Sheet 2: Schwarz-Christoffel, boundary value problems

Q1 [Optional] The domain D in the ζ-plane is bounded by a polygon with exterior angles $\beta_{j} \pi$, $j=1, \ldots, n$. The conformal map $\zeta=f(z)$ maps the upper half-plane $\operatorname{Im}(z)>0$ onto D, the finite points $x_{1}<x_{2}<\ldots<x_{n}$ on the real axis being mapped to the vertices of the polygon. Verify the Schwarz-Christoffel formula

$$
\frac{\mathrm{d} f}{\mathrm{~d} z}=C \prod_{j=1}^{n}\left(z-x_{j}\right)^{-\beta_{j}},
$$

where C is a constant. In general, how many of the x_{j} can be specified independently? How is the formula modified if $x_{n}=\infty$?

Q2 Write down, as an integral, the Schwarz-Christoffel map from a half-plane to a rectangle, with the vertices being the images of the points $z= \pm 1$ and $z= \pm a$, where $a>1$ is real. Explain why a cannot be specified arbitrarily, but is determined by the aspect ratio of the rectangle.

Q3 The domain D consists of the upper half-plane with a solid wall along the real axis. The segment of the imaginary axis from $z=0$ to $z=\mathrm{i}$ is also impermeable to fluid. Find the complex potential for inviscid incompressible irrotational flow in D with velocity $\left(U_{1}, 0\right)$ at infinity.

Q4 The domain D consists of the right-hand half plane $x>0$ with the circle $|z-a|=b, 0<b<a$, and its interior removed. Find the temperature $u(x, y)$ in steady heat flow if $u=0$ on the y axis, $u=1$ on $|z-a|=b$, and $u \rightarrow 0$ at infinity.

Q5 (a) Show that the complex potential for uniform flow with unit speed at an angle θ to the real axis is $w(z)=\mathrm{e}^{-\mathrm{i} \theta} z$.
(b) Hence find the potential for flow past the circle $|z|=R$ with the same uniform flow in the far field.
(c) Calculate the potential for flow past the ellipse

$$
\frac{x^{2}}{(R+1 / R)^{2}}+\frac{y^{2}}{(R-1 / R)^{2}}=1
$$

with the same far-field condition.
Q6 (a) Carefully define a branch of the function $\cosh ^{-1}(Z)$ that is holomorphic in the upper half-plane. What is $\cosh ^{-1}(0)$? What is the derivative of $\cosh ^{-1}(Z)$?
(b) Show that the Schwarz-Christoffel map from the upper half-plane to the exterior of the halfstrip $0<x<\infty,-1<y<1$ has the form

$$
z=A+C\left(Z \sqrt{Z^{2}-1}-\cosh ^{-1} Z\right)
$$

and find the constants A and C.
(c) Hence find the complex potential $w(z)$ for potential flow past this obstacle with a uniform stream $\left(U_{1}, 0\right)$ at infinity.

Hints Q_{4} : Show that the mapping $\zeta=(z-\alpha) /(z+\alpha)$, with α real and positive, takes D onto an annular region with the imaginary axis mapping to $|\zeta|=1$ and show that, if $\alpha^{2}=a^{2}-b^{2}$, then the image of D is a concentric circular annulus. Q5(c): Consider the inverse of the Joukowski map. Q6(b): Map $Z= \pm 1$ to the finite corners of the domain, and $Z=\infty$ to the vertex at $x=\infty . Q 6(c):$ Bearing in mind the behaviour of the mapping at infinity, think carefully about the potential in the Z plane: it is not 'constant $\times Z$.'

