STRING THEORY J

17 D-branes

last lecture: we defined a Dp-brane as a

(p+1)-dimmional subspace of tanget space where the

ends of open shings com end

(We refer to this indispace as the Dorane world volume)

We saw how D-bromes appenr from T-duality

strings Neuman bandar ~ Dirichlet bandar with conditions

Today: a munder of observations about Observes (mostly without proofs as just on idea of what these important objects are in the contry of string theory)

In this licture conver we studied ▶ quantise & strings (opm k dond) in R^{1,25} a salimt poter is that the massless sector includes a quariton (from the chad sector) zanz field (worm the spon sector) Note that we discussed as with Newmon bus only > We also discussed quantified strings in II' × SR L> new fratures eg cs - states hove quantined momentum along So and a winding quantum number · T dudito T-chality leads to the notion of D-bromes OS more complicated;

Lost lecture: OS - T-deality

open string with Numann boundars anditions compactified on Sz

D25 space-filling brome Lo open string mils are we to more on space-time

p^r-<u>m</u> quantized

no winding

maisless sector: (both sides)

25 dimminal U(1) gange field

dual oppositions with Dirichlet boundary conditions compacties on S_{R}^{i} , $\hat{R} = d |R|$

endpoints of the string live on a DZYbrome

no translational symmetry along S'2 string com wind around S'2

(7-1) Opmstrings with Diricht b.cs in Mat R^{1,25} (no compactification)

Consider an open string on R^{1,25} with Dirichlet bandang conditions in one direction (X^L) and New man 5 sundang in all other direction (X^L) i=0,-.,24)

D24 - brome $X^{17} = X_0$

[More generally, one can consider an open string with Dirichlet boundary and the open string with Dirichlet boundary and the open string with Dirichlet boundary and the open string and t

Mode expansion for X" (5,5):

Nbc $\chi^{i}(\tau, \sigma) = \chi^{i} + 2 \alpha' \tau p^{i} + i \sqrt{2 \alpha'} \sum_{n \neq 0} \frac{1}{n} \alpha'_{n} \cos(n\sigma) i = 0, ..., 24$

_ no do mode.

⇒ no momentum nong X² (atern p^{*}t => mdpoints would not stag at K¹ when t≠0) quantising the string: mostly as before except

- X²⁵ remains a montan
 - (x, is mt a parameter, it represents the location of a fixed Dbrane)
- Viragoro opwatars as byjore.
- Mass-shell complicion: $L_0 I = (d^{1}p^{2} + N) I$
- busines $a' M_{11}^2 = -a' |p|^2 = N |p|^2 = p \cdot p$
- Ground Quel (N=0): tachyon on the D-blome d'Mir=-1

Massless pettrum: muit be level N=1 . gramd state (N=0) $19.\eta; K > = (9.d_{-1} + \eta a_{-1}) [0; K >$ 1 t dim (1+24)-dim ipacetime scalar momentum polaritation vector Imposing $L_1(S, M; K) = O$ ($\Rightarrow Lm(\phi) = 0, m \ge 2$) we find that (S, n; K > is physical if S · K =0 with n un constrained. $L_{1} | S, n; K \rangle = (S_{i}([L_{1}, \alpha_{-1}^{1}] + \alpha_{-1}^{i}L_{1}) + n([L_{1}, \alpha_{-1}^{1}] + \alpha_{-1}^{i}L_{1}))|o;K\rangle$

= (S•do+mdo+(S•d,+mdi)L,)10;K>

= (S•K + (S•d, + Md, J(d, • do) 10; K) = (S•K) 10; K)

null states at level one of the form L-10; K>: $L_{-10}; K > = K \cdot d_{-1} \cdot 10; K >$ with $K \cdot K = 0$ (Nom (Lo-1) (L_{-10}; K >) = 0)

This we have the massless physical states

so the Dorme has a W(1) field on its world volume (frue lor my Dp biome)

Scalon field q = n d¹⁵, 10; K> more growally a Dobrome has a massless scalon for each normal direction.

le can be identified with gluctuations in the position of the D-brane along the Nonsverse X^{is} direction (no ploof here!) se B twithach

One can also have systems of D-branes with different dasses of open strings (open string sectors)

shing stading and ending a b

Consider a string stretched between two preallel DE4 brones located at x. = xa and xo = xb

spectrum of the stretched string:

· N=0 1K, ab >

_ information about which Observe string mode live Cham-Poton luces

Lobals CabJ a dinstes brome on which had 0=0 lives b denstis brome on which in our can a,6 take calus 10: 2; more privation, for N Dbinnes they take values 2, -, N

(For a string with ends on the same brane a= 5]

- $5 \cdot d_1 | K, ab > (K \cdot S = 0)$ $\eta d_1 | K, ab >$
- 17,5,06>
- well states

 L_{10} ; K; ab> = K• d_1K, K; ab> + ΔX_{ab} d-1M, K; ab>

massive vector

on 25 dim space time

null states

off

with K•K=0 (Nom (6-1) (6-10;K>)=0)

Coincident limit : sugar we have N D-branes

On can show that the spectrum has a U(N) global symmets and that then (N^2) states transform in the adjoint representation of U(N)

One can choose a baris for these states $1 \text{ S}, \text{ K}; \text{ A} > = \sum (t^{\text{A}})^{\circ} \text{ IS}, \text{ K}; \text{ as} >$ q, δ $1 \text{ S}, \text{ K}; \text{ A} > = \sum (t^{\text{A}})^{\circ} \text{ IS}, \text{ K}; \text{ as} >$ q, δ $1 \text{ S}, \text{ K}; \text{ A} > = \sum (t^{\text{A}})^{\circ} \text{ IS}, \text{ K}; \text{ as} >$ q, δ $1 \text{ S}, \text{ K}; \text{ A} > = \sum (t^{\text{A}})^{\circ} \text{ IS}, \text{ K}; \text{ as} >$ q, δ $1 \text{ S}, \text{ K}; \text{ A} > = \sum (t^{\text{A}})^{\circ} \text{ IS}, \text{ K}; \text{ as} >$ $1 \text{ S}, \text{ K}; \text{ A} > = \sum (t^{\text{A}})^{\circ} \text{ S}, \text{ K}; \text{ as} >$ $1 \text{ S}, \text{ K}; \text{ A} > = \sum (t^{\text{A}})^{\circ} \text{ S}, \text{ K}; \text{ as} >$ $1 \text{ S}, \text{ K}; \text{ A} > = \sum (t^{\text{A}})^{\circ} \text{ S}, \text{ K}; \text{ as} >$ $1 \text{ S}, \text{ K}; \text{ A} > = \sum (t^{\text{A}})^{\circ} \text{ S}, \text{ K}; \text{ as} >$ $1 \text{ S}, \text{ K}; \text{ A} > = \sum (t^{\text{A}})^{\circ} \text{ S}, \text{ K}; \text{ as} >$ $1 \text{ S}, \text{ K}; \text{ A} > = \sum (t^{\text{A}})^{\circ} \text{ S}, \text{ K}; \text{ as} >$ $1 \text{ S}, \text{ K}; \text{ A} > = \sum (t^{\text{A}})^{\circ} \text{ S}, \text{ K}; \text{ as} >$ $1 \text{ S}, \text{ K}; \text{ A} > = \sum (t^{\text{A}})^{\circ} \text{ S}, \text{ K}; \text{ as} >$ $1 \text{ S}, \text{ K}; \text{ A} > = \sum (t^{\text{A}})^{\circ} \text{ S}, \text{ K}; \text{ as} >$ $1 \text{ S}, \text{ K}; \text{ A} > = \sum (t^{\text{A}})^{\circ} \text{ S}, \text{ K}; \text{ as} >$ $1 \text{ S}, \text{ K}; \text{ A} > = \sum (t^{\text{A}})^{\circ} \text{ S}, \text{ K}; \text{ as} >$ $1 \text{ S}, \text{ K}; \text{ A} > = \sum (t^{\text{A}})^{\circ} \text{ S}, \text{ K}; \text{ A} >$ $1 \text{ S}, \text{ K}; \text{ A} > = \sum (t^{\text{A}})^{\circ} \text{ S}, \text{ K}; \text{ A} >$ $1 \text{ S}, \text{ K}; \text{ A} > = \sum (t^{\text{A}})^{\circ} \text{ S}, \text{ K}; \text{ A} >$ $1 \text{ S}, \text{ K}; \text{ A} > = \sum (t^{\text{A}})^{\circ} \text{ S}, \text{ K}; \text{ A} >$ $1 \text{ S}, \text{ K}; \text{ A} > = \sum (t^{\text{A}})^{\circ} \text{ S}, \text{ K}; \text{ A} >$ $1 \text{ S}, \text{ K}; \text{ A} > = \sum (t^{\text{A}})^{\circ} \text{ S}, \text{ K}; \text{ A} >$ $1 \text{ S}, \text{ K}; \text{ A} > = \sum (t^{\text{A}})^{\circ} \text{ S}, \text{ K}; \text{ A} >$ $1 \text{ S}, \text{ K}; \text{ A} > = \sum (t^{\text{A}})^{\circ} \text{ S}, \text{ K}; \text{ A} >$ $1 \text{ S}, \text{ K}; \text{ A} > = \sum (t^{\text{A}})^{\circ} \text{ S}, \text{ K}; \text{ A} >$ $1 \text{ S}, \text{ K}; \text{ A} > = \sum (t^{\text{A}})^{\circ} \text{ S}, \text{ K}; \text{ A} >$ $1 \text{ S}, \text{ K}; \text{ A} > = \sum (t^{\text{A}})^{\circ} \text{ S}, \text{ K}; \text{ A} >$ $1 \text{ S}, \text{ K}; \text{ A} > = \sum (t^{\text{A}})^{\circ} \text{ S}, \text{ K}; \text{ A} >$ $1 \text{ S}, \text{ K}; \text{ A} > = \sum (t^{\text{A}})^{\circ} \text{$

- A (S. K. A. S. K. A. S. K. A. S. K. A.)
 - ~ go & [K,+K1+K1] { S,·K3 S2'S3 + S1·K31 S,·S3 + S3·K12 Si'S2
 - + & Silkes Si Kai Sasa Jx fr (t° [t", t"])
- ques the 3-point unitex for the h(N) non-Abelian same throng
- $EFT notion = -\frac{1}{4} \Gamma r (F_m r F^m) \frac{2i}{3} a' T r (F_m r F^w r w) + Scalary$ on 074 by me Young-Mills 2 a' corrections

- One can also obtain this from the Q-finition (needs boundary osuplings and boundary renormalization (bw)

D-brom picture of the Higgs mechanism

Final (cmarks:

We have seen that the theory of quantised string has a very rich structure

➤ quantised gravity (at low energies we obtain Einstein's gravity)

 gange fields consistency of the thory ~> fixes dimension of space time >

► S-matrix with good UV behaviour

> emergence of non-perturbative Branes

Implovements:

- remove tachyons ~ (ST2) superivings (fumons in 2dm NLTM: superigmetric WS theory)
- ► spacetime firmions ~ sta
- ► superstring theory (ST2) ~ space time dim = 10

- > Strong coupling
 - Black We physics
 - realistic phenomenology mathematical structure

End of string Theory I

