STRING THEORY I

Lecture 16
(final lecture)

7 D-branes
Last lecture: we delined a Dp-brare us a $(p+1)$-dimminonol subspace of tow yt space whure the ends of opon strings com end
(We refir to thes mbipace as the Dbrane woredvolume)
We saw haw D-bsomes anpew from T-duality stimh Neumamboundary \longleftrightarrow Dirichlet boundary with comditions comditions

Today: a munber of obsruvationsabout Dbrames inostly wirthout proofs is just an idea of what thene important objects are in the contec of etring thesigs)

In this elatave sonure we Andied
quantised strings ropen k (boxd) in \mathbb{R}^{1125} a saliment seatue is that the massers sector includes
a grvaiton (Grom the chsed sector)
gange fields (worm the pen sectoo)
Note that we disoussed os with Newmmn bas ont
\rightarrow We alis discossedquasitised itrings in $\mathbb{R}^{1,24} \times S_{B}^{\prime}$
\longrightarrow new jatures ey
cs. States hove quantixd momentunn abng $S_{\text {a }}^{\prime}$ and a winding quantom numbors

- T dudito

OS move complicatiol; T-denalits leads to the ation of D-brants

Last lectuve:
OS - T-duality
open string with
Nawmann boundaw σ anditions compactified on S_{R}^{1}

D25 space-filling biave
\rightarrow open string mals are Wee to move on spacetime
$p^{2 s}=\frac{m}{R} \quad$ quantized no winding
maisless sutor: (bsth rides) 25 dimmional $U(1)$ gangy fiel d
dual opm string with Dirichlet boundaro conditions combactied on $S_{\hat{R}}^{\prime}, \hat{R}=d \mathbb{R}^{\prime}$
end mints of the ctring live on a Dlybrame
no framslational symmetris along $S_{R}^{\prime} \hat{R}$
string com wind avound $S_{\hat{R}}^{\prime}$

7.1) Opmstrings with Dirichlt b.cs in Hat $\mathbb{R}^{1,25}$ (no compactificition)
Comidew an opun string on $\mathbb{R}^{1,25}$ with Dirichlet boundany conclitions in one dilution ($x^{\text {Lr }}$) and New mann sundawo in all other divection ($X^{i} \quad i=0, \ldots, 24$)
 no tramslationd yymmetry abong $x^{2 r}$ space-fine sommetu So $(1,2 r) \rightarrow$ So $(1,24)$

Mode expansion for $X^{\mu}(\sigma, \sigma)$:
Nbc $X^{i}(\sigma, \sigma)=x^{i}+2 \alpha^{\prime} \sigma p^{i}+i \sqrt{2 \alpha_{n}} \sum_{n \neq 0} \frac{1}{n} \alpha_{n}^{i} \cos (n \sigma) i=0 \ldots, 24$

C no $\alpha_{0}^{\text {hr }}$ mode.
\Rightarrow ho momentum along $X^{2 r}$
(aterm $p^{\wedge} \tau \Rightarrow$ midpoints would not stag at $x^{2 x}$ when $\bar{\sigma}+c$)
quomtising the string: mootly s before exupt $x^{2 s}$ remains a uunton
(x. ${ }^{\text {ar }}$ is ent a powanctor, it riperesunts the (ocation of a fixed Dbrame)

Virasoro opuatas as by.ore.
Mass-stall conctition: $\quad L_{0}-1=\left(\alpha^{\prime} p^{2}+N\right)-1$ bersmes $\alpha^{\prime} M_{L r}^{2}=-\alpha^{\prime}|p|^{2}=N-1 \quad|p|^{2}=p \cdot p$

Gound levid $(N=0)$: fachyon on the D-biame $\alpha^{\prime} M_{i r}^{2}=-1$

Massless ipectrum: muit be lwel $N=1$ grome state

$$
\left|\rho, \eta_{i} k\right\rangle=\left(\rho \cdot \alpha_{-1}+\eta \alpha_{-1}^{L_{1}}\right)|0 ; k\rangle
$$

Immssing $\left.\quad L_{1}|\zeta, \eta ; K\rangle=0 \quad \Leftrightarrow L_{m}|\phi\rangle=0, m \geq 2\right]$
we find that $(\rho, n ; K)$ is phyrical if $\rho \cdot K=0$ with η uncomstrained.

$$
\begin{aligned}
& L_{1}\left|\rho_{1} n_{i} k\right\rangle=\left(\rho_{i}\left(\left[L_{1}, \alpha_{-1}^{i}\right]+\alpha_{-1}^{i} L_{1}\right)+\eta\left(\left[L_{1}, \alpha_{-1}^{2 r}\right]+\alpha_{-1}^{2 r} L_{1}\right]\right)|0 ; K\rangle \\
& =\left(\zeta \cdot \alpha_{0}+\eta \alpha_{0}^{2 r}+\left(\rho \cdot \alpha_{1}+\eta \alpha_{-1}^{2 r}\right) L_{1}\right)|0 ; K\rangle \\
& =\left(\rho \cdot K+\left(\zeta \cdot \alpha_{-1}+\eta \alpha_{-1}^{2 \eta}\right)\left(\alpha \cdot \alpha_{0}\right)|0 ; K\rangle=(\rho \cdot K)|0 ; K\rangle\right.
\end{aligned}
$$

mull states at luvel one of the WM $L_{y} \mid 0 ; K>$:

$$
\left.L_{-1}(0 ; K)=K \cdot \alpha_{-1} 10 ; K\right\rangle
$$

with $K \cdot K=0 \quad\left(\right.$ Worm $\left.\left(L_{0}-1\right)\left(L_{-1}|0 ; K\rangle\right)=0\right)$
Then we have the masjlass pherrical itates

- 25-dimmirional photon

$$
\begin{array}{ll}
S \cdot \alpha_{-1} 10 ; K> & L(1) \text { plyy ricil } \\
\rho \cdot K=0 & \text { stato }
\end{array}
$$

so the Dbiame has a $U(1)$ Geld on its worlduolume (frice bor any Dobrame)

- scalow field $\varphi=\eta \alpha_{-1}^{\text {ls }}(0 ; K>$
more grnvalty a Dpbrane has a masjlas scalow fo each hormal direstion.

Y cam be cemntificed with gluctuations in the prition of the D-bvare clong the womperse $x^{\text {is }}$ direction (no proof hevel) see B twiebach
7.2 Stretcheel strings

One can alro have systans of D-branes with differmt dauses of somstring (open string sectors)
 strings strectching between the D-brames

Conider a string stretched between two prallel D24 brames located at $x_{0}^{25}=x_{a}^{2 r}$ and $x_{0}=x_{0}^{45}$

String undpoints $\quad X_{a b}^{k}(\sigma, \sigma=0)=x_{a}, \quad X_{s b}^{k r}(\tau, \sigma=\pi)-x_{b}$

$$
\begin{aligned}
& X_{a b}^{2 \sigma}=x_{a}^{w \tau}+\frac{1}{\pi}(\underbrace{\left(X_{b}^{2 r}-x_{a}^{2 r}\right.}_{\Delta x_{a b}}) \sigma+\sqrt{2 \alpha} \sum_{n \neq 0} \frac{1}{\pi} \alpha_{n}^{2 r} e^{-i n c} \operatorname{in}(n \sigma) \\
& \alpha_{0}^{25}=\frac{1}{11}\left(x_{b}^{25}-x_{a}^{15}\right)
\end{aligned}
$$

mass-shll mulition: $M_{a b}^{2}=-p \cdot p=\underbrace{\left(\frac{x_{b}^{k r}-x_{a}^{2 r}}{2 \pi \alpha^{\prime}}\right)^{2}}+\frac{1}{\alpha^{\prime}}(N-1)$
C shift of mass-levds: $\left(\frac{\Delta x}{2 \pi d^{\prime}}\right)^{2}=(T \Delta x)^{2}=$ mass of a dasical dring strecthed batween the srames
spectrum of the stretched string:
\qquad information about which

- $N=0 \quad|K, a b\rangle \quad$ obrome sWing mon live

Chan-Paton lucile

a denotes blame on which and $\sigma=0$ lives
b dunois bucme on which
Sin our case a, b tala colum and $\sigma=\pi$ lives
1012 ; more rurally, br N DbrnNo thy tole values 2 in $^{2} \mathrm{~N}$
(For a string with ends on the same brace $a=b$) mall shall condition: $\quad M_{a b}^{2}=-\frac{1}{\alpha^{\prime}}+\left(\frac{\Delta X_{a b}}{2 \pi \alpha^{\prime}}\right)^{2}$ tachyon if $\left|\Delta x_{a b}\right|<2 \pi \sqrt{\alpha \mid}$

$$
\begin{aligned}
& \underline{N=1} \quad M_{a b}^{2}=\left(\frac{\Delta K_{a b}}{2 \pi \alpha^{\prime}}\right)^{2} \\
& \rho \cdot \alpha_{-1}|k, a b\rangle \quad(k \cdot \rho=0) \\
& \eta \alpha_{-1}^{L r}|k, a b\rangle \\
& |\eta, s, a b\rangle
\end{aligned}
$$

massive vector on 25 dim space time
mull states

$$
L_{-1}|0 ; K ; a b\rangle=K \cdot \alpha_{-1}|K, K ; a b\rangle+\frac{\Delta X_{a b}}{\pi} \alpha^{2 r}\left|\eta, \eta_{1} ; a b\right\rangle
$$

null states

$$
\begin{aligned}
& L_{-1} 10 ; K ; a b>=\frac{1}{2} \sum_{n} \alpha_{-1-n} \cdot \alpha_{n} 1 \ldots> \\
& \left.\quad=\frac{1}{2}\left(\alpha_{-1} \cdot \alpha_{0}+\sum_{n=0}\left(\alpha_{-1-n} \cdot \alpha_{n}+\alpha_{-1+n} \cdot \alpha_{-n}\right)\right) \right\rvert\, \cdots> \\
& =\frac{1}{2}\left(\alpha_{-1} \cdot \alpha_{0}+\alpha_{-1} \cdot \alpha_{0}\right) 1 \cdots>=\left(\alpha_{-1} \cdot \alpha_{0}\right) 1 \cdots> \\
& =\left(\alpha_{-1} \cdot K+\alpha_{-1}^{15} \alpha_{0}^{25}\right)(\cdots) \\
& =K \cdot \alpha_{-1}(\cdots)+\frac{\Delta x}{\pi} \alpha_{-1}^{25}(\cdots)
\end{aligned}
$$

with $K \cdot K=0 \quad\left(\right.$ worm $\left.\left(L_{0}-1\right)\left(L_{-1}|0 ; K\rangle\right)=0\right)$

Cincident limit: subpose we have N D-branes

stretched shing statio betwean
Obvame at $x_{a k} 0$-biame at x_{b}
N masrive vector ridas

$$
\left(k^{i}, a b\right\rangle
$$

$$
\begin{gathered}
\Delta x_{a b} \rightarrow 0 \quad \alpha_{-1}^{i} \mid k ; a b>+ \text { icabans } \\
a, b=1, \sim N \\
\text { chan-paton labuls }
\end{gathered}
$$

N^{2} sectors

On cans show that the spectrum has a U(N) global sommets and that these $\left(N^{2}\right)$ states transform in the adjoint repremtation of $U(N)$

One can choose a burrs for then states

$$
\begin{aligned}
& |\rho, k ; \Delta\rangle=\sum_{a, b}\left(t^{A}\right]^{a} \cdot|\rho, k ; a b\rangle \\
& \text { } a, b \text { hownition basis of } u(N) \\
& A=1, \cdots, N^{2} \\
& W\left(t^{A} t^{B}\right)=S^{A D} \\
& \text { Cham-Daton factors }
\end{aligned}
$$

3-point coupling of masjhoss vectors

$$
\begin{aligned}
& A\left(\rho_{1}, K_{1}, A_{1} j \rho_{2}, K_{2}, A_{2} ; \rho_{3}, K_{3} A_{3}\right) \\
& \sim g_{0} \delta\left(k_{1}+k_{2}+k_{7}\right)\left\{\rho_{1} \cdot k_{13} \rho_{2} \cdot \rho_{3}+\rho_{2} \cdot k_{31} \rho_{1} \cdot \rho_{3}+\rho_{3} \cdot k_{12} \rho_{1} \cdot \rho_{2}\right. \\
& \left.+\frac{\alpha^{\prime}}{2} \rho_{1} \cdot k_{23} S_{1} \cdot k_{3 i} \zeta_{3} \rho_{12}\right\} \times \text { fr }\left(t^{a_{1}}\left[t^{a_{1}} ; t^{a_{3}}\right]\right)
\end{aligned}
$$

gues the 3-point ventex for the $U(N)$ mon-Abclian galk thoory EFT ation $\alpha=-\frac{1}{4} \operatorname{Tr}\left(F_{m \nu} F^{m \nu}\right)-\frac{2 i}{3} \alpha^{\prime} \operatorname{Tr}\left(F_{m}^{\nu} F_{\nu}^{\omega} F_{\omega}^{m}\right)+$ scalomy on 024 bumb Yamg-Mill - al corrutions

Ore can also obtain this from the β-function (reeds boundongsuplings and boundany renarmalization (bw)

D-brame picture of the Higgs mechanism

stack of 3 Dbrame

$$
M_{a b}^{2}=\left(\frac{|\Delta x|}{7 \bar{\pi} \alpha^{\prime}}\right)^{2} \quad \begin{aligned}
& \operatorname{man}_{\substack{\text { (inin of } \\
\text { \#rithed } \\
\text { bitwen braws }}}
\end{aligned}
$$

D-branes as dignamical objects?
If they ase, mayber they need to be inclided in the perfunbative desuristion of strings? how? Estimate mass scales velevant to D-bromes thy computing its tumison

Polchinslia (385, "dualitor revolution"

Final remarks:
We have seen that the theory of quantised string has a very rich structure

- quantised gravity (at low enewgis we obtain Einstein's gravity)
- gangs fills
\rightarrow constancy of the tho ry \leadsto fixes dimension of space time
- S-matrix with good UV behaviour

More
\rightarrow dualitics

- CFT
- emergunce of non-penturbative Branes

Implovements:
\Rightarrow remove tachyons \rightarrow (STג) superifings (furmons in zaim NLOM: supwismetrio WS thesio)

- Spacetime furmions us STa
- superstring thear (ST2) as space time dim $=10$
- Strong cupling

Black usle phyrics
realistic phenamenolog mathematiced itructure

End of string Theory I
Thanks!

