4 Plemelj formulae and applications

4.1 Introduction

The problem of determining a holomorphic function $w(z)$ in terms of its values on a curve Γ is equivalent to solving a Cauchy problem for Laplace's equation and therefore ill-posed: the solution may not exist or may not be unique or it may not depend continuously on the boundary values.

Example. If $w(z)$ is holomorphic in $y>0$ and

$$
\begin{equation*}
w(x)=\frac{\delta^{2} \epsilon}{\delta^{2}+x^{2}} \quad \text { for } y=0, \quad-\infty<x<\infty \tag{4.1}
\end{equation*}
$$

then

$$
\begin{equation*}
w(z)=\frac{\delta^{2} \epsilon}{\delta^{2}+z^{2}} \tag{4.2}
\end{equation*}
$$

Thus $|w| \leq \epsilon$ on $y=0$, and $w \rightarrow \infty$ as $z \rightarrow \mathrm{i} \delta$. Since ϵ and δ may be arbitrarily small, we see that, however small w is on $y=0$, it may become arbitrarily large an arbitrarily small distance from $y=0$.

This example illustrates that trying to specify $w(z)$ on a given curve is ill posed. However, well-posed problems may be formulated in which, for example, $\operatorname{Re} w$ or $\operatorname{Im} w$ are specified on Γ or the jump in w across Γ is prescribed. We will show how a wide class of such problems may be tackled using the so-called Plemelj formulae.

4.2 Plemelj formulae

Recall that if w is holomorphic inside and on the closed contour Γ and z is a point inside Γ, then Cauchy's integral formula states that

$$
\begin{equation*}
w(z)=\frac{1}{2 \pi \mathrm{i}} \oint_{\Gamma} \frac{w(\zeta) \mathrm{d} \zeta}{\zeta-z} \tag{4.3}
\end{equation*}
$$

This relates the values of w inside the contour to the values of w on the contour.
Let us consider more generally the Cauchy integral

$$
\begin{equation*}
w(z)=\frac{1}{2 \pi \mathrm{i}} \int_{\Gamma} \frac{f(\zeta) \mathrm{d} \zeta}{\zeta-z} \tag{4.4}
\end{equation*}
$$

where f is a given function on the contour Γ, which may now be closed or open. If Γ is open, it is convenient in the subsequent analysis to adopt the convention that it does not contain its endpoints, $a, b \in \mathbb{C}$ say. Thus, an open contour may be parametrized by

$$
\begin{equation*}
\Gamma=\left\{\gamma(t) \in \mathbb{C}: t_{0}<t<t_{1}\right\} \tag{4.5}
\end{equation*}
$$

where $a=\gamma\left(t_{0}\right) \neq \gamma\left(t_{1}\right)=b$ and $t_{0}<t_{1}$ are real constants. We then define

$$
\begin{equation*}
\bar{\Gamma}=\left\{\gamma(t) \in \mathbb{C}: t_{0} \leq t \leq t_{1}\right\} \tag{4.6}
\end{equation*}
$$

to be the (topological) closure of Γ, i.e. $\bar{\Gamma}$ is the union of Γ and its endpoints. (If Γ is a closed contour, then $\bar{\Gamma}=\Gamma$ because Γ is (topologically) closed.)

If f is sufficiently smooth (e.g. continuous) on $\bar{\Gamma}$, then the function $w(z)$ defined by the Cauchy integral (4.4) is holomorphic on $\mathbb{C} \backslash \bar{\Gamma}$ (its derivatives may be found by differentiating under the integral sign). Now we pose the question: what is the limiting value of $w(z)$ as z approaches Γ ? It turns out that the answer depends on which side of Γ is approached by z.

Suppose $t \in \Gamma$ is any point at which Γ is smooth and that f is holomorphic in a neighbourhood of t and continuous on Γ. Let us label the left-hand side of Γ (as Γ is traversed in the direction of integration) as "+", and the right-hand side as "-". Let z approach $t \in \Gamma$ from the positive side as illustrated in Figure $4.1(\mathrm{a})$. We deform Γ near t by replacing

Figure 4.1: Deformed integration contour for $w_{+}(z)$.
$\gamma_{\epsilon}=\Gamma \cap D(t ; \epsilon) \subset \Gamma$ with a small semi-circle C_{ϵ} as illustrated in Figure 4.1(b), where ϵ is sufficiently small that f is holomorphic in the disc $D(t ; 2 \epsilon)=\{z:|z-t|<2 \epsilon\}$ say. By the deformation theorem,

$$
\begin{equation*}
w_{+}(t)=\lim _{z \rightarrow t} \frac{1}{2 \pi \mathrm{i}}\left(\int_{\Gamma \backslash \gamma_{\epsilon}}+\int_{C_{\epsilon}}\right) \frac{f(\zeta)}{\zeta-z} \mathrm{~d} \zeta=\frac{1}{2 \pi \mathrm{i}}\left(\int_{\Gamma \backslash \gamma_{\epsilon}}+\int_{C_{\epsilon}}\right) \frac{f(\zeta)}{\zeta-t} \mathrm{~d} \zeta \tag{4.7}
\end{equation*}
$$

As $\epsilon \rightarrow 0$, the semi-circle gives a residue contribution

$$
\frac{1}{2} \times 2 \pi \mathrm{i} \times \frac{f(t)}{2 \pi \mathrm{i}}=\frac{1}{2} f(t)
$$

where the factor of $1 / 2$ arises because we are only integrating over a semi-circle. Hence,

$$
\begin{equation*}
w_{+}(t)=\lim _{\epsilon \rightarrow 0} \frac{1}{2 \pi \mathrm{i}}\left(\int_{\Gamma \backslash \gamma_{\epsilon}}+\int_{C_{\epsilon}}\right) \frac{f(\zeta)}{\zeta-t} \mathrm{~d} \zeta=\frac{1}{2 \pi \mathrm{i}} f_{\Gamma} \frac{f(\zeta)}{\zeta-t} \mathrm{~d} \zeta+\frac{1}{2} f(t) \tag{4.8}
\end{equation*}
$$

where we define the Principal Value integral as

$$
\begin{equation*}
f_{\Gamma} \frac{f(\zeta)}{\zeta-t} \mathrm{~d} \zeta=\lim _{\epsilon \rightarrow 0} \int_{\Gamma \backslash \gamma_{\epsilon}} \frac{f(\zeta)}{\zeta-t} \mathrm{~d} \zeta \tag{4.9}
\end{equation*}
$$

Figure 4.2: Deformed integration contour for $w_{-}(z)$.

This limit always exists because the \log singularities from the endpoints cancel as $\epsilon \rightarrow 0$ when f is continuous on Γ.

If we let $z \rightarrow t \in \Gamma$ from the minus side as illustrated in Figure 4.2(a), then we must deform Γ near $\zeta=t$ by replacing $\gamma_{\epsilon} \subset \Gamma$ with a small semi-circle C_{ϵ}^{\prime} as illustrated in Figure 4.2(b). Again by the deformation theorem

$$
\begin{equation*}
w_{-}(t)=\lim _{\epsilon \rightarrow 0} \frac{1}{2 \pi \mathrm{i}}\left(\int_{\Gamma \backslash \gamma_{\epsilon}}+\int_{C_{\epsilon}^{\prime}}\right) \frac{f(\zeta)}{\zeta-t} \mathrm{~d} \zeta=\frac{1}{2 \pi \mathrm{i}} f_{\Gamma} \frac{f(\zeta)}{\zeta-t} \mathrm{~d} \zeta-\frac{1}{2} f(t) \tag{4.10}
\end{equation*}
$$

In this case we are integrating in the opposite direction around the semi-circle, so that the residue contribution is $-f(t) / 2$.

Equations (4.8) and (4.10) are known as the Plemelj formulae. In deriving them, we have assumed that Γ is a smooth contour and that f is continuous on $\bar{\Gamma}$. These conditions may be relaxed (see e.g. Ablowitz \& Fokas), but we will persist with these assumptions henceforth. It follows that $w(z)$ is holomorphic and that $w(z)=O(1 / z)$ as $z \rightarrow \infty$.

The contour deformation approach shown in Figures 4.1 and 4.2 clearly does not work if $t=t_{e}(=a$ or $b)$ is an end-point of Γ. The local behaviour as $z \rightarrow t_{e}$ depends on the local behaviour of $f(\zeta)$. The following results may be derived using perturbation methods or quoted from Ablowitz \& Fokas.

$$
\begin{align*}
& \text { As } z \rightarrow t_{e} \text { with } z \in \mathbb{C} \backslash \bar{\Gamma} \text { : } \\
& \quad \text { if } f(\zeta) \rightarrow 0 \text { as } \zeta \rightarrow t_{e} \text {, then } w(z)=O(1) \text {; } \tag{4.11a}\\
& \text { if } f(\zeta)=O(1) \text { as } \zeta \rightarrow t_{e} \text {, then } w(z)=O\left(\log \left(z-t_{e}\right)\right) \text {; } \tag{4.11b}\\
& \text { if } f(\zeta)=O\left(\left(\zeta-t_{e}\right)^{-\alpha}\right) \text { as } \zeta \rightarrow t_{e} \text {, with } \alpha \in(0,1) \text {, then } w(z)=O\left(\left(z-t_{e}\right)^{-\alpha}\right) . \tag{4.11c}
\end{align*}
$$

4.3 Solving problems with the Plemelj formulae

Problem 1

Find a function $w(z)$ holomorphic on $\mathbb{C} \backslash \bar{\Gamma}$ such that the limiting values of $w(z)$ as $z \rightarrow t \in \Gamma$ from either side satisfy

$$
\begin{equation*}
w_{+}(t)-w_{-}(t)=G(t), \tag{4.12}
\end{equation*}
$$

where G is continuous on $\bar{\Gamma}$.
Solution. We seek a solution for w as a Cauchy integral

$$
\begin{equation*}
w(z)=\frac{1}{2 \pi \mathrm{i}} \int_{\Gamma} \frac{f(\zeta) \mathrm{d} \zeta}{\zeta-z}, \tag{4.13}
\end{equation*}
$$

where our aim is to use the jump condition (4.12) to determine the density function f. By subtracting the Plemelj formulae (4.10) and (4.8) we find that

$$
\begin{equation*}
w_{+}(t)-w_{-}(t)=f(t) \tag{4.14}
\end{equation*}
$$

on Γ. Hence, we read off $f=G$, and a solution is given by

$$
\begin{equation*}
w(z)=\frac{1}{2 \pi \mathrm{i}} \int_{\Gamma} \frac{G(\zeta) \mathrm{d} \zeta}{\zeta-z} \tag{4.15}
\end{equation*}
$$

This shows that the Plemelj formulae allow us easily to find a solution $w(z)$ that is holomorphic on $\mathbb{C} \backslash \bar{\Gamma}$ and satisfies the jump condition (4.12). However, the solution (4.15) is not unique. The homogeneous problem with $G=0$ consists of finding a function that is holomorphic on $\mathbb{C} \backslash \bar{\Gamma}$ and continuous across Γ, which is satisfied by any function $w(z)=h(z)$ that is holomorphic on $\mathbb{C} \backslash\{a, b\}$. Morera's Theorem may be used to prove that all solutions of the homogeneous problem must be of this form. Therefore the general solution of Problem 1 is

$$
\begin{equation*}
w(z)=\frac{1}{2 \pi \mathrm{i}} \int_{\Gamma} \frac{G(\zeta) \mathrm{d} \zeta}{\zeta-z}+h(z) \tag{4.16}
\end{equation*}
$$

where $h(z)$ is an arbitrary function of z that is holomorphic on $\mathbb{C} \backslash\{a, b\}$.
To pin down h, it is necessary to prescribe the behaviour of w at a, b and ∞. For example, suppose we impose the additional conditions:
(I) w is finite or has a logarithmic singularity at each of the endpoints of Γ;
(II) there exists $n \in \mathbb{N}$ such that $w(z)=O\left(z^{n}\right)$ as $|z| \rightarrow \infty$.

Then, (I), the quotable results (4.11) and Laurent's Theorem imply that h can only have removable singularities at a and b, so that h is in fact entire. Hence, by (II) and the corollary to Liouville's theorem, $h(z)=p_{n}(z)$, an arbitrary polynomial of degree n.

Problem 2

Consider the particular case where Γ is a line segment on the real axis: $\Gamma=\{x: 0<x<c\}$ for some $c>0$. Suppose we are given $\operatorname{Im} w_{ \pm}(x)=g_{ \pm}(x)$ on Γ, with w holomorphic on $\mathbb{C} \backslash \bar{\Gamma}$. Find w when (1) $g_{+}(x)=-g_{-}(x)=g(x)$ and (2) $g_{+}(x)=g_{-}(x)=g(x)$, where $g(x)$ is continuous on $\bar{\Gamma}$.

Remark. If $w(z)=u(x, y)+\mathrm{i} v(x, y)$, then this problem is equivalent to the problem of finding v such that $\nabla^{2} v=0$ away from $\bar{\Gamma}$, and $v_{ \pm}(x)=g_{ \pm}(x)$ on Γ.

Solution. Seek a solution for w as a Cauchy integral of the form

$$
\begin{equation*}
w(z)=\frac{1}{2 \pi \mathrm{i}} \int_{0}^{c} \frac{f(\xi) \mathrm{d} \xi}{\xi-z} \tag{4.17}
\end{equation*}
$$

which is holomorphic on $\mathbb{C} \backslash \bar{\Gamma}$, assuming f is sufficiently regular. The Plemelj formulae (4.8)-(4.10) become

$$
\begin{equation*}
w_{ \pm}(x)=u_{ \pm}(x)+\mathrm{i} g_{ \pm}(x)= \pm \frac{1}{2} f(x)-\mathrm{i} F(x) \quad \text { on } \Gamma \tag{4.18}
\end{equation*}
$$

where we define

$$
\begin{equation*}
F(x)=\frac{1}{2 \pi} f_{0}^{c} \frac{f(\xi)}{\xi-x} \mathrm{~d} \xi . \tag{4.19}
\end{equation*}
$$

Note that $F(x)$ is real on Γ if and only if $f(x)$ is real on Γ (because ξ, x are real on Γ).
Problem 2.1: If $g_{+}(x)=-g_{-}(x)=g(x)$, then (4.18) implies that

$$
\begin{array}{ll}
w_{+}(x)+w_{-}(x)=u_{+}(x)+u_{-}(x)=-2 \mathrm{i} F(x) & \text { on } \Gamma, \\
w_{+}(x)-w_{-}(x)=u_{+}(x)-u_{-}(x)+2 \mathrm{i} g(x)=f(x) & \text { on } \Gamma . \tag{4.20b}
\end{array}
$$

By (4.20a), F must be pure imaginary, and hence f must be pure imaginary on Γ. Thus, by (4.20b), we have $u_{+}(x)-u_{-}(x)=0$ and $f(x)=2 \mathrm{i} g(x)$ on Γ. It follows that a solution for w is given by

$$
\begin{equation*}
w(z)=\frac{1}{\pi} \int_{0}^{c} \frac{g(\xi) \mathrm{d} \xi}{\xi-z}+h(z) \tag{4.21}
\end{equation*}
$$

where $h(z)$ is an arbitrary function of z that is holomorphic on $\mathbb{C} \backslash\{0, c\}$ and real on Γ (thus a solution of the homogeneous problem in which $g=0$).

Problem 2.2: If $g_{+}(x)=g_{-}(x)=g(x)$, then (4.18) becomes

$$
\begin{array}{ll}
w_{+}(x)+w_{-}(x)=u_{+}(x)+u_{-}(x)+2 \mathrm{i} g(x)=-2 \mathrm{i} F(x) & \\
w_{+}(x)-w_{+}(x)=u_{+}(x)-u_{-}(x)=f(x) & \tag{4.22b}\\
\text { on } \Gamma .
\end{array}
$$

By (4.22b), f must be real, and hence F must likewise be real, on Γ; thus, by (4.22a), we have $u_{+}(x)+u_{-}(x)=0$ and $F(x)=-g(x)$ on Γ. It follows that

$$
\begin{equation*}
w(z)=\frac{1}{2 \pi \mathrm{i}} \int_{0}^{c} \frac{f(\xi) \mathrm{d} \xi}{\xi-z} \tag{4.23}
\end{equation*}
$$

is a solution provided f satisfies the Cauchy singular integral equation

$$
\begin{equation*}
\frac{1}{\pi} f_{0}^{c} \frac{f(\xi) \mathrm{d} \xi}{\xi-x}=-2 g(x) \quad(0<x<c) \tag{4.24}
\end{equation*}
$$

which we need to invert to find f.

Remark: In Problem 2.1 the data gives $w_{+}-w_{-}$and hence f directly. In Problem 2.2 the data gives $w_{+}+w_{-}$leading to a Cauchy singular integral equation for f.

Solution. Suppose we can find an auxillary function $\tilde{w}(z)$ such that:

- $\tilde{w}(z)$ is holomorphic and non-zero on $\mathbb{C} \backslash \bar{\Gamma}$;
- $\tilde{w}(z)$ satisfies $\tilde{w}_{+}(x)=-\tilde{w}_{-}(x) \neq 0$ on Γ,
i.e. \tilde{w} is a solution of the homogeneous problem (in which $g=0$) that is non-zero on $\mathbb{C} \backslash\{a, b\}$. Now we define

$$
\begin{equation*}
W(z)=\frac{w(z)}{\tilde{w}(z)}, \tag{4.26}
\end{equation*}
$$

so that

$$
\begin{align*}
W_{+}(x)-W_{-}(x) & =\frac{w_{+}(x)}{\tilde{w}_{+}(x)}-\frac{w_{-}(x)}{\tilde{w}_{-}(x)} \\
& =\frac{w_{+}(x)}{\tilde{w}_{+}(x)}-\frac{w_{-}(x)}{-\tilde{w}_{+}(x)} \\
& =\frac{w_{+}(x)+w_{-}(x)}{\tilde{w}_{+}(x)} \\
& =\frac{2 i g(x)}{\tilde{w}_{+}(x)} \text { on } \Gamma . \tag{4.27}
\end{align*}
$$

If \tilde{w}_{+}is known, then $W_{+}-W_{-}$is known (because g is known). Therefore we have turned Problem 2.2 (in which $w_{+}+w_{-}$is given) into a version of Problem 1 (in which $W_{+}-W_{-}$is given). By Problem 1, equation (4.15), a solution for W is given by

$$
\begin{equation*}
W(z)=\frac{1}{2 \pi \mathrm{i}} \int_{0}^{c} \frac{\tilde{f}(\xi) \mathrm{d} \xi}{\xi-z}+\tilde{H}(z) \tag{4.28}
\end{equation*}
$$

where

$$
\begin{equation*}
\tilde{f}(x)=\frac{2 \mathrm{i} g(x)}{\tilde{w}_{+}(x)} \quad \text { on } \Gamma \tag{4.29}
\end{equation*}
$$

and $\tilde{H}(z)$ is an arbitrary function holomorphic on $\mathbb{C} \backslash\{0, c\}$. Thus the solution of Problem 2.2 takes the form

$$
\begin{equation*}
w(z)=\tilde{w}(z)\left(\frac{1}{\pi} \int_{0}^{c} \frac{g(\xi) \mathrm{d} \xi}{\tilde{w}_{+}(\xi)(\xi-z)}+\tilde{H}(z)\right) \tag{4.30}
\end{equation*}
$$

With W given by (4.28), the Plemelj formulae give

$$
\begin{equation*}
W_{ \pm}(x)= \pm \frac{1}{2} \tilde{f}(x)+\frac{1}{2 \pi \mathrm{i}} \int_{0}^{c} \frac{\tilde{f}(\xi) \mathrm{d} \xi}{\xi-x}+\tilde{H}(x) \quad(0<x<c) \tag{4.31}
\end{equation*}
$$

so that

$$
\begin{equation*}
\tilde{f}(x)=W_{+}(x)-W_{-}(x)=\frac{2 \mathrm{i} g(x)}{\tilde{w}_{+}(x)} \quad \text { on } \Gamma, \tag{4.32}
\end{equation*}
$$

as required. Moreover,

$$
\begin{align*}
\frac{1}{\pi \mathrm{i}} f_{0}^{c} \frac{\tilde{f}(\xi) \mathrm{d} \xi}{\xi-x}+2 \tilde{H}(x) & =W_{+}(x)+W_{-}(x) \\
& =\frac{w_{+}(x)}{\tilde{w}_{+}(x)}+\frac{w_{-}(x)}{\tilde{w}_{-}(x)} \\
& =\frac{w_{+}(x)-w_{-}(x)}{\tilde{w}_{+}(x)} \\
& =\frac{f(x)}{\tilde{w}_{+}(x)} \quad \text { on } \Gamma \tag{4.33}
\end{align*}
$$

and, with \tilde{f} given by (4.29), we deduce that

$$
\begin{equation*}
f(x)=\tilde{w}_{+}(x)\left(W_{+}(x)+W_{-}(x)\right)=2 \tilde{w}_{+}(x)\left(\frac{1}{\pi} f_{0}^{c} \frac{g(\xi) \mathrm{d} \xi}{\tilde{w}_{+}(\xi)(\xi-x)}+\tilde{H}(x)\right) \tag{4.34}
\end{equation*}
$$

satisfies the Cauchy singular integral equation (4.24).

Finding \tilde{w}

We have shown that the decomposition (4.26) allows us to transform Problem 2.2 into a version of Problem 1, and then solve it using the Plemelj formulae. As a bonus, (4.34) gives the solution $f(x)$ of the singular integral equation (4.24). It just remains to find an auxillary function $\tilde{w}(z)$ satisfying the properties (4.25), where $\Gamma=\{x+\mathrm{i} y: 0<x<c, y=0\}$ and $\bar{\Gamma}=\{x+\mathrm{i} y: 0 \leq x \leq c, y=0\}$. We need to find a function whose value as Γ is approached from above is minus that as Γ is approached from below, as shown schematically in Figure 4.3.

Figure 4.3: The jump conditions satisfied by the auxiliary function across Γ.

Example 1. When $c=\infty$, we can use $\tilde{w}(z)=z^{1 / 2}$, provided we take the branch cut along the positive real axis, i.e. $z^{1 / 2}=r^{1 / 2} \mathrm{e}^{\mathrm{i} \theta / 2}$ for $z=r \mathrm{e}^{\mathrm{i} \theta}$, with $r>0$ and $0<\theta \leq 2 \pi$. Then we will have $\tilde{w}_{ \pm}(x)= \pm x^{1 / 2} \neq 0$ for $x>0$, as required. We can obtain another valid solution by multiplying $\tilde{w}(z)$ by any function of z that is holomorphic and non-zero on $\mathbb{C} \backslash\{0\}$.

Example 2. When $0<c<\infty$, we can use $\tilde{w}(z)=z^{1 / 2}(c-z)^{1 / 2}$, where we take the branch cut along Γ and then $\tilde{w}_{ \pm}(x)= \pm x^{1 / 2}(c-x)^{1 / 2} \neq 0$ for $0<x<c$. In this case, we can obtain another valid solution by multiplying $\tilde{w}(z)$ by any function of z that is holomorphic and non-zero on $\mathbb{C} \backslash\{0, c\}$.

In the above two examples, the auxiliary function $\tilde{w}(z)$ could plausibly have been found by inspection. However, we might wonder whether the functions so obtained are unique, and also how one could find \tilde{w} more generally. We have $\tilde{w}_{+} / \tilde{w}_{-}=-1$ on Γ, so

$$
\begin{equation*}
\log \tilde{w}_{+}-\log \tilde{w}_{-}=\log (-1)=(2 m+1) \pi \mathrm{i} \quad \text { on } \Gamma, \tag{4.35}
\end{equation*}
$$

where $m \in \mathbb{Z}$, corresponding to the infinite number of branches of the logarithm. Equation (4.35) is a version of Problem 1, and we read off from equations (4.12) and (4.16) the solution

$$
\begin{align*}
\log \tilde{w}(z) & =\frac{1}{2 \pi \mathrm{i}} \int_{0}^{c} \frac{(2 m+1) \pi \mathrm{i}}{\xi-z} \mathrm{~d} \xi+\tilde{h}(z) \\
& =\left(m+\frac{1}{2}\right)[\log (c-z)-\log z]+\tilde{h}(z) \tag{4.36}
\end{align*}
$$

where $\tilde{h}(z)$ is an arbitrary function holomorphic on $\mathbb{C} \backslash\{0, c\}$. Therefore the general form for $\tilde{w}(z)$ is

$$
\begin{equation*}
\tilde{w}(z)=h^{*}(z)\left(\frac{c-z}{z}\right)^{m+1 / 2} \tag{4.37}
\end{equation*}
$$

where $h^{*}(z)=\mathrm{e}^{\tilde{h}(z)}$ is again an arbitrary function of z holomorphic and nonzero on $\mathbb{C} \backslash\{0, c\}$. The general solution (4.37) includes the particular form for \tilde{w} found in Example 2 above, with $m=0$ and $h^{*}(z)=z$.

Evidently the solution of Problem 2.2 is far from unique. There is a lot of freedom in the general form (4.37) for \tilde{w}, and also the arbitrary function $\tilde{H}(z)$ in (4.30) must be determined. We will now work through two concrete examples to show how a unique solution may be selected by prescribing the allowed behaviour of $w(z)$ at $z=0, z=c$ and as $z \rightarrow \infty$.

4.4 Example: Fracture in solid mechanics

A famous problem in elasticity is to calculate the displacement field $(0,0, \Phi(x, y))$ in antiplane strain around a crack at $y=0,0<x<c$, as illustrated in Figure 4.4(a). The displacement Φ is such that:

- $\nabla^{2} \Phi=0$ except on the crack;
- $\lim _{y \downarrow \uparrow 0} \partial \Phi / \partial y=0$ for $0<x<c$ (zero traction on the crack surface);
- $|\nabla \Phi|$ has an inverse square-root singularity at $(0,0)$ and at $(c, 0)$ (so that the displacement Φ is finite at the crack tips);
- $\partial \Phi / \partial y=T+O\left(r^{-2}\right)$ as $r^{2}=x^{2}+y^{2} \rightarrow \infty$ (uniform shearing at large distances).

Figure 4.4: (a) Antiplane strain around a crack. (b) The two-dimensional problem for $\phi(x, y)$.
Setting $\Phi=T y-\phi(x, y)$ and $\phi_{y}=\operatorname{Im} w(z)$, we find that the corresponding properties of w are:

- $w(z)$ is holomorphic on $\mathbb{C} \backslash \bar{\Gamma}$;
- $\operatorname{Im} w_{ \pm}(x)=T$ on $\Gamma=\{x+\mathrm{i} y: 0<x<c, y=0\}$;
- $w(z)=O\left(z^{-1 / 2}\right)$ as $z \rightarrow 0$ and $w(z)=O\left((z-c)^{-1 / 2}\right)$ as $z \rightarrow c$;
- $w(z)=O\left(z^{-2}\right)$ as $z \rightarrow \infty$.

This is equivalent to Problem 2.2, with $g(x)=T=$ constant, so a solution is given by equation (4.30), namely

$$
\begin{equation*}
w(z)=\tilde{w}(z)\left(\frac{1}{\pi} \int_{0}^{c} \frac{g(\xi) \mathrm{d} \xi}{\tilde{w}_{+}(\xi)(\xi-z)}+\tilde{H}(z)\right) \tag{4.38}
\end{equation*}
$$

where $\tilde{H}(z)$ is an arbitrary function of z holomorphic on $\mathbb{C} \backslash\{0, c\}$. We now make a specific choice for \tilde{w}, namely

$$
\begin{equation*}
\tilde{w}(z)=z^{-1 / 2}(c-z)^{-1 / 2}, \tag{4.39}
\end{equation*}
$$

with the branch cut along Γ, so that $\tilde{w}_{ \pm}(x)= \pm x^{-1 / 2}(c-x)^{-1 / 2}$ for $0<x<c$, and equation (4.38) becomes

$$
\begin{equation*}
w(z)=\frac{1}{z^{1 / 2}(c-z)^{1 / 2}}\left(\frac{1}{\pi} \int_{0}^{c} \frac{\xi^{1 / 2}(c-\xi)^{1 / 2} g(\xi)}{(\xi-z)} \mathrm{d} \xi+\tilde{H}(z)\right) . \tag{4.40}
\end{equation*}
$$

Now we will use the prescribed properties of $w(z)$ to argue that $\tilde{H}(z)$ must in fact be zero.

- At the endpoints $z=0$ and $z=c$ of Γ, the integral in (4.40) is finite (because of the choice we made for $\tilde{w}(z))$.
- Since $\tilde{H}(z)$ is holomorphic on $\mathbb{C} \backslash\{0, c\}$, it can only have isolated singularities at the end points.
- Since $w=O\left(z^{-1 / 2}\right)$ as $z \rightarrow 0$ and $w=O\left((c-z)^{-1 / 2}\right)$ as $z \rightarrow c$, it follows that $\tilde{H}(z)$ can only have removable singularities at $z=0$ and $z=c$, and therefore $\tilde{H}(z)$ is entire.
- Finally, $w=O\left(z^{-2}\right)$ as $z \rightarrow \infty$ if and only if $\tilde{H}(z)=O\left(z^{-1}\right)$ as $z \rightarrow \infty$, and therefore $\tilde{H}(z) \equiv 0$ by Liouville's theorem.

Hence, the unique solution for $w(z)$ is given by

$$
\begin{equation*}
w(z)=\frac{T}{\pi z^{1 / 2}(c-z)^{1 / 2}} \int_{0}^{c} \frac{\xi^{1 / 2}(c-\xi)^{1 / 2} \mathrm{~d} \xi}{(\xi-z)} . \tag{4.41}
\end{equation*}
$$

The integral in equation (4.41) can be evaluated explicitly as follows. First note that

$$
\begin{equation*}
\int_{0}^{c} \frac{\xi^{1 / 2}(c-\xi)^{1 / 2} \mathrm{~d} \xi}{(\xi-z)}=\frac{1}{2} \oint_{C} \frac{\zeta^{1 / 2}(c-\zeta)^{1 / 2} \mathrm{~d} \zeta}{(\zeta-z)} \tag{4.42}
\end{equation*}
$$

where C is a small clockwise contour that encloses Γ, as shown in Figure 4.5(a). Now deform the contour C to infinity, as shown in Figure 4.5(b). There is a residue contribution from the pole at $\zeta=z$ of $\pi \mathrm{i} z^{1 / 2}(c-z)^{1 / 2}$. To evaluate the contribution from a large circle at infinity expand the integrand as

$$
\begin{equation*}
\frac{\zeta^{1 / 2}(c-\zeta)^{1 / 2}}{(\zeta-z)} \sim-\mathrm{i}\left(1-\frac{c}{\zeta}\right)^{1 / 2}\left(1-\frac{z}{\zeta}\right)^{-1} \sim-\mathrm{i}\left(1+\frac{2 z-c}{2 \zeta}+\cdots\right) \tag{4.43}
\end{equation*}
$$

Figure 4.5: Integration contours for the integral (4.41).
which integrates to $-\pi(z-c / 2)$. Thus the explicit solution for $w(z)$ is

$$
\begin{equation*}
w=\frac{T}{\pi z^{1 / 2}(c-z)^{1 / 2}}\left(\pi \mathrm{i} z^{1 / 2}(c-z)^{1 / 2}-\pi\left(z-\frac{c}{2}\right)\right)=T \mathrm{i}-\frac{T(z-c / 2)}{z^{1 / 2}(c-z)^{1 / 2}} . \tag{4.44}
\end{equation*}
$$

We can easily verify that the solution (4.44) for $w(z)$ has all of the required properties. In principle we would have obtained exactly the same solution if we made a different choice of the auxiliary function $\tilde{w}(z)$: it would just have made the job of determining $\tilde{H}(z)$ slightly more difficult. In general, a judicious choice of $\tilde{w}(z)$ will make the whole solution procedure as straightforward as possible.

4.5 Example: Aerodynamics of a thin aerofoil

Here the physical model is the flow of a uniform stream of ideal fluid past a thin aerofoil with a sharp trailing edge and a small angle of attack, as illustrated in Figure 4.6(a). We denote

(a)
(b)

Figure 4.6: Flow past a thin aerofoil. (a) The problem for the velocity potential $\Phi(x, y)$. (b) The linearised problem for the disturbance potential $\phi(x, y)$.
the boundary of the aerofoil by $y=\epsilon g_{ \pm}(x)$ for $0<x<c$, where $g_{-}(x) \leq g_{+}(x)$ and $\epsilon \ll 1$. If $\Phi(x, y)$ is the velocity potential, then:

- $\nabla^{2} \Phi=0$ in the fluid surrounding the aerofoil;
- the no-flux boundary condition states that $\partial \Phi / \partial n=0$ on the boundary of the aerofoil;
- there is an inverse square root singularity in the velocity at the leading edge, so that $|\nabla \Phi|=O\left(r^{-1 / 2}\right)$ as $r=\sqrt{x^{2}+y^{2}} \rightarrow 0 ;$
- the Kutta condition states that the velocity $\boldsymbol{\nabla} \Phi$ must be finite at the sharp trailing edge;
- the velocity is uniform at infinity, so that $\nabla \Phi \sim(1,0)+O\left(r^{-1}\right)$ as $r \rightarrow \infty$.

In the limit of a thin aerofoil, $\epsilon \rightarrow 0$ and we can expand about the uniform flow, setting $\Phi(x, y) \sim x+\epsilon \phi(x, y)$. Since the outward normal to the upper surface of the aerofoil is proportional to $\left(-\epsilon g_{+}^{\prime}, 1\right)$, the no-flux boundary condition on the upper surface implies

$$
\begin{align*}
0 & =\left(-\epsilon g_{+}^{\prime}, 1\right) \cdot \nabla \Phi \quad \text { on } y=\epsilon g_{+}(x) \\
& =\left(-\epsilon g_{+}^{\prime}, 1\right) \cdot\left(1+\epsilon \phi_{x}\left(x, \epsilon g_{+}\right), \phi_{y}\left(x, \epsilon g_{+}\right)\right) \\
& \sim-\epsilon g_{+}^{\prime}+\epsilon \phi_{y}(x, 0)+O\left(\epsilon^{2}\right) \tag{4.45}
\end{align*}
$$

as $\epsilon \rightarrow 0$. A similar expansion holds for the no-flux boundary condition on the lower surface. Thus the boundary conditions which were originally imposed on the surface of the aerofoil may be linearised down onto the x-axis when ϵ is small.

The leading-order problem for the disturbance potential $\phi(x, y)$ is:

- $\nabla^{2} \phi=0$ except on the line segment $\{(x, y): 0 \leq x \leq c, y=0\} ;$
- $\frac{\partial \phi}{\partial y}=g_{ \pm}^{\prime}(x) \quad$ on $0<x<c, y=0_{ \pm} ;$
- $|\boldsymbol{\nabla} \phi|=O\left(r^{-1 / 2}\right)$ as $r \rightarrow 0$;
- $\boldsymbol{\nabla} \phi$ is finite as $(x, y) \rightarrow(c, 0)$;
- $|\boldsymbol{\nabla} \phi|=O\left(r^{-1}\right)$ as $r \rightarrow \infty$.

We translate this into a Plemelj type problem by defining

$$
\begin{equation*}
w(z)=-\left(\phi_{x}(x, y)-\mathrm{i} \phi_{y}(x, y)\right) \tag{4.46}
\end{equation*}
$$

(the unconventional minus sign is taken for convenience). Then $w(z)$ has the properties

- $w(z)$ is holomorphic on $\mathbb{C} \backslash \bar{\Gamma}$;
- $\operatorname{Im} w_{ \pm}(x)=g_{ \pm}^{\prime}(x)$ on $\Gamma=\{x+\mathrm{i} y: 0<x<c, y=0\} ;$
- $w(z)=O\left(z^{-1 / 2}\right)$ as $z \rightarrow 0$ and $w(z)=O(1)$ as $z \rightarrow c ;$
- $w(z)=O\left(z^{-1}\right)$ as $z \rightarrow \infty$.

	fracture	aerofoil
$z \rightarrow 0$	$w(z)=O\left(z^{-1 / 2}\right)$	$w(z)=O\left(z^{-1 / 2}\right)$
$z \rightarrow c$	$w(z)=O\left((z-c)^{-1 / 2}\right)$	$w(z)=O(1)$
$z \rightarrow \infty$	$w(z)=O\left(z^{-2}\right)$	$w(z)=O\left(z^{-1}\right)$

Table 1: Comparison between the prescribed behaviours of $w(z)$ in the fracture and aerofoil problems.

Figure 4.7: Schematic of a symmetric aerofoil (left); a zero-thickness aerofoil (right).

Remark: In Table 1 we summarise the conditions specified for $w(z)$ at $z=0, z=c$ and as $z \rightarrow \infty$ in the fracture and aerofoil problems. Compared with the fracture problem, we have now strengthened the condition at $z=c$ but weakened the condition at infinity.

For a symmetric aerofoil, $g_{+}(x)=-g_{-}(x)$, so that $g_{+}^{\prime}(x)=-g_{-}^{\prime}(x)$ and we must solve an easy problem as in Problem 2.1. A zero-thickness aerofoil has $g_{+}(x)=g_{-}(x)$, as shown in Figure 4.7, so that $g_{+}^{\prime}(x)=g_{-}^{\prime}(x)$ and we must solve a harder problem as in Problem 2.2.

In the latter case, we let $g_{+}^{\prime}(x)=g_{-}^{\prime}(x)=g(x)$ and again choose $\tilde{w}(z)=z^{-1 / 2}(c-z)^{-1 / 2}$, so that we can use the same solution (4.40) as for the crack problem. As in the crack problem, $\tilde{H}(z)$ can only have isolated singularities at the endpoints of Γ and is therefore entire. However, now the weaker condition $w=O\left(z^{-1}\right)$ as $z \rightarrow \infty$ implies that $\tilde{H}(z)=O(1)$ as $z \rightarrow \infty$, so $\tilde{H}(z)$ is constant by Liouville's theorem (in contrast to the crack problem). Finally, we ensure that w is finite as the trailing edge $z=c$ by setting

$$
\begin{equation*}
\tilde{H}(z)=\tilde{H}(c)=-\left.\frac{1}{\pi} \int_{0}^{c} \frac{g(\xi) \xi^{1 / 2}(c-\xi)^{1 / 2}}{\xi-z} \mathrm{~d} \xi\right|_{z=c} \tag{4.47}
\end{equation*}
$$

giving

$$
\begin{align*}
w(z) & =\frac{1}{\pi z^{1 / 2}(c-z)^{1 / 2}} \int_{0}^{c} g(\xi) \xi^{1 / 2}(c-\xi)^{1 / 2}\left(\frac{1}{\xi-z}-\frac{1}{\xi-c}\right) \mathrm{d} \xi \\
& =\frac{(c-z)^{1 / 2}}{\pi z^{1 / 2}} \int_{0}^{c} \frac{g(\xi) \xi^{1 / 2}}{(c-\xi)^{1 / 2}(\xi-z)} \mathrm{d} \xi \tag{4.48}
\end{align*}
$$

It is an exercise in perturbation methods to verify that the solution (4.48) satisfies $w(z)=\mathrm{O}(1)$ as $z \rightarrow c$. Equation (4.48) could have been obtained more directly by choosing $\tilde{w}(z)=(c-z)^{1 / 2} / z^{1 / 2}$, thereby incorporating the specified behaviour of $w(z)$ near the end points.

4.6 General Hilbert problem

We have seen that when $w_{+}-w_{-}$is given on Γ we can solve immediately for f and therefore for w. When $w_{+}+w_{-}$is given on Γ, we find a singular integral equation for f, but we can
find w (and f) by introducing \tilde{w} such that $\tilde{w}_{+}=-\tilde{w}_{-} \neq 0$ on Γ. What about more general relations between w_{+}and w_{-}on Γ ?

The general so-called Hilbert problem is

$$
\begin{equation*}
a(z) w_{+}(z)+b(z) w_{-}(z)=c(z) \quad \text { on } \Gamma \text {, } \tag{4.49}
\end{equation*}
$$

with $a, b \neq 0$ and c prescribed on Γ. Suppose we can find $\tilde{w}(z)$ holomorphic and non-zero away from Γ, with

$$
\begin{equation*}
a(z) \tilde{w}_{+}(z)=-b(z) \tilde{w}_{-}(z) \neq 0 \quad \text { on } \Gamma . \tag{4.50}
\end{equation*}
$$

Then $W(z)=w(z) / \tilde{w}(z)$ satisfies

$$
\begin{align*}
W_{+}(z)-W_{-}(z) & =\frac{w_{+}(z)}{\tilde{w}_{+}(z)}-\frac{w_{-}(z)}{\tilde{w}_{-}(z)} \\
& =\frac{w_{+}(z)}{\tilde{w}_{+}(z)}-\frac{w_{-}(z)}{-a(z) \tilde{w}_{+}(z) / b(z)} \\
& =\frac{a(z) w_{+}(z)+b(z) w_{-}(z)}{a(z) \tilde{w}_{+}(z)} \\
& =\frac{c(z)}{a(z) \tilde{w}_{+}(z)} \text { on } \Gamma, \tag{4.51}
\end{align*}
$$

giving

$$
\begin{equation*}
W(z)=\frac{1}{2 \pi \mathrm{i}} \int_{\Gamma} \frac{c(\zeta)}{a(\zeta) \tilde{w}_{+}(\zeta)(\zeta-z)} \mathrm{d} \zeta+H(z) \tag{4.52}
\end{equation*}
$$

where $H(z)$ is an arbitrary function of z that is holomorphic away from the endpoints of Γ.
To solve for $\tilde{w}(z)$ we again take logs. Since $\tilde{w}_{+}(z) / \tilde{w}_{-}(z)=-b(z) / a(z)$, we get

$$
\begin{equation*}
\log \tilde{w}_{+}(z)-\log \tilde{w}_{-}(z)=\log \left(-\frac{b(z)}{a(z)}\right) \quad \text { on } \Gamma \text {. } \tag{4.53}
\end{equation*}
$$

We can therefore use the Plemelj formulae as before to solve for $\tilde{w}(z)$ and hence find $w(z)$.
The general linear Cauchy singular integral equation for f :

$$
\begin{equation*}
a(z) f(z)+b(z) \int_{\Gamma} \frac{f(\zeta) \mathrm{d} \zeta}{\zeta-z}=c(z) \tag{4.54}
\end{equation*}
$$

can be rewritten as a Hilbert problem for

$$
w(z)=\frac{1}{2 \pi \mathrm{i}} \int_{\Gamma} \frac{f(z)}{\zeta-z} \mathrm{~d} \zeta,
$$

using the Plemelj formulae, and hence solved by following the above strategy.

