}$ and the orthogonalisation computation if k gets too large, so sometimes is restarted: do a fixed number l of GMRES iterations then reset $r_{0} \leftarrow r_{l}$ and repeat. This is GMRES (l) (which is not guaranteed to work!). Unrestarted GMRES is often called FULL GMRES.
5. If $A \in \mathbb{R}^{n \times n}$ then if GMRES does not stop before n steps, $\left\{v_{1}, \ldots, v_{n}\right\}$ is an orthonormal basis for \mathbb{R}^{n} $\Rightarrow x_{k}=x$ because $\left\|r_{k}\right\|_{2}$ is minimimal for $x_{k} \in x_{0}+\mathcal{K}_{n}\left(A, r_{0}\right)$ ie. for $x_{k} \in \mathbb{R}^{n}$.
6. Also if continues for n steps $A V_{n}=V_{n} H_{n}$, ie. $A=V_{n} H_{n} V_{n}^{T}, V_{n}, H_{n} \in \mathbb{R}^{n \times n}$. So A has been reduced by orthogonal similarity transform to Hessenberg form.

Convergence of GMRES

$$
r_{k}=p_{k}(A) r_{0} \text { with }\left\|r_{k}\right\| \text { minimal }
$$

\Rightarrow GMRES implicitly finds $p_{k} \in \Pi_{k}, p_{k}(0)=1$ such that
$\left\|p_{k}(A) r_{0}\right\|_{2}$ is minimal.
If \boldsymbol{A} is diagonalisable

$$
A=X \Lambda X^{-1} \Rightarrow p_{k}(A)=X p_{k}(\Lambda) X^{-1}
$$

$$
A=X \Lambda X^{-1} \Rightarrow p_{k}(A)=X p_{k}(\Lambda) X^{-1}
$$

implies

$$
\begin{aligned}
\left\|r_{k}\right\|_{2} & =\left\|p_{k}(A) r_{0}\right\|_{2}=\left\|X p_{k}(\Lambda) X^{-1} r_{0}\right\| \\
& \leq \min _{p \in \Pi_{k}, p(0)=1}\|X\|_{2}\left\|X^{-1}\right\|_{2}\|p(\Lambda)\|_{2}\left\|r_{0}\right\|_{2}
\end{aligned}
$$

or similar to before

$$
\left.\frac{\left\|r_{k}\right\|_{2}}{\left\|r_{0}\right\|_{2}} \leq\|X\|_{2}\left\|X^{-1}\right\|_{2} \underset{p \in \Pi_{k}, p(0)=1 \underset{\substack{\lambda_{j} \\ \text { eigenvalues of } A}}{\min }\left|p\left(\lambda_{j}\right)\right|}{\max } \right\rvert\,
$$

Comments:

1. $\|X\|_{2}\left\|X^{-1}\right\|_{2}=\kappa(X)$ is a number independent of k : if it is large $\Rightarrow(\star)$ is not very useful convergence estimate. If it is of moderate size (not known in practice!) then fast convergence if $\exists p \in \Pi_{k}, p(0)=1$ such that $p\left(\lambda_{j}\right)$ small for all eigenvalues λ_{j} of A.
2. Other GMRES convergence bounds exist, but so far non is descriptive over a range of problems.
3. the expense of GMRES for k large has led to development of algorithms for non-symmetric matrices with fixed work per iteration, but these necessarily must loose any optimality property in general.

However: If $\boldsymbol{A}=\boldsymbol{A}^{\boldsymbol{T}}$ then GMRES has fixed work per step: To see this we have

$$
V_{k}^{T} A V_{k}=H_{k}
$$

but $A=A^{T}$ so LHS is symmetric $\Rightarrow H_{k}$ is symmetric and Hessenberg \Rightarrow tridiagonal
i.e. Arnoldi's algorithm would calculate lots of zeros in this case!

In fact the symmetric Lanczos algorithm is used:

