## C5.7 Topics in Fluid Mechanics

Michaelmas Term 2017

## Problem Sheet 1

1. By taking the scalar product with an arbitrary constant vector $\mathbf{k}$, use Stokes' Theorem to show that

$$
\left[\int_{C} \mathbf{f} \wedge \mathbf{t} \mathrm{~d} s\right]_{i}=\int_{S}\left[n_{i}(\nabla \cdot \mathbf{f})-n_{j} \partial_{i} f_{j}\right] \mathrm{d} S,
$$

for any vector function $\mathbf{f}$, where $\mathbf{t}$ is the unit tangent to a curve $C$ (which bounds the surface $S$ ), the vector $\mathbf{n}$ is the unit normal to $S$ and we use the summation convention.
Let $\boldsymbol{\nu}=\mathbf{t} \wedge \mathbf{n}$ and choose $\mathbf{f}=\gamma \mathbf{n}$, defined off the surface by the extension that is independent of position in the normal direction $\mathbf{n}$. Show that

$$
\int_{C} \gamma \boldsymbol{\nu} \mathrm{~d} s=\int_{S}[\nabla \gamma-\gamma(\nabla \cdot \mathbf{n}) \mathbf{n}] \mathrm{d} S .
$$

[You may need the standard identities

$$
\begin{aligned}
& (\mathbf{f} \wedge \mathbf{k}) \cdot \mathbf{t}=-\mathbf{k} \cdot(\mathbf{f} \wedge \mathbf{t}), \\
& \epsilon_{i j k} \epsilon_{l m k}=\delta_{i l} \delta_{j m}-\delta_{i m} \delta_{j l} .
\end{aligned}
$$

]
2. Recall the Laplace-Young equation governing the shape $z=h(x)$ of a meniscus near a vertical, planar wall

$$
\ell_{c}^{2} \frac{h_{x x}}{\left(1+h_{x}^{2}\right)^{3 / 2}}=h .
$$

Integrating the full Laplace-Young equation once (without making an assumption of shallow slopes), show that the rise height of the meniscus on the wall, $h_{0}$, is given in terms of the contact angle of the liquid $\theta$ by

$$
h_{0}= \pm \ell_{c}[2(1-\sin \theta)]^{1 / 2}
$$

and discuss when each of the $\pm$ branches of the result are appropriate.
Show that the total area displaced by the meniscus is given by

$$
A=\int_{0}^{\infty} h \mathrm{~d} x=\ell_{c}^{2} \cos \theta
$$

and comment on this result in the light of the generalized Archimedes' principle discussed in lecture 3.
3. With $r, \phi, z$ denoting cylindrical polar coordinates, fluid occupies the domain

$$
\{(r, \phi, z) \mid 0<r<\infty, \quad \phi \in[-\alpha, \alpha], \quad z \in[0, h(r, \phi)]\}
$$

where $h(r, \phi)>0$ denotes the height of the free surface above the $(x, y)$ plane.
The boundary at $z=0$ is rigid as are the boundaries at $\phi= \pm \alpha$, while the boundary at $z=h(r, \phi)$ is a static free surface, with contact lines at $z=h(r, \pm \alpha)$.

Sketch the domain and show that the linearised Laplace-Young equation enforces the equation

$$
h=\ell_{c}^{2} \nabla^{2} h,
$$

for the region

$$
\{(r, \phi) \mid 0<r<\infty, \quad \phi \in[-\alpha, \alpha]\},
$$

where the constant $\ell_{c}$ is to be determined.
Show that the boundary conditions are

$$
\frac{1}{r} h_{\phi}(\alpha)=\cot \theta, \quad \frac{1}{r} h_{\phi}(-\alpha)=-\cot \theta
$$

where $\theta$ is the contact angle between the air-fluid interface and the rigid boundary at $\phi= \pm \alpha$.
Explain why one must assume that $|\pi / 2-\theta| \ll 1$ for self consistency.
When $\alpha=\pi / 4$ show that the unique solution is

$$
h=\ell_{c} \cot \theta\left[e^{-r \sin (\pi / 4-\phi) / \ell_{c}}+e^{-r \sin (\phi+\pi / 4) / \ell_{c}}\right] .
$$

4. Consider a static blob of fluid lying underneath a horizontal plate, $z=0$, and occupying the region

$$
\left\{(x, z) \mid-x_{0} \leq x \leq x_{0}, \quad h(x) \leq z \leq 0\right\}
$$

The liquid has a contact angle $\theta \ll 1$. Assuming that $\left|h_{x}\right| \ll 1$, show that $h$ satisfies

$$
\ell_{c}^{2} h_{x x x}+h_{x}=0
$$

where $\ell_{c}$ is a constant, to be determined. Show that

$$
h(x)=\theta \ell_{c}\left[\cot \left(x_{0} / \ell_{c}\right)-\frac{\cos \left(x / \ell_{c}\right)}{\sin \left(x_{0} / \ell_{c}\right)}\right]
$$

and confirm that the assumption $\left|h_{x}\right| \ll 1$ is justified under certain circumstances, which you should state. Show that the cross sectional area of the drop, $A$, is given by

$$
\begin{equation*}
\frac{A}{2}=\theta \ell_{c}^{2}\left(1-\frac{x_{0}}{\ell_{c}} \cot \left(x_{0} / \ell_{c}\right)\right) \tag{1}
\end{equation*}
$$

Is there a maximum cross sectional area of fluid which can hang beneath the plate in this way? Does this accord with your physical intuition? If not, why not?

> Comments and corrections to Andreas Münch
> http://people.maths.ox.ac.uk/muench/

