## Sheet 5: Applications of the Plemelj formulae, transforms

Q1 Suppose $f$ satisfies the Cauchy singular integral equation

$$
\begin{equation*}
a(t) f(t)+\frac{b(t)}{\pi \mathrm{i}} f_{\Gamma} \frac{f(\zeta) \mathrm{d} \zeta}{\zeta-t}=c(t) \quad \text { on } \quad \Gamma \tag{*}
\end{equation*}
$$

where $a, b$ and $c$ are holomorphic in a neighbourhood of $\Gamma$.
(a) Show that, if

$$
w(z)=\frac{1}{2 \pi \mathrm{i}} \int_{\Gamma} \frac{f(\zeta) \mathrm{d} \zeta}{\zeta-z}
$$

then $(a+b) w_{+}+(b-a) w_{-}=c$ on $\Gamma$.
(b) Now suppose $a+b$ and $a-b$ are not zero on $\Gamma$, and that $\tilde{w}$ is holomorphic and non-zero away from $\Gamma$ and that $(a+b) \tilde{w}_{+}=-(b-a) \tilde{w}_{-} \neq 0$ on $\Gamma$. Show that

$$
\left(\frac{w}{\tilde{w}}\right)_{+}-\left(\frac{w}{\tilde{w}}\right)_{-}=\frac{c}{(a+b) \tilde{w}_{+}} \quad \text { on } \quad \Gamma .
$$

(c) Hence show that

$$
w(z)=\frac{\tilde{w}(z)}{2 \pi \mathrm{i}} \int_{\Gamma} \frac{c(\zeta) \mathrm{d} \zeta}{(a(\zeta)+b(\zeta)) \tilde{w}_{+}(\zeta)(\zeta-z)}
$$

is a possible solution for $w(z)$ and that $(*)$ is satisfied by

$$
f(t)=-\frac{b(t) \tilde{w}_{+}(t)}{(a(t)-b(t))} \frac{1}{\pi \mathrm{i}} f_{\Gamma} \frac{c(\zeta)}{(a(\zeta)+b(\zeta)) \tilde{w}_{+}(\zeta)} \frac{\mathrm{d} \zeta}{\zeta-t}+\frac{c(t) a(t)}{a(t)^{2}-b(t)^{2}}
$$

Q2 Suppose $f(x)=\mathrm{e}^{|x|}$ for $-\infty<x<\infty$.
(a) If $f(x)=f_{+}(x)+f_{-}(x)$, where $f_{+}(x)=0$ for $x<0$ and $f_{-}(x)=0$ for $x>0$, show that the Fourier transforms of $f_{+}$and $f_{-}$are given by

$$
\bar{f}_{+}(k)=\int_{-\infty}^{\infty} f_{+}(x) \mathrm{e}^{\mathrm{i} k x} \mathrm{~d} x=\frac{\mathrm{i}}{k-\mathrm{i}} \quad \text { for } \quad \operatorname{Im}(k)>1
$$

and

$$
\bar{f}_{-}(k)=\int_{-\infty}^{\infty} f_{-}(x) \mathrm{e}^{\mathrm{i} k x} \mathrm{~d} x=-\frac{\mathrm{i}}{k+\mathrm{i}} \quad \text { for } \quad \operatorname{Im}(k)<-1
$$

To which parts of the complex $k$-plane may $\bar{f}_{ \pm}(k)$ be analytically continued?
(b) Use contour integration to evaluate

$$
\frac{1}{2 \pi} \int_{-\infty+\mathrm{i} \alpha}^{\infty+\mathrm{i} \alpha} \bar{f}_{+}(k) \mathrm{e}^{-\mathrm{i} k x} \mathrm{~d} k \quad \text { and } \quad \frac{1}{2 \pi} \int_{-\infty+\mathrm{i} \beta}^{\infty+\mathrm{i} \beta} \bar{f}_{-}(k) \mathrm{e}^{-\mathrm{i} k x} \mathrm{~d} k
$$

for $x<0$ and $x>0$, where $\alpha>1$ and $\beta<-1$.
(c) Over which part of the complex $k$-plane is it possible to define $\bar{f}(k)$ ? Sketch a suitable inversion contour $\Gamma$ for which

$$
f(x)=\frac{1}{2 \pi} f_{\Gamma} \bar{f}(k) \mathrm{e}^{-\mathrm{i} k x} \mathrm{~d} k
$$

Verify this result using contour integration.

Q3 (a) Show that

$$
w(z)=\int_{\Gamma} g(\zeta) \mathrm{e}^{z \zeta} \mathrm{~d} \zeta
$$

is a solution of Airy's equation

$$
\frac{\mathrm{d}^{2} w}{\mathrm{~d} z^{2}}+z w=0
$$

only if $g(\zeta)=A \mathrm{e}^{\zeta^{3} / 3}$ and $\left[g(\zeta) \mathrm{e}^{z \zeta}\right]_{\Gamma}=0$, where $A$ is a constant. Identify two choices for $\Gamma$ which lead to two independent solutions of the differential equation.
(b) Show that ( $\dagger$ ) is a solution of Bessel's equation

$$
\frac{\mathrm{d}^{2} w}{\mathrm{~d} z^{2}}+\frac{1}{z} \frac{\mathrm{~d} w}{\mathrm{~d} z}+w=0
$$

only if $g(\zeta)=A /\left(1+\zeta^{2}\right)^{1 / 2}$ and $\left[\left(1+\zeta^{2}\right) g(\zeta) \mathrm{e}^{z \zeta}\right]_{\Gamma}=0$. Identify two choices for $\Gamma$ which lead to two independent solutions of the differential equation for $\operatorname{Re}(z)>0$.

