
Lecture 5: Newton’s method for optimization
problems (continued)

Coralia Cartis, Mathematical Institute, University of Oxford

C6.2/B2: Continuous Optimization

Lecture 5: Newton’s method for optimization problems (continued) – p. 1/17

Disadvantages of Newton’s method for optimization

in the conditions of local convergence Theorem 9: xk can
get attracted to local maxima or saddle points of f if xk

sufficiently close to such points (as ∇2f(x∗) only required
to be nonsingular in Th 9).

Example: f : R → R, f(x) = −x2;
x∗ = 0 is global maximizer;
apply Newton starting from x0 = 1 ⇒ s0 = −1 ascent
direction and x1 = 0.

Newton’s method may fail to converge at all if x0 “too far”
from solution (outside neighbourhood of local
convergence, failure may occur).
−→ Newton is not globally convergent for general f .

Lecture 5: Newton’s method for optimization problems (continued) – p. 2/17

Disadvantages of Newton’s method for optimization

Example of failure of Newton’s method to converge globally.

f : R → R, f(x) = −x6

6
+

x4

4
+ 2x2.

x∗ = 0 local minimizer; x = ±
√

(1 +
√
17)/2 ≈ ±1.6 global max.

Newton’s method applied
to f , with x0 = 1;
⇒ x2k = 1 and
x2k+1 = −1, for all k.
−1 and 1 are not (even)
stationary points of f .

Note that sk descent but
we have gone “too far”.

−3 −2 −1 0 1 2 3
−30

−25

−20

−15

−10

−5

0

5

10

x0,x2,...x1,x3,...

Newton’s method applied to f .
Lecture 5: Newton’s method for optimization problems (continued) – p. 3/17

Damped Newton’s method

=⇒ include linesearch in Newton’s method: damped Newton.
Damped Newton’s method for minimization :
Choose ǫ > 0 and x0 ∈ R

n.
While ‖∇f(xk)‖ > ǫ, REPEAT:

solve the linear system ∇2f(xk)sk = −∇f(xk).

set xk+1 = xk + αksk, with αk ∈ (0, 1]; k := k + 1. END.

Damped Newton’s method is a GLM provided ∇2f(xk) is
positive definite so that sk descent. Then αk can be computed
by exact linesearch, bArmijo, etc.

if αk → 1 as k → ∞ =⇒ damped Newton’s mthd is locally
quadratically convergent.

(local convergence) Assume ∇2f is Lipschitz cont., and
∇2f(xk) ≻ 0. Let xk → x∗ with ∇2f(x∗) ≻ 0. Let sk =Newton
direction in GLM and bArmijo linesearch have β < 0.5 and
α(0) = 1. Then, αk = 1 for all k suff. large and xk → x∗ quadratically.

Lecture 5: Newton’s method for optimization problems (continued) – p. 4/17

Local convergence for damped Newton with bArmijo

f(x1, x2) = 10(x2 − x2

1
)2 + (x1 − 1)2; x∗ = (1, 1).

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

1.5

Damped Newton with bArmijo linesearch applied to the Rosenbrock function f .

β < 0.5 and α(0) = 1 in bArmijo; αk
= 1 for suff. large k.

Lecture 5: Newton’s method for optimization problems (continued) – p. 5/17

Global convergence of damped Newton’s method

recall backtracking Armijo (bArmijo) linesearch.

Theorem 10 Let f ∈ C2(Rn) be bounded below on R
n.

Let ∇f be Lipschitz continuous. Let the eigenvalues of
∇2f(xk) be positive and uniformly bounded below, away from
zero (for all k). Apply damped Newton’s method to f with
bArmijo linesearch and ǫ = 0. Then

either
there exists l ≥ 0 such that ∇f(xl) = 0

or
‖∇f(xk)‖ → 0 as k → ∞. �

• Theorem 10 is satisfied if f ∈ C2 with ∇f Lipschitz
continuous is also strongly convex (i.e., the eigenvalues of
∇2f(x) for all x are positive, bounded below, away from
zero). Then sk is descent for all k.

Lecture 5: Newton’s method for optimization problems (continued) – p. 6/17

Global convergence of damped Newton’s method ...

Proof of Theorem 10. The conditions of Theorem 4 (Global
convergence of GLM with bArmijo linesearch) are satisfied.
Thus Th 4 gives that either ∃ l ≥ 0 such that ∇f(xl) = 0 or

Mk := min

{

|∇f(xk)T sk|
‖sk‖

, |∇f(xk)T sk|
}

−→ 0 as k → ∞. (†)

Let ∇2f(xk) := Hk. Th assumptions on f =⇒ ∀s ∈ R
n, s 6= 0,

0 < λmin ≤ λmin(Hk) ≤ sT Hks

‖s‖2 ≤ λmax(Hk) ≤ λmax.

|∇f(xk)T sk| = |∇f(xk)TH−1
k ∇f(xk)| ≥ λmin(H

−1
k)‖∇f(xk)‖2

= ‖∇f(xk)‖2

λmax(Hk)
≥ ‖∇f(xk)‖2

λmax

.

‖sk‖2 = ∇f(xk)TH−2
k ∇f(xk) ≤ λmax(H

−2
k)‖∇f(xk)‖2 ≤ λ−2

min‖∇f(xk)‖2.

=⇒ Mk ≥ min
{

λmin

λmax

‖∇f(xk)‖, 1
λmax

‖∇f(xk)‖2
}

for all k

=⇒ ∇f(xk) −→ 0 as k → ∞. �

Lecture 5: Newton’s method for optimization problems (continued) – p. 7/17

Modified damped Newton methods

If ∇2f(xk) is not positive definite, it is usual to solve instead
(

∇2f(xk) + Mk
)

sk = −∇f(xk),

where
• Mk chosen such that ∇2f(xk) + Mk is “sufficiently”
positive definite.

• Mk := 0 when ∇2f(xk) is “sufficiently” positive definite.

Options:

1. As ∇2f(xk) is symmetric, we can factor ∇2f(xk) = QkDk(Qk)⊤,
where Qk is orthogonal and Dk is diagonal, and set

∇2f(xk) + Mk := Qk max(ǫI, |Dk|)(Qk)⊤,

for some “small” ǫ > 0. Expensive approach for large problems.

Lecture 5: Newton’s method for optimization problems (continued) – p. 8/17

Modified damped Newton methods

2. Estimate λmin(∇2f(xk)) and set

Mk := max(0, ǫ − λmin(∇2f(xk)))I.

Cheaper. Often tried in practice but “biased” (may
overemphasize a large negative eigval at the expense of
small, positive ones).

3. Modified Cholesky: compute Cholesky factorization

∇2f(xk) = Lk(Lk)⊤,

where Lk is lower triangular matrix. Modify the generated Lk

if the factorization is in danger of failing (modify small or
negative diagonal pivots, etc.).

Popular in computations.

Lecture 5: Newton’s method for optimization problems (continued) – p. 9/17

Other directions for GLMs

Choose/compute Bk to approximate ∇2f(xk).

Let Bk symmetric, positive definite matrix. Let sk be defined by
Bksk = −∇f(xk).

Update Bk after the calculation of sk and αk.

=⇒ sk descent direction;

=⇒ sk solves the problem
minimizes∈Rn mk(s) = f(xk) + ∇f(xk)T s + 1

2
sTBksk.

sk is a scaled steepest descent direction;

Theorem 10 (global convergence) continues to hold with
∇2f(xk) replaced by Bk in the statement and proof.

Lecture 5: Newton’s method for optimization problems (continued) – p. 10/17

Approximating the Hessian matrix by finite differences

Approximating the Hessian from gradient vals: i ∈ {1, . . . , n};

[∇2f(x)]ei ≈ 1

h
[∇f(x + hei) − ∇f(x)]

Cost of approximating ∇2f(x) is n + 1 gradient values.

For all finite-differencing, careful with the choice of h in
computations:
• “too large” h → inaccurate approximations,
• “too small” h → numerical cancellation errors.

But successful techniques exist for smooth noiseless
problems when sufficient function and/or gradient values can
be computed.
For noisy problems, use derivative-free optimization methods
(if problem size is not too large).

Lecture 5: Newton’s method for optimization problems (continued) – p. 11/17

Quasi-Newton methods

Secant approximations for computing Bk ≈ ∇2f(xk)

At the start of the GLM, choose B0 (say, B0 := I). After
computing sk = −(Bk)−1∇f(xk) and xk+1 = xk + αksk,
compute update Bk+1 of Bk.

Wish list:
Compute Bk+1 as a function of already-computed quantities
∇f(xk+1), ∇f(xk), . . ., ∇f(x0), Bk, sk,
Bk+1 should be symmetric, nonsingular (pos. def.),
Bk+1 “close” to Bk, a “cheap” update of Bk, Bk → ∇2f(xk), etc.
=⇒ a new class of methods: faster than steepest descent
method, cheaper to compute per iteration than Newton’s.
For the first wish, choose Bk+1 to satisfy the secant equation

γk := ∇f(xk+1) − ∇f(xk) = Bk+1(xk+1 − xk) = Bk+1αksk.

Lecture 5: Newton’s method for optimization problems (continued) – p. 12/17

Quasi-Newton methods ...

Interpretation of the secant equation:

It is satisfied by Bk+1 := ∇2f when f is a quadratic function.

The change in gradient contains information about the Hessian.

The gradient change predicted by the current quadratic model
∇f(xk+1) − ∇f(xk) ≈ ∇q(xk + αksk) − ∇q(xk) = −αk∇f(xk),

where q(xk + s) = f(xk) + ∇f(xk)⊤s + 1
2
s⊤Bks

and sk = −(Bk)−1∇f(xk).

Want the new quadratic model
u(xk + s) := f(xk) + ∇f(xk)⊤s + 1

2
s⊤Bk+1s

to predict correctly the change in gradient γk, i.e.,
γk = ∇f(xk+1) − ∇f(xk) = ∇u(xk+1) − ∇u(xk) = Bk+1(xk+1 − xk).

Lecture 5: Newton’s method for optimization problems (continued) – p. 13/17

Quasi-Newton methods ...

Many ways to compute Bk+1 to satisfy the secant equation.
Trade-off between “wishes” on the list for some of the methods.

Symmetric rank 1 updates. [see Prob Sheet 3]

Set Bk+1 := Bk + uk(uk)⊤, for some uk ∈ R
n, and all k ≥ 0.

• Bk+1 symmetric, “close” to Bk.
• Work per iteration: O(n2) (as opposed to the O(n3) of
Newton), due to Sherman-Morrison-Woodbury formula!

The secant equation =⇒ uk = (γk − Bkδk)/ρk,
where δk := xk+1 − xk = αksk, (ρk)2 := (γk − Bkδk)⊤δk > 0.

• Bk may not be positive definite, sk may not be descent.
• ρk may be close to zero leading to large updates.

Other updates: BFGS, DFP, Broyden family, etc.

Lecture 5: Newton’s method for optimization problems (continued) – p. 14/17

Quasi-Newton methods ...

BFGS updates. [see Prob Sheet 3]

• Broyden-Fletcher-Goldfarb-Shanno (independently).

Set Bk+1 := Bk + uku
⊤
k + vkv

⊤
k , for some uk ∈ R

n, vk ∈ R
n.

• It is a rank 2 update (if uk and vk are linearly independent).
• SWM formula yields O(n2) operations/iteration.
• In practice, update the Cholesky factors of Bk (still O(n2)).

Given Bk = JkJ
⊤
k , where Jk arbitrary nonsingular, and ‖ · ‖F

Frobenius norm, let Jk+1 solve

min
J

‖J − Jk‖F subject to Jδk = γk.

⇒ Bk+1 := Jk+1J
⊤
k+1 = Bk + uku

⊤
k + vkv

⊤
k ,

where uku
⊤
k = −Bkδkδ

⊤
k Bk/(δ

⊤
k Bkδk), vkv

⊤
k = γkγ

⊤
k /(γ⊤

k δk).

• Let Jk := Lk the lower triangular Cholesky factor of Bk.

Lecture 5: Newton’s method for optimization problems (continued) – p. 15/17

Quasi-Newton methods ...

BFGS updates. (continued)

• Thus Bk+1 is “close” to Bk.
• Bk symmetric pos. def. ⇒ Bk+1 symmetric pos. def. (provided
(δk)Tγk > 0, ensured by say, Wolfe linesearch)

• BFGS method: GLM with sk := −B−1
k ∇f(xk), with Bk

updated by BFGS formula on each iteration.
• For global convergence of BFGS method, must use Wolfe
linesearch to compute stepsize instead of bArmijo linesearch.
• The BFGS method has local Q-superlinear convergence!
• When applying the BFGS method with exact linesearches,
to a strictly convex quadratic function f , then Bk = ∇2f after n

iterations.
• Satisfies all the wishes on the wish list! Has been very
popular when second derivatives of f are not available.

Lecture 5: Newton’s method for optimization problems (continued) – p. 16/17

Appendix: providing derivatives to algorithms

How to compute/provide derivatives to a solver?

Calculate derivatives by hand when easy/simple objective
and constraints; user provides code that computes them.

Calculate or approximate derivatives automatically:
Automatic differentiation: breaks down computer code for
evaluating f into elementary arithmetic operations +
differentiate by chain rule. Software: ADIFOR, ADOL-C.
Symbolic differentiation: manipulate the algebraic
expression of f (if available). Software: symbolic
packages of MAPLE, MATHEMATICA, MATLAB.
Finite differencing −→ approximate derivatives.

See Nocedal & Wright, Numerical Optimization (2nd edition,
2006) for more details of the above procedures.

Lecture 5: Newton’s method for optimization problems (continued) – p. 17/17

	Disadvantages of Newton's method for optimization
	Disadvantages of Newton's method for optimization
	Damped Newton's method
	hspace *{-0.2cm}Local convergence for damped Newton with bArmijo
	Global convergence of damped Newton's method
	Global convergence of damped Newton's method ...
	Modified damped Newton methods
	Modified damped Newton methods
	Other directions for GLMs
	Approximating the Hessian matrix by finite differences
	Quasi-Newton methods
	Quasi-Newton methods ...
	Quasi-Newton methods ...
	Quasi-Newton methods ...
	Quasi-Newton methods ...
	hspace *{-0.25cm}Appendix: providing derivatives to algorithms

