Sheet 2: Schwarz-Christoffel, boundary value problems

Q1 [Optional] The domain D in the ζ -plane is bounded by a polygon with exterior angles $\beta_j \pi$, j = 1, ..., n. The conformal map $\zeta = f(z)$ maps the upper half-plane Im(z) > 0 onto D, the finite points $x_1 < x_2 < ... < x_n$ on the real axis being mapped to the vertices of the polygon. Verify the Schwarz-Christoffel formula

$$\frac{\mathrm{d}f}{\mathrm{d}z} = C \prod_{j=1}^{n} (z - x_j)^{-\beta_j},$$

where C is a constant. In general, how many of the x_j can be specified independently? How is the formula modified if $x_n = \infty$?

- Q2 Write down, as an integral, the Schwarz-Christoffel map from a half-plane to a rectangle, with the vertices being the images of the points $z = \pm 1$ and $z = \pm a$, where a > 1 is real. Explain why a cannot be specified arbitrarily, but is determined by the aspect ratio of the rectangle.
- Q3 The domain D consists of the upper half-plane with a solid wall along the real axis. The segment of the imaginary axis from z = 0 to z = i is also impermeable to fluid. Find the complex potential for inviscid incompressible irrotational flow in D with velocity $(U_1, 0)$ at infinity.
- Q4 The domain D consists of the right-hand half plane x > 0 with the circle |z a| = b, 0 < b < a, and its interior removed. Find the temperature u(x,y) in steady heat flow if u = 0 on the y axis, u = 1 on |z a| = b, and $u \to 0$ at infinity.
- Q5 (a) Show that the complex potential for uniform flow with unit speed at an angle θ to the real axis is $w(z) = e^{-i\theta}z$.
 - (b) Hence find the potential for flow past the circle |z| = R with the same uniform flow in the far field.
 - (c) Calculate the potential for flow past the ellipse

$$\frac{x^2}{(R+1/R)^2} + \frac{y^2}{(R-1/R)^2} = 1$$

with the same far-field condition.

- Q6 (a) Carefully define a branch of the function $\cosh^{-1}(Z)$ that is holomorphic in the upper half-plane. What is $\cosh^{-1}(0)$? What is the derivative of $\cosh^{-1}(Z)$?
 - (b) Show that the Schwarz-Christoffel map from the upper half-plane to the exterior of the halfstrip $0 < x < \infty$, -1 < y < 1 has the form

$$z = A + C\left(Z\sqrt{Z^2 - 1} - \cosh^{-1}Z\right),\,$$

and find the constants A and C.

(c) Hence find the complex potential w(z) for potential flow past this obstacle with a uniform stream $(U_1,0)$ at infinity.

Hints Q4: Show that the mapping $\zeta = (z-\alpha)/(z+\alpha)$, with α real and positive, takes D onto an annular region with the imaginary axis mapping to $|\zeta| = 1$ and show that, if $\alpha^2 = a^2 - b^2$, then the image of D is a concentric circular annulus. Q5(c): Consider the inverse of the Joukowski map. Q6(b): Map $Z = \pm 1$ to the finite corners of the domain, and $Z = \infty$ to the vertex at $x = \infty$. Q6(c): Bearing in mind the behaviour of the mapping at infinity, think carefully about the potential in the Z plane: it is not 'constant $\times Z$.'