Sheet 5: Applications of the Plemelj formulae, transforms

Q1 Suppose f satisfies the Cauchy singular integral equation

$$a(t)f(t) + \frac{b(t)}{\pi i} \int_{\Gamma} \frac{f(\zeta) d\zeta}{\zeta - t} = c(t)$$
 on Γ , (*)

where a, b and c are holomorphic in a neighbourhood of Γ .

(a) Show that, if

$$w(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(\zeta) d\zeta}{\zeta - z},$$

then $(a+b)w_+ + (b-a)w_- = c$ on Γ .

(b) Now suppose a+b and a-b are not zero on Γ , and that \tilde{w} is holomorphic and non-zero away from Γ and that $(a+b)\tilde{w}_+ = -(b-a)\tilde{w}_- \neq 0$ on Γ . Show that

$$\left(\frac{w}{\tilde{w}}\right)_{+} - \left(\frac{w}{\tilde{w}}\right)_{-} = \frac{c}{(a+b)\tilde{w}_{+}}$$
 on Γ .

(c) Hence show that

$$w(z) = \frac{\tilde{w}(z)}{2\pi i} \int_{\Gamma} \frac{c(\zeta) d\zeta}{(a(\zeta) + b(\zeta))\tilde{w}_{+}(\zeta)(\zeta - z)}$$

is a possible solution for w(z) and that (*) is satisfied by

$$f(t) = -\frac{b(t)\tilde{w}_{+}(t)}{(a(t) - b(t))} \frac{1}{\pi i} \int_{\Gamma} \frac{c(\zeta)}{(a(\zeta) + b(\zeta))\tilde{w}_{+}(\zeta)} \frac{d\zeta}{\zeta - t} + \frac{c(t)a(t)}{a(t)^{2} - b(t)^{2}}.$$

Q2 Suppose $f(x) = e^{|x|}$ for $-\infty < x < \infty$

(a) If $f(x) = f_+(x) + f_-(x)$, where $f_+(x) = 0$ for x < 0 and $f_-(x) = 0$ for x > 0, show that the Fourier transforms of f_+ and f_- are given by

$$\bar{f}_+(k) = \int_{-\infty}^{\infty} f_+(x) e^{ikx} dx = \frac{i}{k-i}$$
 for $\operatorname{Im}(k) > 1$

and

$$\bar{f}_{-}(k) = \int_{-\infty}^{\infty} f_{-}(x)e^{ikx}dx = -\frac{i}{k+i}$$
 for $\operatorname{Im}(k) < -1$

To which parts of the complex k-plane may $\bar{f}_{\pm}(k)$ be analytically continued?

(b) Use contour integration to evaluate

$$\frac{1}{2\pi} \int_{-\infty + i\alpha}^{\infty + i\alpha} \bar{f}_{+}(k) e^{-ikx} dk \quad \text{and} \quad \frac{1}{2\pi} \int_{-\infty + i\beta}^{\infty + i\beta} \bar{f}_{-}(k) e^{-ikx} dk$$

for x < 0 and x > 0, where $\alpha > 1$ and $\beta < -1$.

(c) Over which part of the complex k-plane is it possible to define $\bar{f}(k)$? Sketch a suitable inversion contour Γ for which

$$f(x) = \frac{1}{2\pi} \oint_{\Gamma} \bar{f}(k) e^{-ikx} dk.$$

Verify this result using contour integration.

Q3 (a) Show that

$$w(z) = \int_{\Gamma} g(\zeta) e^{z\zeta} d\zeta \tag{\dagger}$$

is a solution of Airy's equation

$$\frac{\mathrm{d}^2 w}{\mathrm{d}z^2} + zw = 0$$

only if $g(\zeta) = Ae^{\zeta^3/3}$ and $[g(\zeta)e^{z\zeta}]_{\Gamma} = 0$, where A is a constant. Identify two choices for Γ which lead to two independent solutions of the differential equation.

(b) Show that (†) is a solution of Bessel's equation

$$\frac{\mathrm{d}^2 w}{\mathrm{d}z^2} + \frac{1}{z} \frac{\mathrm{d}w}{\mathrm{d}z} + w = 0$$

only if $g(\zeta) = A/(1+\zeta^2)^{1/2}$ and $[(1+\zeta^2)g(\zeta)e^{z\zeta}]_{\Gamma} = 0$. Identify two choices for Γ which lead to two independent solutions of the differential equation for Re(z) > 0.