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8 Coordinate descent methods

8.1 Introduction

Coordinate-based algorithms solve optimization problems by advancing along
coordinate directions towards a solution. Namely, they iteratively (and ap-
proximately) minimize the objective along one or a handful of coordinates at a
time. These methods have a long history, being one of the first algorithms pro-
posed for solving optimization problems computationally. Before the rise of
modern day huge-scale applications, these methods were regarded as too sim-
ple/simplistic and examples of failure as below consolidated a view and search
in the optimization community for better, more sophisticated methods, based
on using (full) derivatives. They continued to be used in derivative-free opti-
mization though, where access to derivatives is impossible/too expensive14

However, these methods were brought to the forefront of research with the
need to solve ever-increasingly large scale problems in terms of the number
of variables/parameters (sparse optimization in signal processing, supervised
learning and more, as seen at the start of this course), for the past twenty years
or so (though some prominent researchers such as Paul Tseng (and others) fore-
saw the upcoming need for such methods and analysed them already in the
1990s).

We return here to the general form of the unconstrained optimization prob-
lem, encountered in Section 4 (equation (8)), namely,

min
x2Rn

f(x) (66)

where f : Rn
! R is continuously differentiable; extensions to the regularized

(also called composite) optimization formulation in Section 5 (equation (15))
are also available/popular and may be briefly described later on, time permit-
ting. (Note that (66) includes, of course, the case when f is a sum of functions
that we studied in the last chapter- but no special exploitation of such a struc-
ture is used here.)

Coordinate-based methods proceed by successively fixing most components
of the variables and (approximately) minimizing the objective along the re-
maining (small number of) variables; for example, in the first iteration, we
would be minimizing say, only in the first two coordinates f(x1, x2, 0, 0, ...0).
Thus at each iteration, we are only addressing/dealing with a small-dimensional
optimization problem/iterate calculation - so each iteration is (far) less com-
putationally expensive compared to the case when we would be calculating a
change to each entry in the iterate x

k. To clarify, at xk, the general approach
approximately solves

min
t2Rb

f(x
k
+ UBt) = f(x

k
1 , . . . x

k
i1 + t1, . . . , x

k
ib + tb, x

k
b+1, . . . , x

k
n),

14The format of these methods is a bit different in that context, and we refer the reader to so-
called direct-search methods for a closer look.
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8.1 Introduction B6.2 Opt Data Sci

where t = (t1, . . . , tb)
T , b = |B|, and UB = [ei1 ei2 . . . eib ] is an n⇥b matrix with

columns eij , the ijth coordinate vector in Rn; b ⌧ n. The matrix UB changes at
the next iteration.

More simply, Coordinate Descent (CD) variants can be viewed as variants
of steepest descent that only move along the negative gradient components for
a subset of the variables at a time. Namely, at iteration k � 0, given the (cur-
rent) iterate x

k, the CD algorithm constructs an update x
k+1 to x

k as follows,

x
k+1

= x
k
� ↵kg

k
, (67)

where ↵k > 0 is as in earlier lectures, the step-length (can be constant, or
varying, adaptive and often pre-defined at the start of the algorithm); and
g
k

:= rBkf(x
k
), for coordinates’ block Bk ⇢ {1, 2, . . . , n}, has the gradient

components
@f

@xi
(x

k
) for i 2 Bk and is set to zero on the remaining entries,

g
k
i =

8
<

:

@f

@xi
(x

k
) i 2 Bk

0, i 2 {1, . . . , n} \ Bk.

(68)

If |Bk| = n, then (68) is just gradient descent. If |Bk| = 1, then we are only
moving along one coordinate, and (68) becomes

g
k
=

@f

@xik

(x
k
)eik =

✓
0, . . . ,

@f

@xik

(x
k
), . . . , 0

◆T

, (69)

where Bk = {ik} ⇢ {1, . . . , n} and eik is the ikth coordinate vector.

A summary of the CD algorithm is given next.

Coordinate descent (CD) method

Algorithm 4 (CD). Given x
0
2 Rn, for k = 0, 1, 2, . . . , repeat:

select Bk ⇢ {1, . . . , n}

calculate gk = rBkf(x
k
) according to (68)

calculate xk+1
= x

k
� ↵kg

k

The choice of block of coordinates can be as follows:

• randomized: choose Bk i.i.d. ⇠ U({1, . . . , n}) ! (|Bk| � 1 leads to a ran-
domized CD algorithm); other randomized choices possible.

• cyclic: |Bk| = 1; B0 = 1 and Bk+1 = [Bkmodn] + 1 (cycles through co-
ordinate directions in order; leads to a deterministic algorithm); other
choices are possible such as reversing the order in which coordinates are
traversed.
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8.2 Global convergence of randomized CD methods B6.2 Opt Data Sci

• Gauss-Southwell: |Bk| = 1; Bk = argmax1in

��� @f
@xi

(x
k
)

��� (choose the com-
ponents corresponding to the largest componentwise decrease in the gra-
dient; leads to a deterministic algorithm) [See Problem Sheet 4]

Terminating CD algorithms is similarly problematic to SGD ones; evalu-
ating when progress is stagnating and monitoring successive block gradient
values are common heuristics.

There are some positive differences to stochastic gradient methods. Firstly,
g
k here is a descent direction (whether it is random or not), whenever it is

nonzero15
rf(x

k
)
T
(�g

k
) = �

P
i2Bk

⇣
@f
@xi

(x
k
)

⌘2
< 0, due to the definition of

g
k and the Euclidean inner product. Secondly, due to this, we are able to mea-

sure/ensure decrease in f more easily, typically; there is monotonic decrease
in f , rather than stochastic. Also, note that the variance of Gk here shrinks to
zero as k increases since every component of rf(x

⇤
) is zero at a solution; this

may not be the case for SGD, since the gradient of some fi in the sum of func-
tions may not be zero at a stationary point of f . Thus as we will see, there is no
limiting ’noise’ level for CD as there is for SGD.

Illustration. Figure 8.1 illustrates the iterates (numbered) of randomized
coordinate descent method on a two-dimensional scaled quadratic; blocks of
size one are chosen uniformly at random (with replacement).

It is not uncommon though, to notice oscillations/failure or very slow con-
vergence/stagnation when experimenting with both the deterministic and ran-
domized variants of block methods.

8.2 Global convergence of randomized CD methods

Assumptions needed for convergence Until now, we have used the follow-
ing assumption of sufficient smoothness of f , namely, that the gradient is Lip-
schitz continuous with constant L, so that for all x and y in Rn,

krf(x+ d)�rf(x)k  Lkdk. (70)

Here we use a more refined version of the L-smoothness of f , namely we as-
sume the existence of (individual) component Lipschitz constants Li, for each
i 2 {1, . . . , n}, such that

����
@f

@xi
(x+ tei)�

@f

@xi
(x)

����  Li|t|, (71)

for all x 2 Rn and all t 2 R. We define the componentwise Lipschitz constant Lmax

as
Lmax := max

i2{1,...,n}
Li. (72)

15But note that gk could be zero even if we are not at a stationary point.
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Randomized	Coordinate	Descent	in	2D

a2 = b2
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Figure 15: Randomized CD method applied to a scaled quadratic function
[@Peter Richtarik, Kaust].

L and Lmax are connected as follows (see Problem Sheet 4)

Lmax  L  nLmax. (73)

A useful property follows, an overestimation property along coordinate direc-
tions, which is similar to Lemma 5 and to Proposition 2(iv) and equation (11)
(Lectures 1–8). Note that as in SGD, the random choice of (block) coordinates
introduces randomness at each iteration. Thus again, we talk about random
iterates Xk and a random estimator Gk of rf(X

k
). Again we will have condi-

tional expectation depending on the choice of block/random coordinate, and
also total expectation depending on the past history (which here will again
reduce to the ’history’ of the previous iterate).

Lemma 7. [An overestimation property for coordinate directions] Assume f satisfies
(71) and (72). Then for each i 2 {1, . . . , n}, x 2 Rn and ↵ � 0, we have

f(x� ↵g)  f(x)� ↵

✓
1�

Lmax

2
↵

◆✓
@f

@xi
(x)

◆2

, (74)

where g = rif(x) =
@f
@xi

(x)ei. Apply randomized CD method to (66) with |Bk| = 1
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and Bk chosen uniformly at random (with replacement) and ↵
k
> 0. Then

EBk

⇥
f(X

k+1
)
⇤
 f(X

k
)�

↵
k

n

✓
1�

Lmax↵
k

2

◆
krf(X

k
)k

2
, (75)

where EBk denotes conditional expectation with respect to the random variable Bk.

Proof. Given that we now want to make use of the coordinate Lipschitz con-
stants Li, we need to prove a slightly different variant of equation (11) (Lec-
tures 1–8). Use the Taylor expansion f(x+d) = f(x)+rf(x)

T
d+

R 1
0 d

T
[rf(x+

td)�rf(x)]dt with d := �↵g to deduce

f(x� ↵g) = f(x) +rf(x)
T
(�↵g) +

R 1
0 [rf(x� t↵g)�rf(x)]

T
(�↵g)dt,

 f(x)� ↵g
T
rf(x) + ↵kgk

R 1
0 krf(x� t↵g)�rf(x)kdt,

where in the first inequality, we used the Cauchy-Schwarz inequality. Now

note that by definition of g, we have gTrf(x) =

h
@f
@xi

(x)

i
e
T
i rf(x) =

h
@f
@xi

(x)

i2
.

Also,

krf(x� t↵g)�rf(x)k =

���rf

⇣
x� t↵

@f
@xi

(x)ei

⌘
�rf(x)

���

 Li

���t↵ @f
@xi

(x)

���

 Lmaxt↵

��� @f
@xi

(x)

��� .

where we used (71). Thus we deduce

f(x� ↵g)  f(x)� ↵


@f

@xi
(x)

�2
+ Lmax↵

2


@f

@xi
(x)

�2 Z 1

0
tdt

which gives (74).

To prove (75), we let x := X
k, g := G

k
= rBkf(X

k
) =

@f
@xBk

(X
k
)eBk and

↵ := ↵
k in (74) and apply expectation with respect to Bk on both sides of the

ensuing (74),

EBk

⇥
f(X

k+1
)
⇤
 f(X

k
)� ↵

k

✓
1�

Lmax

2
↵
k

◆
EBk

"✓
@f

@xBk

(X
k
)

◆2
#
,

where we also used that Xk+1
= X

k
� ↵

k
G

k. The definition of EBk gives us

EBk

⇣
@f

@xBk
(X

k
)

⌘2
�

=
Pn

i=1 E
⇣

@f
@xBk

(X
k
)

⌘2
|Bk = i

�
P(Bk = i)

=
Pn

i=1

⇣
@f
@xi

(X
k
)

⌘2
·
1
n =

1
nkrf(X

k
)k

2
.

Now (75) follows.
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Global convergence of randomized CD: general case We have the following
result for the general case when using randomized CD with one coordinate at
a time.

Theorem 14. [Randomized CD method with fixed stepsize: general case] Consider
problem (66), with f satisfying (71) and (72) and assume f is bounded below by flow

over Rn. Apply randomized CD method to (66) starting at x0
2 Rn, with |Bk| = 1

and Bk chosen uniformly at random (with replacement) from {1, . . . , n}, indepen-
dently of the other iterations, and ↵k =

1
Lmax

. Then for k � 1,

min
0ik�1

E[krf(X
i
)k

2
] 

2nLmax(f(x
0
)� flow)

k
, (76)

and so the randomized CD method takes at most k  2nLmax(f(x
0
) � flow)

1
✏ itera-

tions to generate E[krf(X
k�1

)k
2
]  ✏.

Remarks

• Theorem 14 implies that and so lim infk!1 E[krf(X
k
)k

2
] = 0. With

more work, one can show that limk!1 E[krf(X
k
)k] = 0, ensuring global

convergence in expectation of randomized CD; see Problem Sheet 4.

• Compare this result to the gradient descent method and its general con-
vergence rate; see Theorem 1 (Lectures 1–8) (both have sublinear rate of
convergence). Comparing the constants involved: In GD with stepsize
↵
k
:= 1/L, we see (by squaring the result in Theorem 1 (Lectures 1–8))

that for GD, min0ik�1 krf(x
i
)k

2


2L(f(x0)�flow)
k . Thus, besides the

distinction of expected gradient versus true gradient being guaranteed
to be made small, the remaining difference is that the randomized CD
bound is a multiple of nLmax, while the GD one is a multiple of L. Re-
calling relation (73), we see that in the worst case, these bounds coincide.
However, it is not uncommon for L and Lmax to be similar in magnitude,
and so then, the CD bound is worse by a factor of n (which could be
large). Thus, as expected, there may be a penalty to pay for using incom-
plete problem information in the algorith.

• Other stepsize choices are possible and the result in the above theorem
continues to hold: for example, a potentially longer stepsize would be to
set ↵k to 1/LBk , or set to a global minimizer of f along g

k.

Proof. (Theorem 14) Lemma 7, namely (75), holds for each k � 0 with ↵
k
=

1/Lmax, and so we have

EBk

⇥
f(X

k+1
)
⇤
 f(X

k
)�

1

2nLmax
krf(X

k
)k

2
, k � 0. (77)

Passing to total expectation in (77), namely, taking expectation E with respect
to the past, namely, B0, . . . ,Bk�1 on both sides of the above, we note that we
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have a memoryless property so current iterate only depends on previous block,
so at the kth iteration, E = Ek := E(·|B0, . . . ,Bk) = EBk ,, while at iteration k�1,
E = Ek�1 = EBk�1 and so on. We obtain

Ek

⇥
f(X

k+1
)
⇤
 Ek�1[f(X

k
)]�

1

2nLmax
Ek�1[krf(X

k
)k

2
], k � 0, (78)

which re-arranges to give a lower bound on the expected decrease in f from
one iteration to the next,

Ei�1[f(X
i
)]� Ei

⇥
f(X

i+1
)
⇤
�

1

2nLmax
Ei�1[krf(X

i
)k

2
], i � 0, (79)

where by convention E�1[f(X
0
)] = f(x

0
) since x

0 is deterministic; similarly
for rf(x

0
); and where we re-indexed by i instead of k. Following similar ap-

proaches to earlier proofs for GD and SGD, we now sum up (79) from i = 0

to i = k, (for any k � 0) to deduce that on the left hand side of the summed
inequalities we have a telescoping sum and consecutive terms cancel leading
to

f(x
0
)� Ek

⇥
f(X

k+1
)
⇤
�

1

2nLmax

kX

i=0

Ei�1[krf(X
i
)k

2
]

and using f(X
k+1

) � flow and Ei�1[krf(X
i
)k

2
] � min0ik Ei�1[krf(X

i
)k

2
],

we deduce

f(x
0
)� flow �

1

2nLmax
(k + 1) min

0ik
Ei�1[krf(X

i
)k

2
],

which gives (76) with k + 1 instead of k, and where we let E = Ei�1.

Again, as we have seen for earlier methods, the randomized CD perfor-
mance improves when f is (strongly) convex.

Global convergence of randomized CD: convex and strongly convex cases
We have the following result in the case when f is convex and when using
randomized CD with one coordinate at a time.

Theorem 15. [Randomized CD method with fixed stepsize: convex case] Consider
problem (66), with f satisfying (71) and (72) and f(x) � f(x

⇤
) for all x 2 Rn and for

some x⇤
2 Rn. Assume also that f is a convex function (Definition 2, Lectures 1–8)

and that kx � x
⇤
k  D for all x with f(x)  f(x

0
). Apply randomized CD method

to (66) starting at x0
2 Rn, with |Bk| = 1 and Bk chosen uniformly at random (with

replacement) from {1, . . . , n}, independently of the other iterations, and ↵k =
1

Lmax
.

Then for k � 0,

E[f(Xk
)]� f(x

⇤
) 

2nLmaxD
2

k
, (80)

and so the randomized CD method takes at most k  2nLmaxD
2 1
✏ iterations to gener-

ate E[f(Xk
)]� f(x

⇤
)  ✏.
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Remarks. Note that we obtain similar guarantees as for GD method in
the same case, with similar distinctions as in the general case. In particular, we
obtain sublinear rate O(1/k) for driving the objective gap (not just the gradient)
to being sufficiently small. The theorem also implies that E[f(Xk

)]�f(x
⇤
) ! 0

as k ! 1.

The proof of the above theorem is very similar to the case of GD and SGD
applied to the same class of convex functions.

Proof. (Theorem 15) The more general conditions of Theorem 14 are satisfied
here, and so its proof is valid in this case. We now refine that proof starting at
equation (78), in which we take away f(x

⇤
) on each side to obtain that �k :=

E[f(Xk
)]� f(x

⇤
) satisfies

�k+1  �k �
1

2nLmax
E
⇥
krf(X

k
)k

2
⇤
. (81)

As seen in the proof of Theorem 2 (or for Problem Sheet 3), f being convex
implies: 0  f(X

k
)�f(x

⇤
)  rf(X

k
)
T
(X

k
�x

⇤
)  krf(X

k
)k ·k(X

k
�x

⇤
)k 

Dkrf(X
k
)k, where the latter inequality follows from the fact that f(x

k
) 

f(x
0
) for all k and so X

k is in the f(x
0
) level set of f . Squaring this and passing

to total expectation, we deduce E[(f(Xk
) � f(x

⇤
))

2
]  D

2 E[krf(X
k
)k

2
]; the

LHS of the latter satisfies E[(f(Xk
) � f(x

⇤
))

2
] � (E[(f(X

k
)] � f(x

⇤
))

2 since
var(f(X

k
)� f(x

⇤
)) � 0. Thus �2

k  D
2 E[krf(X

k
)k

2
]. The latter implies

�k+1  �k �
1

2nLmaxD
2
�

2
k, k � 0,

or equivalently,

�k ��k+1 �
1

2nLmaxD
2
�

2
k, k � 0. (82)

To resolve the above recurrence, consider the difference of reciprocals

1

�k+1
�

1

�k
=

�k ��k+1

�k�k+1
�

�k ��k+1

�2
k

,

where we used that �k+1  �k. This and (82) imply

1

�k+1
�

1

�k
�

1

2nLmaxD
2
, k � 0. (83)

Summing up the inequality (83) for k = 0 to k = i (for any i � 0), we note that
the terms on the left hand side are consecutive and so they cancel, apart from
the first and last term, while the term on the right-hand side is constant with
respect to the summation index. Thus we deduce, for any i � 0,

1

�i+1
�

1

�0
�

i+ 1

2nLmaxD
2
,

which gives (84) since �
1
�0

 0 and if we let k = i+ 1.
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We have the following result in the case when f is strongly convex and
when using randomized CD with one coordinate at a time.

Theorem 16. [Randomized CD method with fixed stepsize: strongly convex case]
Consider problem (66), with f satisfying (71) and (72). Assume also that f is a �-
strongly convex function (Definition 2, Lectures 1–8). Apply randomized CD method
to (66) starting at x0

2 Rn, with |Bk| = 1 and Bk chosen uniformly at random (with
replacement) from {1, . . . , n}, independently of the other iterations, and ↵k =

1
Lmax

.
Then for k � 0,

E[f(Xk
)]� f(x

⇤
) 

✓
1�

�

nLmax

◆k

(f(x
0
)� f(x

⇤
)), (84)

and so the randomized CD method takes at most k  O(| log ✏|) iterations to generate
E[f(Xk

)]� f(x
⇤
)  ✏.

Remarks. Note that we obtain similar guarantees as for GD method in the
same case, with similar distinctions as in the general case. In particular, we
obtain linear rate of convergence for driving the objective gap to being suffi-
ciently small. The theorem also implies that E[f(Xk

)] � f(x
⇤
) ! 0 as k ! 1,

linearly.

The proof of the above theorem is very similar to the case of GD and SGD
applied to the same class of strongly convex functions.

Proof. (Theorem 16) The more general conditions of Theorem 14 are satisfied
here, and so its proof is valid in this case. We now refine that proof starting at
equation (78), in which we take away f(x

⇤
) on each side to obtain that �k :=

E[f(Xk
)]� f(x

⇤
) satisfies

�k+1  �k �
1

2nLmax
E
⇥
krf(X

k
)k

2
⇤
. (85)

(We note that (85) is the same as (81) in Theorem 15 but it will be distinct from
that proof from now on, as in the case of strongly convex functions we are
able to improve on the bound on E

⇥
krf(X

k
)k

2
⇤
.) A consequence of the strong

convexity property of f is that f(x) � f(x
⇤
) 

1
2� krf(x)k

2 for all x. Thus,
letting x := X

k, and passing to total expectation, �k = E[f(Xk
)] � f(x

⇤
) 

1
2� E[krf(X

k
)k

2
]. Now we substitute this into (85) to deduce �k+1  �k �

2�
2nLmax

�k, k � 0, and so

�k+1 

✓
1�

�

nLmax

◆
�k, k � 0. (86)

Since �  L  nLmax, the convergence factor in (86) is in (0, 1], and so (84)
follows inductively.
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Block methods If |Bk| > 1, we have two possibilities : we partition {1, 2, . . . , n}

into blocks (of equal size or importance) and pick one block at random (with
replacement). Alternatively, as already mentioned, we choose a size and pick
each entry in the block independently at random from {1, 2, . . . , n} (without
replacement). (But at the next iteration it is with replacement to allow any
component to be picked again). Blocks of adaptive size can also be used.

8.3 Deterministic CD methods

Recall the cyclic and Gauss-Southwell rule for choosing the coordinates to tra-
verse in CD methods. CD methods with Gauss-Southwell rule will be ad-
dressed in Problem Sheet 4, while here we discuss briefly some results - or
lack of - when using cyclic CD methods.

Cyclic CD methods: general case Examples of failure exist for cyclic CD
methods.

Cyclic CD methods: an example of failure In a dedicated paper, MJD Pow-
ell (’On search directions for minimization algorithms’, Mathematical Program-
ming, 1973) constructed an example function in three dimensions on which
cyclic CD method fails to converge to a stationary point. The function is

f(x1, x2, x3) = �(x1x2 + x2x3 + x1x3) +

3X

i=1

(|xi|� 1)
2
+,

where a+ = max{a, 0}. This function is nonconvex, continuously differen-
tiable and its minimizers are at the corners (1, 1, 1)

T and (�1,�1,�1)
T of the

unit cube; see Figure 8.3. We apply the cyclic CD method to minimizing this
f , that calculates the linesearch ↵

k
2 R as the global minimizer along each

coordinate (i.e., the best possible/ideal step as it gives largest decrease in the
objective along the search direction). Note that then, cyclic CD is just a cyclic
coordinate search method (the gradient component multiple is irrelevant). If
the starting point is chosen close to one of the other – non-optimal – vertices
of the unit cube, then the cyclic CD method cycles around these non-optimal
vertices, between their neighbourhoods. (This example is special and small
perturbations of this example function leads to convergent behaviour of cyclic
CD. Also, a randomized CD method would typically converge as well.)

It is not uncommon to notice oscillations/failure or very slow convergence
or stagnation when experimenting with both the deterministic and random-
ized variants of block methods.

Cyclic CD methods: convergence results Under some stronger assumptions
(than for R-CD and the above) on general objectives, one can show convergence
of cyclic coordinate search methods.
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Coordinate descent algorithms 13

Fig. 1 Example of Powell [43] showing nonconvergence of cyclic CD

Convergence of subsequences or the full sequence {xk} to stationary points can be
proved in this setting.

3.2 Assumptions and notation

For most of this section, we focus on the unconstrained problem (1), where the objec-
tive f is convex and Lipschitz continuously differentiable. In some places, we assume
strong convexity with respect to the Euclidean norm, that is, existence of a modulus
of convexity σ > 0 such that

f (y) ≥ f (x)+ ∇ f (x)T (y − x)+ σ

2
‖y − x‖22, for all x, y. (20)

(Henceforth,weuse‖·‖ to denote theEuclideannorm‖·‖2, unless otherwise specified.)
We define Lipschitz constants that are tied to the component directions, and are key
to the algorithms and their analysis. The first set of such constants are the component
Lipschitz constants, which are positive quantities Li such that for all x ∈ Rn and all

123

Figure 16: Cyclic CD method applied to Powell’s objective: nonconvergent
behaviour [3].

Theorem 17 (Cyclic CD for general objectives). Let f be continuously differen-
tiable and bounded below on Rn16. Suppose that for each i, the minimum

min
t2R

f(x1, x2, . . . , xi�1, t, xi+1, . . . , xn)

is uniquely attained. Apply a variant of cyclic CD to (66) that globally minimises
f along each coordinate direction at a time, starting with e1, and keeping the others
fixed at the current iterate. Then every limit point of the sequence of iterates xk where
k = n, 2n, 3n, . . ., is a stationary point of f .

This result and the ones that follow can be extended to blocks of variables
as long as the blocks form a partition of {1, . . . , n} and we cycle through the
partition blocks in order. In particular, we could have two blocks of variables,
in which case we have alternating minimization algorithms.

The next theorem follows the more familiar framework of the cyclic CD
along negative gradient components.

Theorem 18 (Cyclic CD for convex functions with fixed stepsize). Consider
problem (66), with f satisfying (71) and (72) and f(x) � f(x

⇤
) for all x 2 Rn

and for some x
⇤
2 Rn. Assume also that f is a convex function (Definition 2, Lec-

tures 1–8) and that kx� x
⇤
k  D for all x with f(x)  f(x

0
). Apply the cyclic CD

method (Algorithm 4 with cyclic rule on page 52) to (66) starting at x0
2 Rn, with

16It could be a subset as well, which would make the restrictive assumptions of this result more
acceptable.
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↵k =
1

Lmax
. Then for k 2 {n, 2n, 3n, . . .},

f(x
k
)� f(x

⇤
) 

4nLmaxD
2
⇣
1 + n

L2

L2
max

⌘

k + 8
. (87)

If we compare this result to Theorem 15, since L � Lmax, the bound for
cyclic CD has a factor of n2 compared to a factor of n for randomized CD; the
rates are still sublinear, but this result shows deterministic convergence while
the earlier one was in expectation.

Similarly, we have a result for strongly convex functions.

Theorem 19 (Cyclic CD for strongly convex functions with fixed stepsize).
Consider problem (66), with f satisfying (71) and (72). Assume also that f is a �-
strongly convex function (Definition 2, Lectures 1–8). Apply the cyclic CD method
(Algorithm 4 with cyclic rule on page 52) to (66) starting at x0

2 Rn, with ↵k =
1

Lmax
.

Then for k 2 {n, 2n, 3n, . . .},

f(x
k
)� f(x

⇤
) 

✓
1�

�

2Lmax(1 + nL2/L2
max)

◆k/n

(f(x
0
)� f(x

⇤
)). (88)

Comparing this result to Theorem 16, again we see there is an extra n factor
here as (1�a)

1/n
⇡ (1�a/n) and so the denominator in the convergence factor

here has n2 factor.

We can think of the ratio L/Lmax as being close to 1 when the function can
be decoupled along coordinates, and being large(r) otherwise; indeed for the
former case it is when we expect CD methods to work well (whether random-
ized or deterministic).

8.4 Perspectives

CD methods are popular candidates for parallelization, an active area of re-
search. Accelerated variants of CD exist, as well as combinations with proxi-
mal methods for composite or regularized optimization problems. They can be
applied to many problems including the iterative solution of linear systems.

Other variants move beyond block coordinates and consider random sub-
space methods. Namely, instead of choosing a subspace aligned with the coor-
dinate directions at each iteration, they choose a random subspace (generated
for example by the column space of a Gaussian random matrix, a matrix with
iid entries from the standard normal distribution). As long as the subspace gra-
dient can be related to the full gradient – which it usually possible, probabilis-
tically – such methods have almost sure convergence (not just in expectation).
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