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Disadvantages of Newton’s method for optimization

in the conditions of local convergence Theorem 9: xk can
get attracted to local maxima or saddle points of f if xk

sufficiently close to such points (as ∇2f(x∗) only required
to be nonsingular in Th 9).

Example: f : R → R, f(x) = −x2;
x∗ = 0 is global maximizer;
apply Newton starting from x0 = 1 ⇒ s0 = −1 ascent
direction and x1 = 0.

Newton’s method may fail to converge at all if x0 “too far”
from solution (outside neighbourhood of local
convergence, failure may occur).
−→ Newton is not globally convergent for general f .
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Disadvantages of Newton’s method for optimization

Example of failure of Newton’s method to converge globally.

f : R → R, f(x) = −x6

6
+

x4

4
+ 2x2.

x∗ = 0 local minimizer; x = ±
√

(1 +
√
17)/2 ≈ ±1.6 global max.

Newton’s method applied
to f , with x0 = 1;
⇒ x2k = 1 and
x2k+1 = −1, for all k.
−1 and 1 are not (even)
stationary points of f .

Note that sk descent but
we have gone “too far”.
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Newton’s method applied to f .
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Damped Newton’s method

=⇒ include linesearch in Newton’s method: damped Newton.
Damped Newton’s method for minimization :
Choose ǫ > 0 and x0 ∈ R

n.
While ‖∇f(xk)‖ > ǫ, REPEAT:

solve the linear system ∇2f(xk)sk = −∇f(xk).

set xk+1 = xk + αksk, with αk ∈ (0, 1]; k := k + 1. END.

Damped Newton’s method is a GLM provided ∇2f(xk) is
positive definite so that sk descent. Then αk can be computed
by exact linesearch, bArmijo, etc.

if αk → 1 as k → ∞ =⇒ damped Newton’s mthd is locally
quadratically convergent.

(local convergence) Assume ∇2f is Lipschitz cont., and
∇2f(xk) ≻ 0. Let xk → x∗ with ∇2f(x∗) ≻ 0. Let sk =Newton
direction in GLM and bArmijo linesearch have β < 0.5 and
α(0) = 1. Then, αk = 1 for all k suff. large and xk → x∗ quadratically.
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Local convergence for damped Newton with bArmijo

f(x1, x2) = 10(x2 − x2

1
)2 + (x1 − 1)2; x∗ = (1, 1).
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Damped Newton with bArmijo linesearch applied to the Rosenbrock function f .

β < 0.5 and α(0) = 1 in bArmijo; αk
= 1 for suff. large k.

Lecture 5: Newton’s method for optimization problems (continued) – p. 5/17



Global convergence of damped Newton’s method

recall backtracking Armijo (bArmijo) linesearch.

Theorem 10 Let f ∈ C2(Rn) be bounded below on R
n.

Let ∇f be Lipschitz continuous. Let the eigenvalues of
∇2f(xk) be positive and uniformly bounded below, away from
zero (for all k). Apply damped Newton’s method to f with
bArmijo linesearch and ǫ = 0. Then

either
there exists l ≥ 0 such that ∇f(xl) = 0

or
‖∇f(xk)‖ → 0 as k → ∞. �

• Theorem 10 is satisfied if f ∈ C2 with ∇f Lipschitz
continuous is also strongly convex (i.e., the eigenvalues of
∇2f(x) for all x are positive, bounded below, away from
zero). Then sk is descent for all k.
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Global convergence of damped Newton’s method ...

Proof of Theorem 10. The conditions of Theorem 4 (Global
convergence of GLM with bArmijo linesearch) are satisfied.
Thus Th 4 gives that either ∃ l ≥ 0 such that ∇f(xl) = 0 or

Mk := min

{

|∇f(xk)T sk|
‖sk‖

, |∇f(xk)T sk|
}

−→ 0 as k → ∞. (†)

Let ∇2f(xk) := Hk. Th assumptions on f =⇒ ∀s ∈ R
n, s 6= 0,

0 < λmin ≤ λmin(Hk) ≤ sT Hks

‖s‖2 ≤ λmax(Hk) ≤ λmax.

|∇f(xk)T sk| = |∇f(xk)TH−1
k ∇f(xk)| ≥ λmin(H

−1
k )‖∇f(xk)‖2

= ‖∇f(xk)‖2

λmax(Hk)
≥ ‖∇f(xk)‖2

λmax

.

‖sk‖2 = ∇f(xk)TH−2
k ∇f(xk) ≤ λmax(H

−2
k )‖∇f(xk)‖2 ≤ λ−2

min‖∇f(xk)‖2.

=⇒ Mk ≥ min
{

λmin

λmax

‖∇f(xk)‖, 1
λmax

‖∇f(xk)‖2
}

for all k

=⇒ ∇f(xk) −→ 0 as k → ∞. �
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Modified damped Newton methods

If ∇2f(xk) is not positive definite, it is usual to solve instead
(

∇2f(xk) + Mk
)

sk = −∇f(xk),

where
• Mk chosen such that ∇2f(xk) + Mk is “sufficiently”
positive definite.

• Mk := 0 when ∇2f(xk) is “sufficiently” positive definite.

Options:

1. As ∇2f(xk) is symmetric, we can factor ∇2f(xk) = QkDk(Qk)⊤,
where Qk is orthogonal and Dk is diagonal, and set

∇2f(xk) + Mk := Qk max(ǫI, |Dk|)(Qk)⊤,

for some “small” ǫ > 0. Expensive approach for large problems.
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Modified damped Newton methods

2. Estimate λmin(∇2f(xk)) and set

Mk := max(0, ǫ − λmin(∇2f(xk)))I.

Cheaper. Often tried in practice but “biased” (may
overemphasize a large negative eigval at the expense of
small, positive ones).

3. Modified Cholesky: compute Cholesky factorization

∇2f(xk) = Lk(Lk)⊤,

where Lk is lower triangular matrix. Modify the generated Lk

if the factorization is in danger of failing (modify small or
negative diagonal pivots, etc.).

Popular in computations.
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Other directions for GLMs

Choose/compute Bk to approximate ∇2f(xk).

Let Bk symmetric, positive definite matrix. Let sk be defined by
Bksk = −∇f(xk).

Update Bk after the calculation of sk and αk.

=⇒ sk descent direction;

=⇒ sk solves the problem
minimizes∈Rn mk(s) = f(xk) + ∇f(xk)T s + 1

2
sTBksk.

sk is a scaled steepest descent direction;

Theorem 10 (global convergence) continues to hold with
∇2f(xk) replaced by Bk in the statement and proof.
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Approximating the Hessian matrix by finite differences

Approximating the Hessian from gradient vals: i ∈ {1, . . . , n};

[∇2f(x)]ei ≈ 1

h
[∇f(x + hei) − ∇f(x)]

Cost of approximating ∇2f(x) is n + 1 gradient values.

For all finite-differencing, careful with the choice of h in
computations:
• “too large” h → inaccurate approximations,
• “too small” h → numerical cancellation errors.

But successful techniques exist for smooth noiseless
problems when sufficient function and/or gradient values can
be computed.
For noisy problems, use derivative-free optimization methods
(if problem size is not too large).
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Quasi-Newton methods

Secant approximations for computing Bk ≈ ∇2f(xk)

At the start of the GLM, choose B0 (say, B0 := I). After
computing sk = −(Bk)−1∇f(xk) and xk+1 = xk + αksk,
compute update Bk+1 of Bk.

Wish list:
Compute Bk+1 as a function of already-computed quantities
∇f(xk+1), ∇f(xk), . . ., ∇f(x0), Bk, sk,
Bk+1 should be symmetric, nonsingular (pos. def.),
Bk+1 “close” to Bk, a “cheap” update of Bk, Bk → ∇2f(xk), etc.
=⇒ a new class of methods: faster than steepest descent
method, cheaper to compute per iteration than Newton’s.
For the first wish, choose Bk+1 to satisfy the secant equation

γk := ∇f(xk+1) − ∇f(xk) = Bk+1(xk+1 − xk) = Bk+1αksk.
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Quasi-Newton methods ...

Interpretation of the secant equation:

It is satisfied by Bk+1 := ∇2f when f is a quadratic function.

The change in gradient contains information about the Hessian.

The gradient change predicted by the current quadratic model
∇f(xk+1) − ∇f(xk) ≈ ∇q(xk + αksk) − ∇q(xk) = −αk∇f(xk),

where q(xk + s) = f(xk) + ∇f(xk)⊤s + 1
2
s⊤Bks

and sk = −(Bk)−1∇f(xk).

Want the new quadratic model
u(xk + s) := f(xk) + ∇f(xk)⊤s + 1

2
s⊤Bk+1s

to predict correctly the change in gradient γk, i.e.,
γk = ∇f(xk+1) − ∇f(xk) = ∇u(xk+1) − ∇u(xk) = Bk+1(xk+1 − xk).
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Quasi-Newton methods ...

Many ways to compute Bk+1 to satisfy the secant equation.
Trade-off between “wishes” on the list for some of the methods.

Symmetric rank 1 updates. [see Prob Sheet 3]

Set Bk+1 := Bk + uk(uk)⊤, for some uk ∈ R
n, and all k ≥ 0.

• Bk+1 symmetric, “close” to Bk.
• Work per iteration: O(n2) (as opposed to the O(n3) of
Newton), due to Sherman-Morrison-Woodbury formula!

The secant equation =⇒ uk = (γk − Bkδk)/ρk,
where δk := xk+1 − xk = αksk, (ρk)2 := (γk − Bkδk)⊤δk > 0.

• Bk may not be positive definite, sk may not be descent.
• ρk may be close to zero leading to large updates.

Other updates: BFGS, DFP, Broyden family, etc.
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Quasi-Newton methods ...

BFGS updates. [see Prob Sheet 3]

• Broyden-Fletcher-Goldfarb-Shanno (independently).

Set Bk+1 := Bk + uku
⊤
k + vkv

⊤
k , for some uk ∈ R

n, vk ∈ R
n.

• It is a rank 2 update (if uk and vk are linearly independent).
• SWM formula yields O(n2) operations/iteration.
• In practice, update the Cholesky factors of Bk (still O(n2)).

Given Bk = JkJ
⊤
k , where Jk arbitrary nonsingular, and ‖ · ‖F

Frobenius norm, let Jk+1 solve

min
J

‖J − Jk‖F subject to Jδk = γk.

⇒ Bk+1 := Jk+1J
⊤
k+1 = Bk + uku

⊤
k + vkv

⊤
k ,

where uku
⊤
k = −Bkδkδ

⊤
k Bk/(δ

⊤
k Bkδk), vkv

⊤
k = γkγ

⊤
k /(γ⊤

k δk).

• Let Jk := Lk the lower triangular Cholesky factor of Bk.
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Quasi-Newton methods ...

BFGS updates. (continued)

• Thus Bk+1 is “close” to Bk.
• Bk symmetric pos. def. ⇒ Bk+1 symmetric pos. def. (provided
(δk)Tγk > 0, ensured by say, Wolfe linesearch)

• BFGS method: GLM with sk := −B−1
k ∇f(xk), with Bk

updated by BFGS formula on each iteration.
• For global convergence of BFGS method, must use Wolfe
linesearch to compute stepsize instead of bArmijo linesearch.
• The BFGS method has local Q-superlinear convergence!
• When applying the BFGS method with exact linesearches,
to a strictly convex quadratic function f , then Bk = ∇2f after n

iterations.
• Satisfies all the wishes on the wish list! Has been very
popular when second derivatives of f are not available.
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Appendix: providing derivatives to algorithms

How to compute/provide derivatives to a solver?

Calculate derivatives by hand when easy/simple objective
and constraints; user provides code that computes them.

Calculate or approximate derivatives automatically:
Automatic differentiation: breaks down computer code for
evaluating f into elementary arithmetic operations +
differentiate by chain rule. Software: ADIFOR, ADOL-C.
Symbolic differentiation: manipulate the algebraic
expression of f (if available). Software: symbolic
packages of MAPLE, MATHEMATICA, MATLAB.
Finite differencing −→ approximate derivatives.

See Nocedal & Wright, Numerical Optimization (2nd edition,
2006) for more details of the above procedures.
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