Sheet 3: Free surface flows

Q1 Inviscid irrotational fluid flows steadily in the domain Ω shown in figure 1, between a rigid wall $A B C$ consisting of two semi-infinite straight line segments meeting at right angles, and a free surface $A^{\prime} C^{\prime}$.

Figure 1: A jet climbing a wall.
The fluid layer has thickness 1 and velocity $(1,0)$ far upstream, at $A A^{\prime}$. The boundary value problem for the complex potential $w(z)=\phi+\mathrm{i} \psi$ is that $w(z)$ is holomorphic in Ω, with

$$
\psi=0 \text { on } A B C, \quad \psi=1, \quad\left|w^{\prime}\right|=1 \text { on } A^{\prime} C^{\prime},
$$

where $w^{\prime}(z)=u-\mathrm{i} v$ is the complex velocity. In addition, take the reference point for ϕ so that $w=0$ at B.
(a) Show that flow domain in the potential plane (w) is a strip, while in the hodograph plane $\left(w^{\prime}\right)$ it is a quarter of the unit circle.
(b) Show that the map to a half plane is

$$
\zeta=e^{\pi w}=\left(\frac{\left(w^{\prime}\right)^{2}-1}{\left(w^{\prime}\right)^{2}+1}\right)^{2} .
$$

(c) Parametrise the free surface $A^{\prime} C^{\prime}$ by $w^{\prime}=\mathrm{e}^{-\mathrm{i} \theta}$, where $0 \leq \theta \leq \pi / 2$. Show that

$$
\zeta=-\tan ^{2} \theta, \quad \frac{\mathrm{~d} z}{\mathrm{~d} \theta}=\frac{1}{w^{\prime}} \frac{\mathrm{d} w}{\mathrm{~d} \zeta} \frac{\mathrm{~d} \zeta}{\mathrm{~d} \theta}=\frac{2}{\pi}(\operatorname{cosec} \theta+\mathrm{isec} \theta) \quad \text { on } \quad A^{\prime} C^{\prime} .
$$

(d) Find parametric equations for the free surface from the real and imaginary parts of $\mathrm{d} z / \mathrm{d} \theta$. Check that it looks as it should.

Q2 A two-dimensional jet of inviscid irrotational fluid, of thickness $2 h_{\infty}$ and moving to the right with speed 1 , enters a semi-infinite rectangular cavity with walls at $y= \pm 1$ and $x=L$, as shown in figure 2; the y axis is tangent to the free surface.
The boundary value problem for the complex potential $w(z)=\phi+\mathrm{i} \psi$ for the upper half of the flow (within the strip $0<y<1,-\infty<x<L$) is that $w(z)$ is holomorphic in the fluid region, with

$$
\psi=0 \text { on } A B C D E, \quad \psi=h_{\infty}, \quad\left|w^{\prime}\right|=1 \text { on } A^{\prime} E^{\prime},
$$

where $w^{\prime}(z)=u-\mathrm{i} v$ is the complex velocity. In addition, take the reference point for ϕ so that $w=0$ at C.
(a) Sketch the flow domain in the potential and hodograph planes.

Figure 2: A jet entering a box.
(b) Now consider the case $L=\infty$, with stagnant fluid far inside the cavity.
(i) Show that B, C and D coincide at the origin in the hodograph plane, so that the flow domain is the whole interior of the semicircle in the lower half plane.
(ii) Show that

$$
\frac{\mathrm{d} w}{\mathrm{~d} z}=\frac{1-\mathrm{e}^{\pi w / 2 h_{\infty}}}{1+\mathrm{e}^{\pi w / 2 h_{\infty}}}=-\tanh \frac{\pi w}{4 h_{\infty}} .
$$

Find w satisfying $w=\mathrm{i} h_{\infty}$ at $z=\mathrm{i} / 2$, the tip of the air finger shown in figure 2.
(iii) Show that the free surface for this flow, $w=\phi+\mathrm{i} h_{\infty},-\infty<\phi<\infty$, satisfies

$$
\mathrm{e}^{-\pi x / 2 h_{\infty}} \cos \left(\frac{\pi\left(y-\frac{1}{2}\right)}{2 h_{\infty}}\right)=1,
$$

and show that $y \rightarrow \pm h_{\infty}$ as $x \rightarrow-\infty$ is only consistent if h_{∞} takes a particular value, which you should find.

Q3 [Optional] Consider potential flow with a free surface (and no gravity) over a horizontal base along the x axis, with a thin vertical obstacle along the y axis from $z=0$ to $z=\mathrm{i}$. The flow far away from the obstacle is uniform with velocity $(1,0)$ and height h_{∞}, and the free surface is assumed to be symmetric about $x=0$.

Figure 3: Free surface flow over an obstacle.

Taking the point C to be at $w=0$ and B and D at $w= \pm \beta$, construct the flow domain in the potential and hodograph planes. Show that the transformation $\zeta=2 /\left(1-w^{\prime 2}\right)$ maps the latter onto a polygonal domain, and the transformation $\zeta_{2}=\tanh \left(\pi w / 2 h_{\infty}\right)$ maps the potential plane to the upper half plane.
Hence use a Schwarz-Christoffel transformation to find an implicit relationship between w^{\prime} and w, depending on β (in principle β can be related to h_{∞} once $w^{\prime}=F(w)$ is determined).

