Lecture 5: Newton's method for optimization problems (continued)

Coralia Cartis, Mathematical Institute, University of Oxford

C6.2/B2: Continuous Optimization

Disadvantages of Newton's method for optimization

■ in the conditions of local convergence Theorem 9: x^k can get attracted to local maxima or saddle points of f if x^k sufficiently close to such points (as $\nabla^2 f(x^*)$ only required to be nonsingular in Th 9).

```
Example: f: \mathbb{R} \to \mathbb{R}, \ f(x) = -x^2; x^* = 0 is global maximizer; apply Newton starting from x^0 = 1 \Rightarrow s^0 = -1 ascent direction and x^1 = 0.
```

- Newton's method may fail to converge at all if x^0 "too far" from solution (outside neighbourhood of local convergence, failure may occur).
 - \longrightarrow Newton is not globally convergent for general f.

Disadvantages of Newton's method for optimization

Example of failure of Newton's method to converge globally.

$$f:\mathbb{R} o\mathbb{R},\quad f(x)=-rac{x^6}{6}+rac{x^4}{4}+2x^2.$$

 $x^*=0$ local minimizer; $x=\pm\sqrt{(1+\sqrt{17})/2}pprox\pm1.6$ global max.

Lecture 5: Newton's method for optimization problems (continued) – p. 3/17

Newton's method applied to f.

Damped Newton's method

⇒ include linesearch in Newton's method: damped Newton.

Damped Newton's method for minimization:

```
Choose \epsilon>0 and x^0\in\mathbb{R}^n.
While \|
abla f(x^k)\|>\epsilon, REPEAT:
```

- lacksquare solve the linear system $abla^2 f(x^k) s^k =
 abla f(x^k)$.
- lacksquare set $x^{k+1}=x^k+lpha^ks^k$, with $lpha^k\in(0,1]$; k:=k+1 . END.
- Damped Newton's method is a GLM provided $\nabla^2 f(x^k)$ is positive definite so that s^k descent. Then α^k can be computed by exact linesearch, bArmijo, etc.
- if $\alpha^k \to 1$ as $k \to \infty \implies$ damped Newton's mthd is locally quadratically convergent.
- (local convergence) Assume $\nabla^2 f$ is Lipschitz cont., and $\nabla^2 f(x^k) \succ 0$. Let $x^k \to x^*$ with $\nabla^2 f(x^*) \succ 0$. Let $s^k = Newton$ direction in GLM and bArmijo linesearch have $\beta < 0.5$ and $\alpha_{(0)} = 1$. Then, $\alpha^k = 1$ for all k suff. large and $x^k \to x^*$ quadratically.

Local convergence for damped Newton with bArmijo

$$f(x_1, x_2) = 10(x_2 - x_1^2)^2 + (x_1 - 1)^2; \quad x^* = (1, 1).$$

Damped Newton with bArmijo linesearch applied to the Rosenbrock function f.

lacksquare eta < 0.5 and $lpha_{(0)} = 1$ in bArmijo; $lpha^k = 1$ for suff. large k.

Global convergence of damped Newton's method

recall backtracking Armijo (bArmijo) linesearch.

Theorem 10 Let $f \in C^2(\mathbb{R}^n)$ be bounded below on \mathbb{R}^n .

Let ∇f be Lipschitz continuous. Let the eigenvalues of $\nabla^2 f(x^k)$ be positive and uniformly bounded below, away from zero (for all k). Apply damped Newton's method to f with bArmijo linesearch and $\epsilon = 0$. Then

either

there exists $l \geq 0$ such that $\nabla f(x^l) = 0$

or

$$\|
abla f(x^k)\| o 0$$
 as $k o \infty$. \square

• Theorem 10 is satisfied if $f \in C^2$ with ∇f Lipschitz continuous is also strongly convex (i.e., the eigenvalues of $\nabla^2 f(x)$ for all x are positive, bounded below, away from zero). Then s^k is descent for all k.

Global convergence of damped Newton's method ...

Proof of Theorem 10. The conditions of Theorem 4 (Global convergence of GLM with bArmijo linesearch) are satisfied. Thus Th 4 gives that either $\exists l \geq 0$ such that $\nabla f(x^l) = 0$ or

$$M_k := \min \left\{ rac{|
abla f(x^k)^T s^k|}{\|s^k\|}, |
abla f(x^k)^T s^k|
ight\} \longrightarrow 0 ext{ as } k o \infty. ext{ (†)}$$

Let
$$abla^2 f(x^k) := H_k$$
. Th assumptions on $f \Longrightarrow \forall s \in \mathbb{R}^n, \, s \neq 0$,

$$0 < \lambda_{\min} \leq \lambda_{\min}(H_k) \leq rac{s^T H_k s}{\|s\|^2} \leq \lambda_{\max}(H_k) \leq \lambda_{\max}.$$

$$egin{aligned} |
abla f(x^k)^T s^k| &= |
abla f(x^k)^T H_k^{-1}
abla f(x^k)| &\geq \lambda_{\min}(H_k^{-1}) \|
abla f(x^k)\|^2 \ &= rac{\|
abla f(x^k)\|^2}{\lambda_{\max}(H_k)} \geq rac{\|
abla f(x^k)\|^2}{\lambda_{\max}}. \end{aligned}$$

$$||s^k||^2 = \nabla f(x^k)^T H_k^{-2} \nabla f(x^k) \le \lambda_{\max}(H_k^{-2}) ||\nabla f(x^k)||^2 \le \lambda_{\min}^{-2} ||\nabla f(x^k)||^2.$$

$$\Longrightarrow M_k \geq \min\left\{rac{\lambda_{\min}}{\lambda_{\max}}\|
abla f(x^k)\|, rac{1}{\lambda_{\max}}\|
abla f(x^k)\|^2
ight\}$$
 for all k

$$\Longrightarrow
abla f(x^k) \longrightarrow 0 ext{ as } k o \infty.$$

Modified damped Newton methods

If $\nabla^2 f(x^k)$ is not positive definite, it is usual to solve instead

$$\left(
abla^2 f(x^k) + M^k
ight) s^k = -
abla f(x^k),$$

where

- ullet M^k chosen such that $abla^2 f(x^k) + M^k$ is "sufficiently" positive definite.
- $M^k := 0$ when $\nabla^2 f(x^k)$ is "sufficiently" positive definite.

Options:

1. As $\nabla^2 f(x^k)$ is symmetric, we can factor $\nabla^2 f(x^k) = Q^k D^k (Q^k)^{\top}$, where Q^k is orthogonal and D^k is diagonal, and set

$$abla^2 f(x^k) + M^k := Q^k \max(\epsilon I, |D^k|)(Q^k)^{\top},$$

for some "small" $\epsilon > 0$. Expensive approach for large problems.

Modified damped Newton methods

2. Estimate $\lambda_{\min}(\nabla^2 f(x^k))$ and set

$$M^k := \max(0, \epsilon - \lambda_{\min}(\nabla^2 f(x^k)))I.$$

Cheaper. Often tried in practice but "biased" (may overemphasize a large negative eigval at the expense of small, positive ones).

3. Modified Cholesky: compute Cholesky factorization

$$\nabla^2 f(x^k) = L^k (L^k)^\top,$$

where L^k is lower triangular matrix. Modify the generated L^k if the factorization is in danger of failing (modify small or negative diagonal pivots, etc.).

Popular in computations.

Other directions for GLMs

Choose/compute B^k to approximate $\nabla^2 f(x^k)$.

Let B^k symmetric, positive definite matrix. Let s^k be defined by $B^k s^k = -\nabla f(x^k)$.

Update B^k after the calculation of s^k and α^k .

- \Longrightarrow s^k descent direction;
- $lacksquare s > s^k$ solves the problem $ext{minimize}_{s \in \mathbb{R}^n} \ m_k(s) = f(x^k) +
 abla f(x^k)^T s + rac{1}{2} s^T B^k s^k.$
- lacksquare is a scaled steepest descent direction;
- Theorem 10 (global convergence) continues to hold with $\nabla^2 f(x^k)$ replaced by B^k in the statement and proof.

Approximating the Hessian matrix by finite differences

Approximating the Hessian from gradient vals: $i \in \{1, ..., n\}$;

$$[\nabla^2 f(x)]e^i pprox rac{1}{h}[\nabla f(x+he^i) - \nabla f(x)]$$

Cost of approximating $\nabla^2 f(x)$ is n+1 gradient values.

For all finite-differencing, careful with the choice of h in computations:

- "too large" $h \rightarrow$ inaccurate approximations,
- "too small" $h \rightarrow$ numerical cancellation errors.

But successful techniques exist for smooth noiseless problems when sufficient function and/or gradient values can be computed.

For noisy problems, use derivative-free optimization methods (if problem size is not too large).

Secant approximations for computing $B^k \approx \nabla^2 f(x^k)$

At the start of the GLM, choose B^0 (say, $B^0 := I$). After computing $s^k = -(B^k)^{-1} \nabla f(x^k)$ and $x^{k+1} = x^k + \alpha^k s^k$, compute update B^{k+1} of B^k .

Wish list:

Compute B^{k+1} as a function of already-computed quantities $\nabla f(x^{k+1}), \nabla f(x^k), \ldots, \nabla f(x^0), B^k, s^k$,

 B^{k+1} should be symmetric, nonsingular (pos. def.),

 B^{k+1} "close" to B^k , a "cheap" update of B^k , $B^k \to \nabla^2 f(x^k)$, etc.

⇒ a new class of methods: faster than steepest descent method, cheaper to compute per iteration than Newton's.

For the first wish, choose B^{k+1} to satisfy the secant equation

$$\gamma^k := \nabla f(x^{k+1}) - \nabla f(x^k) = B^{k+1}(x^{k+1} - x^k) = B^{k+1}\alpha^k s^k.$$

Interpretation of the secant equation:

It is satisfied by $B^{k+1} := \nabla^2 f$ when f is a quadratic function.

The change in gradient contains information about the Hessian.

The gradient change predicted by the current quadratic model

$$\nabla f(x^{k+1}) - \nabla f(x^k) \approx \nabla q(x^k + \alpha^k s^k) - \nabla q(x^k) = -\alpha^k \nabla f(x^k),$$
 where
$$q(x^k + s) = f(x^k) + \nabla f(x^k)^\top s + \frac{1}{2} s^\top B^k s$$
 and
$$s^k = -(B^k)^{-1} \nabla f(x^k).$$

Want the new quadratic model

$$u(x^k + s) := f(x^k) + \nabla f(x^k)^{\top} s + \frac{1}{2} s^{\top} B^{k+1} s$$

to predict correctly the change in gradient γ^k , i.e.,

$$\gamma^k = \nabla f(x^{k+1}) - \nabla f(x^k) = \nabla u(x^{k+1}) - \nabla u(x^k) = B^{k+1}(x^{k+1} - x^k).$$

Many ways to compute B^{k+1} to satisfy the secant equation. Trade-off between "wishes" on the list for some of the methods.

Symmetric rank 1 updates.

[see Prob Sheet 3]

Set $B^{k+1} := B^k + u^k(u^k)^\top$, for some $u^k \in \mathbb{R}^n$, and all $k \geq 0$.

- B^{k+1} symmetric, "close" to B^k .
- Work per iteration: $\mathcal{O}(n^2)$ (as opposed to the $\mathcal{O}(n^3)$ of Newton), due to Sherman-Morrison-Woodbury formula!

The secant equation
$$\Longrightarrow u^k = (\gamma^k - B^k \delta^k)/\rho^k$$
, where $\delta^k := x^{k+1} - x^k = \alpha^k s^k$, $(\rho^k)^2 := (\gamma^k - B^k \delta^k)^\top \delta^k > 0$.

- B^k may not be positive definite, s^k may not be descent.
- $\bullet \rho^k$ may be close to zero leading to large updates.

Other updates: BFGS, DFP, Broyden family, etc.

BFGS updates.

[see Prob Sheet 3]

Broyden-Fletcher-Goldfarb-Shanno (independently).

Set $B_{k+1}:=B_k+u_ku_k^\top+v_kv_k^\top$, for some $u_k\in\mathbb{R}^n$, $v_k\in\mathbb{R}^n$.

- It is a rank 2 update (if u_k and v_k are linearly independent).
- SWM formula yields $\mathcal{O}(n^2)$ operations/iteration.
- In practice, update the Cholesky factors of B_k (still $\mathcal{O}(n^2)$).

Given $B_k = J_k J_k^{\top}$, where J_k arbitrary nonsingular, and $\|\cdot\|_F$ Frobenius norm, let J_{k+1} solve

$$\min_J \|J - J_k\|_F$$
 subject to $J\delta_k = \gamma_k.$

$$\Rightarrow \quad B_{k+1} := J_{k+1} J_{k+1}^ op = B_k + u_k u_k^ op + v_k v_k^ op,$$

where $u_k u_k^\top = -B_k \delta_k \delta_k^\top B_k / (\delta_k^\top B_k \delta_k)$, $v_k v_k^\top = \gamma_k \gamma_k^\top / (\gamma_k^\top \delta_k)$.

• Let $J_k := L_k$ the lower triangular Cholesky factor of B_k .

BFGS updates. (continued)

- Thus B_{k+1} is "close" to B_k .
- B_k symmetric pos. def. $\Rightarrow B_{k+1}$ symmetric pos. def. (provided $(\delta^k)^T \gamma^k > 0$, ensured by say, Wolfe linesearch)
- BFGS method: GLM with $s_k := -B_k^{-1} \nabla f(x_k)$, with B_k updated by BFGS formula on each iteration.
- For global convergence of BFGS method, must use Wolfe linesearch to compute stepsize instead of bArmijo linesearch.
- The BFGS method has local Q-superlinear convergence!
- When applying the BFGS method with exact linesearches, to a strictly convex quadratic function f, then $B_k = \nabla^2 f$ after n iterations.
- Satisfies all the wishes on the wish list! Has been very popular when second derivatives of f are not available.

Appendix: providing derivatives to algorithms

How to compute/provide derivatives to a solver?

- Calculate derivatives by hand when easy/simple objective and constraints; user provides code that computes them.
- Calculate or approximate derivatives automatically:
 - Automatic differentiation: breaks down computer code for evaluating *f* into elementary arithmetic operations + differentiate by chain rule. Software: ADIFOR, ADOL-C.
 - Symbolic differentiation: manipulate the algebraic expression of *f* (if available). Software: symbolic packages of MAPLE, MATHEMATICA, MATLAB.
 - Finite differencing approximate derivatives.

See Nocedal & Wright, Numerical Optimization (2nd edition, 2006) for more details of the above procedures.