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Update 20.11.2017: fixed the definition of paracompactness by insert-
ing ‘open’;

This document contains the (important) definitions, statements and proof
sketches for results which require a new idea. The other proofs should be
straightforward.

Concepts and results which should be known from a previous course are
typeset in a smaller size.

Throughout this document assume that X, Y, Z as well as X;,Y;, Z;,1 € [
are topological spaces and [ is some index set unless otherwise indicated.

1 Topological spaces, Bases, Subbases, Initial
Topology, Products

1.1 Definitions

A topology on a set X is a collection 7 of subsets of X containing the empty set, X that
is closed under taking finite intersections and arbitrary unions.

A topological space is a pair of (X, 7) such that 7 is a topology on X.

In a topological space (X, 7), elements of X are called points, elements of 7 are called
open sets, complements of elements of 7 are called closed sets and subsets of X that are
closed and open are called clopen.

For a subset A of a topological space X, the closure of A, A, is the smallest closed set
containing A and the interior of A, int (A), is the largest open set contained in A.

A function f: X — Y is continuous if and only if preimages of Y-open sets under f
are X-open.

If A C X, the subspace topology on A is {U N A: U open C X}.

A basis for a topology 7 on X is a collection B C 7 such that every open set is a union
of a subcollection B’ of B. If a basis has been fixed, its elements are called basic open sets.



X is metrizable if and only if there is a metric d on X such that {BZ(z): z € X,e > 0}
is a basis for X.

A space is second countable if and only if it has a countable basis.

A subbasis for a topology 7 on X is a collection & C 7 such that the set
of finite intersections of elements of § is a basis for 7. If a subbasis has been
fixed, its elements are called subbasic open sets.

Given a set and a collection F = {f;: X — Y;: i € I}the initial topology
with respect to F is the smallest (wrt C) topology on X such that each
fi € F is continuous.

The Tychonoff product [[,.; X; of topological spaces X;,i € I is the
topological space consisting of the Cartesian (set) product equipped with
the initial topology with respect to the projections.

1.2 Results

Lemma 1.1 (Recall). 1. If AC X, then A exists and equals

ﬂ{C:AQCClosed CX}t={zeX:VopenUs2UNA#0D}.

Sy

2. The closure operator A A satisfies 0 = 0, A= A, ACA AUB=AU
M; Ai € N; Ai. Dual results hold for the interior operator.

and

8. A function f: X =Y is continuous if and only if for every AC X, f (Z) C f(A).

4 IfBCACX then B- =B nA.

Theorem 1.2. 1. The set of topologies on a fized set X is a complete
lattice with respect to C, i.e. a partial order with arbitrary infima and
suprema. The infimum of a collection 7;,,9 € I of topologies on X
is (), 7. The greatest element of the complete lattice is the discrete
topology P (X)), the smallest element is the indiscrete topology {0, X }.

2. A collection B of subsets of X is the basis for a (necessarily unique)
topology 7 = {UB': B' C B} on X if and only if | UB = X and for
every By, By € B there is B' C B such that By N By = |JB'. Moreover,

T 15 the smallest topology on X containing B.

3. Every collection S is a subbasis for a (necessarily unique) topology T
on X with basis {(\F: F finite CS}. Moreover, T is the smallest
topology on X containing S.



1.3
Most

If Y is a topological space with a fized subbasis, a function f: X —Y
15 continuous if and only if preimages of subbasic open sets under f are
open.

If X is a set, Y;,i € I are topological spaces and f;: X — Y; are func-
tions, the initial topology with respect to the f; exists and has subbasis
{fi_l (U):ieI,U open CY;}. It is the unique topology on X such
that for every topological space Z and every function f: Z — X, f is
continuous if and only if each f; o f is continuous.

The product topology on [], X; has basis
{H U;: U; open C X and X; = U; except for finitely many z} :

Embedding Lemma: If f;: X — X, are continuous maps such that
for distinct x,y € X there is i € I with fi(x) # fi(y) and such that
{fi_l (U):i€I,U open C X;} is a basis for X then the diagonal A =
Aifir X = [, Xisz = (fi(x))i is a homeomorphic embedding.

Countable products of metrizable spaces are metrizable.

Proofs

of the proofs are straightforward set arithmetic.

For uniqueness, suppose that 7,7 are two topologies on X satisfy-
ing the condition. Then id;;: (X, 7) — (X, 71) is continuous, so each
fi: (X,m) = Y, = fioidy is continuous. Thus every f; oid; is con-
tinuous and hence id; o is continuous. By symmetry ids ; is continuous
and hence 7 = 7.

Embedding Lemma: The only non-trivial bit is to check that A is
open onto its image. For this note that unions and images commute

and hence it is sufficient to consider basic open sets of the form f;~" (U).
But A (f; " (U)) =m ' (U)NA(X).

Exercise Sheet.



2 Separation Properties

2.1 Definitions

X is Tj if and only if for every distinct x,y € X there is open U that contains
exactly one of x and y.

X is T} if and only if for every distinct z,y € X there is open U such
that x € U Z y.

X is Ty (Hausdorff) if and only if for every distinct =,y € X there are disjoint open
U>z,V 3y (z and y are separated by open sets).

X is T3 (regular) if and only if X is 7} and for every z € X and every
closed C' Z x there are disjoint open U 2 z,V D C.

X is Ty5 (Tychonoff) if and only if X is 77 and for every z € X and
every closed C' Z x there is a continuous f: X — [0,1] such that f(x) =0
and f (C) C {1}.

X is Ty (normal) if and only if X is T} and for every disjoint closed C, D
there are disjoint open U O C,V D D.

X is functionally normal if and only if X is 7} and for every disjoint
closed C, D there is a continuous function f: X — [0, 1] such that f(U) C
{0}, f (V) € {1}.

X is Ty (hereditarily normal) if and only if every subspace of X is normal.

X is Ty (perfectly normal) if and only if X is 7} and for every closed
subspace C of X there is a continuous f: X — [0, 1] such that C' = f~* ({0}).

2.2 Results
Theorem 2.1. 1. X is T} if and only if every singleton is closed.

2. If a basis for X has been fized then for i < 2, replacing ‘open’ in the
definition of T; by ‘basic open’ yields an equivalent property.

3. functionally normal — T35 — T3 — T, = T} = Tp.
(None of these reverse in general.)

4. X is Tychonoff if and only if X is (homeomorphic to) a subspace of a
power of [0,1].

5. Fori < 3.5, products and subspaces of T;-spaces are T;.

6. Urysohn’s Lemma: Functionally Normal <= Tj.
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7. Subspaces of normal spaces need not be normal. Products (even squares)
of mormal spaces need not be normal.

8. Urysohn’s Metrization Theorem I: If X is normal and second
countable then X is metrizable.

9. Metric spaces are perfectly normal.
10. T¢ = T5 = T, (Not examinable as bookwork.)

11. A normal space is perfectly normal if and only if every closed subset is
a countable intersection of open subsets (a Gs).(Not examinable as
bookwork. )

2.3 Proofs

General important ideas are:

e A, B disjoint is equivalent to A C X \ B (and of course B is open if
and only if X \ B is closed).

o If f: X — [0,1] is continuous, then f~'([0,1/3)),f~'((2/3,1]) are
disjoint open and f~(0) =, /7' ([0,27™)).

4. Apply the Embedding Lemma.

5. For productivity of Tychonoffness, let € Uy x --- x U, x [[ X;. For
each k =1,..., n, find a continuous f; which is 1 at 74 (z) and 0 outside
U; and take the product of the f; o mp.

6. Urysohn’s Lemma: Backwards direction: Well order the countable
set QN (0,1), set Uy = C, U; = X \ D and inductively construct open
U, such that r < s = U, C U,. Now define f: X — [0,1] by
f(z) = sup{r: z € U,}, note that f(z) = sup {r: 2 € U,} and hence
that f(z) > « if and only if there is r € QN (a, 1] such that x € U, and
f(z) < aif and only if there is 7 € QN[0, @) such that x € X\U,. Thus

(1)) = U2, Ur and f71([0,)) = U,-, X \ U, gives continuity.

7 We let Yy = Xy U {x} with topology P (X;) U{Y \ C: C finite C X;}.
It is easy to check that this is normal (it is compact Hausdorff) and we
let X = {0}U{27": n € N} (with its usual topology). Then Y; x X is
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compact Hausdorff so normal. Consider the subspace Y; x X \ {(%,0)}.
C =Ny x {0} and D = {x} x {27": n € N} are closed disjoint. If
U DO D, then for each n € N there is a countable C,, C N; such that
R\ Cp) x {27} C U. Pick o € ®; \ |J,, €y, (this is non-empty at
\U,, C» is countable) and note that {a} x {27":n e N} C U. Thus
(,0)€UNC.

8. Urysohn’s Metrization Theorem I: Let B be a countable basis and
for each (B, B') € B? such that B C B’ find a continuous f: X — [0, 1]
such that B C f~1(0),X \ B’ C f~'(1) and apply the Embedding
Lemma to these (countably many) f.

9. If C C X is closed then d¢(x) = inf {d(z,c): ¢ € C} is as required.

3 Filters

3.1 Definitions

Suppose X is a set.

A filter F on X is a non-empty collection of subsets of X that does not
contain () and is closed under supersets and finite intersections.

A filter basis B for a filter F on X is a subcollection of F such that for
every F' € F there is B € B with B C F.

Two collections A, B of subsets of X mesh, written A#B if and only
if for every A € A,B € B we have AN B # (. We also write A#B =
{AnB: Ac A, B e B}.

An ultrafilter on X is a filter on X that is maximal wrt C.

For x € X, the principal filter at z is P, = {A C X: x € A}.

If f: X — Y isafunction and F is a filter on X then f (F):={BCY: f~'(B) € F}.

Now assume that X is a topological space.
For x € X, the neighbourhood filter at x is N = {N C X: Jopen U z € U C N}.
If Fisafilter on X, limF = {z € X: N, C F} and F — z if and only

if x € lim F.
If P is a property of topological spaces then X is locally P if and only if

every neighbourhood filter has a filter basis of sets that are P (with respect

to the subspace topology).



3.2 Results 1

Lemma 3.1. Suppose X is a set.

1. A non-empty collection B of non-empty subsets of X is a filter basis for
a (necessarily unique) filter F on X if and only if for every By, By € B
there 1s By € B such that Bs C By N Bsy.

2. IfC is a family of subsets of X with the f.i.p. then {(\F: F finite CC}
is a filter basis for the smallest filter containing C.

3. A filter U on X is an ultrafilter if and only if for every A C X exactly
one of A and X \ A belongs to U if and only if whenever AUB € U at
least one of A or B belongs to U.

4. Ultrafilter Extension Lemma: FEvery filter can be extended to an
ultrafilter.

5. If f: X = Y is a function and F a filter on X then f(F) is a filter
on'Y with filter basis {f (F') : F' € F}. Moreover, if F is an ultrafilter

then so if f (F).

3.3 Proofs 1

Most of this is easy (once comfortable with the notation) set arithmetic.
General important ideas are:

e A family of subsets of X with the f.i.p. can be extended to a filter.
e If two families A, B mesh, their mesh A#B can be extended to a filter.
Specific Lemmas:

3. Suppose U is an ultrafilter. If A € U, then X \ A#U, so by maximality
X \ A € U. The converse is obvious. For the last if and only if: for
the forward direction assume A ¢ U. Then X \ A, AU B € U, so
B DO (X\A)N(AUB) € U. For the backwards direction note that
AU(X\A) =X elU.

4. Ultrafilter Extension Lemma: Proof not examinable! Note that
the union of an increasing sequence of filters is a filter and apply Zorn’s
Lemma.



3.4 Results 11

Theorem 3.2. Suppose X is a topological space.

1. Suppose AC X andx € X. x € A if and only if there is a filter F > A
such that F — x if and only if there is an ultrafilter U > A such that
UuU—zx.

2. f+ X — Y is continuous if and only if for every x € X and filter
F — x, f(F) = f(x) if and only if for every x € X and ultrafilter
U=z, fU) = flz).

3. X is Hausdorff if and only if every filter converges to at most one point
if and only if every ultrafilter converges to at most one point.

4 Compactness, Compactifications, Local Com-
pactness, Cech-completeness

4.1 Definitions

A topological space is compact if and only if every open cover has a finite subcover.

A topological space is Lindelof if and only if every open cover has a
countable subcover.

A Hausdorff compactification of a topological space X is a pair (h,Y)
where Y is compact Hausdorff and h: X — Y is a dense homeomorphic
embedding.

For a topological space X and two Hausdorff compactification (hq,Y;),
(he,Ys), we define (hg,Y3) < (hy,Y)) if and only if there is a continuous
g: Y1 — Y, such that g o hy = hy. We define (hy,Y)) ~ (he,Y3) if and only if
there is a homeomorphism ¢: Y; — Y5 such that g o hy = he.

For a topological space X and a Hausdorff compactification (h,Y") we say
that (h,Y") satisfies the Stone-Cech-property with respect to continuous maps
into compact Hausdorff spaces if and only if for every compact Hausdorff
space Z and every continuous f: X — Z there is a continuous F: Y — Z
such that f = F o h.

The Stone-Cech compactifiation of a topological space is (the unique, if
it exists) Hausdorff compactification (3, 3X) of X satisfying the Stone-Cech
property wrt continuous maps into compact Hausdorff spaces.



Recall that a space X is locally compact if and only if for every z €
U open C X there is compact K and open V withxz € V C K C U.

The Alexandroff one-point compactification of a topological space X is
(the unique, if it exists) Hausdorff compactfication (w,wX) of X such that
wX \ w(X) is a singleton.

A Tychonoff topological space is Cech-complete if and only if for every
Hausdorff compactification (h,Y) of X, Y \ h(X) is a countable union of
closed subsets of Y (i.e. an F,).

4.2 Results
The key ideas are:

e Compactness properties are inherited by closed subsets.

e Diagonals!

e if f: Y — Z is continuous and X dense in Y then f(Y) C f (X).

e Compactness is preserved by images, closedness by pre-images.

Lemma 4.1 (Recall). 1. A topological space is compact if and only if every family of
closed sets with the finite intersection property has non-empty intersection.

2. FBvery closed subset of a compact topological space is compact.
3. FEvery compact subset of a Hausdorff space is closed.
4. Every compact Hausdorff space is reqular. Every compact reqular space is normal.
5. If X is compact, Y is a topological space and f: X — Y is continuous then f (X)
18 compact.
Theorem 4.2. 1. Every Lindelof reqular space is normal.
2. Fvery second countable space is Lindelof.

3. Bvery Lindeldf metric space is second countable.

4. Urysohn’s Metrization Theorem II: A compact Hausdorff space
s metrizable if and only if it is second countable.

5. X is compact if and only if every ultrafilter on X converges (to some
point).



10.

11.

12.

15.

1.
15,

16.

Tychonoff’s Theorem: Products of compact spaces are compact.
X has a Hausdorff compactification if and only if it is Tychonoff.

~ 1s an equivalence relation on the Hausdorff compactifications of X.
If (h1,Y1), (ho,Y3) are Hausdorff compactifications of X such that
(h1,Y1) < (ho,Y2) < (h1,Y1) then (hy, Y1) ~ (ho,Y2) and thus < in-
duces a partial order on the equivalence classes of Hausdorff compacti-
fications under ~.

If (h1,Y1), (ho,Ys) are Hausdorff compactifications of X such that
(h,Y) < (ha, Ya) as witnessed by g: Yo — Yi then g (Y2 \ s (X)) =
Y1\ Ay (X).

If X is Tychonoff, then the partial order of (equivalence classes of)
Hausdorff compactifications has suprema. Moreover each equivalence
class has a representative with cardinality 22,

If X is Tychonoff, then X has a Stone-Cech compactification which is
unique (up to equivalence) and is the greatest compactification of X.

A Hausdorff compactification of X satisfies the Stone-Cech property
with respect to continuous maps into compact Hausdorff spaces if and
only if it satisfies the Stone-Cech property with respect to continuous
maps into [0, 1].

Open subsets of locally compact spaces are locally compact.
Compact Hausdorff spaces are locally compact.

If X is non-compact, locally compact, Hausdorff and oo ¢ X then

wX = XU{oo} with topology {U: U open C X}U{wX \ K: K compact C X}

and embedding w: X — wX;x — x is the unique one-point compactifi-
cation of X.

If X is Tychonoff, the following are equivalent:

o X s locally compact.
e X has a smallest Hausdorff compactification.

e X has a one-point compactification.
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o SX \ B(X) is closed.

e For every Hausdorff compactification (h,Y) of X, Y \ h(X) is
closed.

e For some Hausdorff compactification (h,Y) of X, Y \ h(X) is

closed.
17. If X is Tychonoff, the following are equivalent:

o X\ B (X) isalF,.
e X is Cech-complete.

e For some Hausdorff compactification (h,Y) of X, Y \ h(X) is a
Ey.

4.3 Proofs
1. Exercise Sheet.

5. Suppose X is compact and U is an ultrafilter not converging to any
x € X. For each x € X, choose open U, > z such that U, ¢ U. Then
{U,: z € X} is an open cover with finite subcover U,,,...,U,,. Thus
one of U,, € U (a contradiction).

Now assume that X is not compact: let C be a family of closed subsets
with the f.i.p. but empty intersection. Extend C to a filter and then to
an ultrafilter Y. If x € X then z & some C,, so x € X \ C, € N, and
hence N, Z U, i.e. U 4 x.

6. Tychonoff’s Theorem: Let U/ be an ultrafilter on [], X;. For each
i €I, m (U) is an ultrafilter on X;, so converges to some z;. Now check

8. If (h1,Y1) < (he,Y2) < (hq,Y7) is witnessed by ¢g: Yo — Y; and h: Y] —
Y, respectively, note that goh and ho g are the identity on hy (X) and
ho (X)) respectively. But h; (X) is dense in the Hausdorff Y;, so go h
and h o g are the identity on Y; and Y5 respectively. Hence ¢ is a
homeomorphism as required.

9. Wlog hy is the identity. Suppose y € Yo\ X and z € X with g(y) =
hi(z). Let F be a filter on Y; containing X and converging to y € X.

11



10.

11.

12.

As Y; is Hausdorff 7 A z. Then Fy = {FNX: F € F} is a filter on
X and Fx # x. As hy is a homeomorphism X — hy (X), hy (Fx) 4
hi(x) = g(y). But hy (Fx) = ¢g(F) and g (F) — ¢(y) by continuity.

If (h;,Y;) are compactifications, then check that (A;h;, Ah; (X)Hiyi)
is an upper bound. If (g, Z) is another upper bound witnessed by the
gi: Z —Y;, then Ayg;: Z — [[,Y: is continuous and into A;h; (X)

since A;g; (Z) = Ay (Wz) C Ajgi (9(X)) = Ash; (X).

For the ‘moreover’ claim: suppose X is dense in Y and let f: Y —
P(P(X));y — {A CX:y EZY}. As Y is Hausdorff, for y # ¢/

there is open U > y with 3/ & U =UNnX' . Thus f is an injection.

First uniqueness up to ~: suppose (hy, Y1), (he, Ys) are Hausdorff com-
pactifications of X satisfying the Stone-Cech property. Then hy: X —
Y5 is a continuous map into a compact Hausdorff space, so there is
Hy: Y7 — Y, such that Hy o hy = hy, i.e. (he,Ys) < (hy,Y7). By
symmetry (hy, Y1) < (he,Ys) and hence (hy, Y1) ~ (hs, Y3).

Now we show existence, by showing that the greatest Hausdorff com-
pactification of X satisfies the Stone-Cech property: for each equiva-
lence class, choose a representative, and let (8, 5X) be the supremum

over these representatives (there are only set many). If f: X — 7 is
—————7xBX
continuous into a compact Hausdorff Z, then fi5: X — f§5(X) o

Y is an embedding by the Embedding Lemma and hence determines
a Hausdorff compactification of X. As (3, 5X) is the greatest Haus-
dorff compactification of X, there is a continuous ¢g: X — Y with
go = fop. Then F' = 7z o g is as required.

Note that the existence proof has a special case v( f=h: X —=Y) that

shows that any compactification with the Stone-Cech property must be
the greatest compactification of X (up to equivalence).

It is enough to check that the Stone-Cech property for continuous
0, 1]-valued maps implies the Stone-Cech property for continuous maps
into compact Hausdorff spaces. To that end, note that every com-
pact Hausdorff space is normal, so Tychonoff, so homeomorphic to a
closed subspace C of [0,1]! (for some I). So assume (h,Y) satisfies
the Stone-Cech property for continuous [0, 1]-valued maps and wlog
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16.

17.

X CY h=idx. If f: X — C is continuous, then each f; = m; o f
extends to some Fj: Y — [0,1] and thus A, f; = f: X — [0,1]" extends

to A =AF: Y = [0,1]. Bt A(Y)=A(X) CAX)CC=C.

Hence A is as required.

Statements 1 and 3 are equivalent to 6. To see 4,5,6 are equivalent, we
use that remainders map (on)to remainders: If X C Y and Y compact
Hausdorff with Y\ X closed, then note that X\ 3(X) =g~ ' (Y \ X)
where g witnesses (id,Y") < (8, 5X) so that fX \ (X) is closed. If
BX \ B (X) is closed, it is compact and hence Y \ X = g (X \ (X))
is compact so closed where X C Y, Y is compact Hausdorff and g
witnesses (idx,Y) < (8, 8X) giving 4 implies 5. Finally note that X
is Tychonoff, so 5 implies 6 as X has a compactification.

So assume one (hence all) of 1,3,4,5,6, let (w,wX) be the one-point
compactification of X and (h,Y') some Hausdorff compactification: we
claim that ¢g: ¥ — wX given by g(h(z)) = w(z) and ¢(y) = * for
y € Y\ h(X) is continuous: if C' is closed in wX then either C' C X
and hence ¢! (C) = h(C) is closed in h (X) which is closed in Y or
C 3 x and hence ¢7' (C) = (Y \ h (X)) Uh(C N X) is a union of two
closed sets, so closed.

Finally assume 2 and that there is a smallest compactification (h,Y)
that is not the one-point compactification: let y;,y2 € Y \ h(X) be
distinct. Then Y\ {y1,y2} is locally compact, Tychonoff and hence has
a one-point compactification Z = (Y \ {y1, y2}) U{x}. Since Y is a two-
point compactification of Y\ {y1,y2}, there is a continuous ¢g: Y — Z
(which is the identity except that g(y1) = g(y2) = *). But (h,7) is
also a Hausdorff compactificationof X so that there is and g witnesses
that (h,Z) < (h,Y). Thus the g above must be a homeomorphism, a
contradiction to it not being injective.

Just like the equivalence of 4,5,6 in 16., noting that unions and images
as well as pre-images commute.
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5 Paracompactness, Bing’s Metrization The-
orem

5.1 Definitions

A family A of subsets of X is locally finite (resp. discrete) if and only if for
every x € X there is open U > z such that {A € A: UN A # (0} is finite
(resp. empty or a singleton).

A family A of subsets of X is closure preserving if and only if for every
A CA, UAeA’ A= UAeA’ A.

A family A is a refinement of a family B (of subsets of X) if and only if
for every A € A, there is B € B such that A C B.

A topological space is paracompact if and only if every open cover U of
X has a locally finite open refinement covering X.

The hedgehog of spininess x is H, = {0} U((0, 1] x k) with metric d given
by d(0, (t,4)) =t, d((t,q), (s,2)) = |t — s|, d((t,7), (s,7)) =t + s for i # j.

5.2 Results

Theorem 5.1. 1. Locally finite families are closure preserving.
2. A paracompact reqular space is normal.
3. For a reqular space X the following are equivalent:

e X s paracompact.

o Fuvery open cover U has a sequence V, of locally finite, open re-
finements such that |, V, covers X (i.e. every open cover has a
o-locally finite open refinement covering X ).

e Fuvery open cover U has a locally finite refinement covering X .

e Fuvery open cover U has a locally finite closed refinement covering
X.

4. Stone’s Theorem: FEvery metric space is paracompact. If X is a
metric space and U is an open cover of X then there are refinements
Vo, € N of U such that each 'V, is a discrete family, and | J,, V,, covers
X. ILe. FEvery open cover of X has an open, o-discrete refinement
covering X.
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5.3

2.

Bing’s Metrization Theorem: A space is metrizable if and only
if X is perfectly normal and has a o-discrete basis if and only if X
is homeomorphic to a subspace of a countable product of hedgehogs (of
some spininess).

Proofs

. If A is locally finite and A" C A, A’ is still locally finite. It is thus

sufficient to show [JA = (J,c 4 A. 2 is clear. For C, assume that
T € Uueau A. Let U 3 x be open such that U meets only finitely many
elements of A, say A;,...,A,. Foreachi=1,...,n, x & A;, so choose
open V; 3 z disjoint from A;. Then z € UN(), V; and the RHS is open
and disjoint from | J.A as required.

If C, D are disjoint closed, for each ¢ € C' choose open U, 5 ¢ such that
U,ND ={. Then {U.: c€ C} U{X \ C} is an open cover of X so
has a locally finite open refinement V'. Let V={V € V': VN C # 0},
still a locally finite family which refines {U.: ¢ € C'} and covers C.
Since locally finite families are closure preserving we have (J,, .,V =
Uvey V € U,ee Ue disjoint from D, so that U = (JV is as required.

Exercise Sheet.

Stone’s Theorem: Suppose U is an open cover of X. Well order U by
some well-order < (using Choice). For each n € N and U € U, define

SU,n: {lL‘eX Bg/gn(l‘) g U/\\V/U/< Ul’gU/}

and let
Vun = U By jon (),

mGSU,n

an open subset of U. If y € Vi, and ¢/ € Vi, with (wlog) U <
U’ then there is x € Sy, with d(z,y) < 1/2" and 2’ € Sy, with
d(z',y') < 1/2". But if 2’ € Sy, then 2/ &€ U so d(z,2") > 3/2"
and hence d(y,y') > d(z,2") — d(z,y) — d(«’,y’) > 1/2". Thus each
By-ni1(y),y € X meets at most one Viy,, U € U and hence V,, =
{Vun: U €U} is a discrete family. Clearly Vi,, € U. Finally |, Vs
covers X, since for x € X, choose U € U minimal such that x € U and
as U is open, find n € N with Bsjon(z) C U giving x € Viy,.
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Noting that metric spaces are regular and that o-discrete implies o-
locally finite, we see that metric spaces are paracompact. (In fact, by

defining Sy, = {x € X: Byyon(x) CUAVU' <U 2 €U Az & Upeypin va,}

you could directly obtain a locally finite open refinement.)

5. Bing’s Metrization Theorem: do(z) = inf{d(x,c): c € C'} wit-
nesses perfect normality of metric spaces. For the o-discrete base, ap-
ply Stone’s Theorem to each {By-»(z): 2 € X} to obtain a o-discrete
open refinement V), covering X and then note that Un V, is a o-discrete
basis of X.

Now assume that X is perfectly normal and has a o-discrete basis
B = U, B, with each B, discrete. Fix n € N. For each B € B,, let
fB: X — [0,1] be continuous such that f~!'(0) = X \ B and define
F,: X — Hg, by F(z) = 0if z ¢ UB, and F(z) = (fg(x), B) if
x € B € B,. This is well-defined since B, is discrete (each x is in
at most one B). It is continuous since each fp is continuous and B,
is discrete: for x € X, choose open U > x that meets at most one
element of B, say B. Then F,|y = fp is continuous on U, hence
F,, is continuous at . Note that {Fn_1 (U) : U open C HBn} D B,.
Thus {F,: n € N} satisfies the conditions of the Embedding Lemma
and hence X is homeomorphic to a subspace of a countable product of
hedgehogs.

Finally, a countable product of metric spaces is metrizable.

6 Connectedness, Zero-Dimensionality

6.1 Definitions

A disconnection of X is a partition of X into two non-empty closed-and-open (clopen)
subsets. X is disconnected if and only if there is a disconnection of X.
X is connected if and only if it is not disconnected.

The component of a point z € X is the greatest connected subspace C(z) of X
containing x.

The quasicomponent of a point x € X is Q(x) = ({F C X: x € F clopen}.

X is totally disconnected if and only if every component is a singleton.

X is zero-dimensional if and only if X has a basis of clopen sets.
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6.2 Results
Lemma 6.1 (Recall). 1. X is connected if and only if every continuous function into
the discrete two-point space is constant.
2. Suppose A, A; C X,i € I are connected. If for eachi € I, ANA; # 0 then AU, A;
is connected.
3. The component of a point exists and equals | J{C C X: x € C connected}.
Theorem 6.2. 1. Both the components and the quasicomponents of a
space form a partition.
2. For every x € X, C(x) C Q(x).
3. Sura-Bura Lemma: If X is compact Hausdorff, then for every x €
X, C(z) = Q(z).
4. A totally disconnected compact Hausdorff space is zero-dimensional.
6.3 Proofs

3. Sura-Bura Lemma: Suppose that some quasicomponent Q) = Q(z)

is disconnected, i.e. there are ()-clopen non-empty disjoint A, B such
Q = AUB. As (@ is closed (an intersection of closed sets), A, B
are closed in X. As X is compact Hausdorff, it is normal, so there
are disjoint open U D A,V O B. As X is compact and {U UV} U
{X\ F: z € F clopen C X} covers X, there are finitely many X-clopen
Fy, ... F, containing x such that U UV, F},..., F, covers X so that
z€F=),F CUUV and Fis clopen (in X). Now FNU C FNU C
FN(X\V)C(FNOUV)N(X\V)C FnNnU. Hence FNU is
X-clopen and similarly F'NV is X-clopen. Wlog x € F'N U and hene
Q C FNU, contradicting B # ().
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