4 Plemelj formulae and applications

4.1 Introduction

The problem of determining a holomorphic function w(z) in terms of its values on a curve Γ is equivalent to solving a Cauchy problem for Laplace's equation and therefore *ill-posed*: the solution may not exist or may not be unique or it may not depend continuously on the boundary values.

Example. If w(z) is holomorphic in y > 0 and

$$w(x) = \frac{\delta^2 \epsilon}{\delta^2 + x^2} \quad \text{for } y = 0, \quad -\infty < x < \infty, \tag{4.1}$$

then

$$w(z) = \frac{\delta^2 \epsilon}{\delta^2 + z^2}.$$
(4.2)

Thus $|w| \leq \epsilon$ on y = 0, and $w \to \infty$ as $z \to i\delta$. Since ϵ and δ may be arbitrarily small, we see that, however small w is on y = 0, it may become arbitrarily large an arbitrarily small distance from y = 0.

This example illustrates that trying to specify w(z) on a given curve is ill posed. However, well-posed problems may be formulated in which, for example, Re w or Im w are specified on Γ or the jump in w across Γ is prescribed. We will show how a wide class of such problems may be tackled using the so-called *Plemelj formulae*.

4.2 Plemelj formulae

Recall that if w is holomorphic inside and on the closed contour Γ and z is a point inside Γ , then Cauchy's integral formula states that

$$w(z) = \frac{1}{2\pi i} \oint_{\Gamma} \frac{w(\zeta) \,\mathrm{d}\zeta}{\zeta - z}.$$
(4.3)

This relates the values of w inside the contour to the values of w on the contour.

Let us consider more generally the *Cauchy integral*

$$w(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(\zeta) \,\mathrm{d}\zeta}{\zeta - z},\tag{4.4}$$

where f is a given function on the contour Γ , which may now be closed or open. If Γ is open, it is convenient in the subsequent analysis to adopt the convention that it does not contain its endpoints, $a, b \in \mathbb{C}$ say. Thus, an open contour may be parametrized by

$$\Gamma = \{\gamma(t) \in \mathbb{C} : t_0 < t < t_1\},\tag{4.5}$$

where $a = \gamma(t_0) \neq \gamma(t_1) = b$ and $t_0 < t_1$ are real constants. We then define

$$\overline{\Gamma} = \{\gamma(t) \in \mathbb{C} : t_0 \le t \le t_1\}$$
(4.6)

to be the (topological) *closure* of Γ , i.e. $\overline{\Gamma}$ is the union of Γ and its endpoints. (If Γ is a closed contour, then $\overline{\Gamma} = \Gamma$ because Γ is (topologically) closed.)

If f is sufficiently smooth (e.g. continuous) on $\overline{\Gamma}$, then the function w(z) defined by the Cauchy integral (4.4) is holomorphic on $\mathbb{C} \setminus \overline{\Gamma}$ (its derivatives may be found by differentiating under the integral sign). Now we pose the question: what is the limiting value of w(z) as z approaches Γ ? It turns out that the answer depends on which side of Γ is approached by z.

Suppose $t \in \Gamma$ is any point at which Γ is smooth and that f is holomorphic in a neighbourhood of t and continuous on Γ . Let us label the left-hand side of Γ (as Γ is traversed in the direction of integration) as "+", and the right-hand side as "-". Let z approach $t \in \Gamma$ from the positive side as illustrated in Figure 4.1(a). We deform Γ near t by replacing

Figure 4.1: Deformed integration contour for $w_+(z)$.

 $\gamma_{\epsilon} = \Gamma \cap D(t; \epsilon) \subset \Gamma$ with a small semi-circle C_{ϵ} as illustrated in Figure 4.1(b), where ϵ is sufficiently small that f is holomorphic in the disc $D(t; 2\epsilon) = \{z : |z - t| < 2\epsilon\}$ say. By the deformation theorem,

$$w_{+}(t) = \lim_{z \to t} \frac{1}{2\pi i} \left(\int_{\Gamma \setminus \gamma_{\epsilon}} + \int_{C_{\epsilon}} \right) \frac{f(\zeta)}{\zeta - z} \, \mathrm{d}\zeta = \frac{1}{2\pi i} \left(\int_{\Gamma \setminus \gamma_{\epsilon}} + \int_{C_{\epsilon}} \right) \frac{f(\zeta)}{\zeta - t} \, \mathrm{d}\zeta. \tag{4.7}$$

As $\epsilon \to 0$, the semi-circle gives a residue contribution

$$\frac{1}{2} \times 2\pi \mathbf{i} \times \frac{f(t)}{2\pi \mathbf{i}} = \frac{1}{2}f(t),$$

where the factor of 1/2 arises because we are only integrating over a semi-circle. Hence,

$$w_{+}(t) = \lim_{\epsilon \to 0} \frac{1}{2\pi i} \left(\int_{\Gamma \setminus \gamma_{\epsilon}} + \int_{C_{\epsilon}} \right) \frac{f(\zeta)}{\zeta - t} \, \mathrm{d}\zeta = \frac{1}{2\pi i} \oint_{\Gamma} \frac{f(\zeta)}{\zeta - t} \, \mathrm{d}\zeta + \frac{1}{2} f(t), \tag{4.8}$$

where we define the *Principal Value integral* as

$$\int_{\Gamma} \frac{f(\zeta)}{\zeta - t} \, \mathrm{d}\zeta = \lim_{\epsilon \to 0} \int_{\Gamma \setminus \gamma_{\epsilon}} \frac{f(\zeta)}{\zeta - t} \, \mathrm{d}\zeta.$$
(4.9)

Figure 4.2: Deformed integration contour for $w_{-}(z)$.

This limit always exists because the log singularities from the endpoints cancel as $\epsilon \to 0$ when f is continuous on Γ .

If we let $z \to t \in \Gamma$ from the minus side as illustrated in Figure 4.2(a), then we must deform Γ near $\zeta = t$ by replacing $\gamma_{\epsilon} \subset \Gamma$ with a small semi-circle C'_{ϵ} as illustrated in Figure 4.2(b). Again by the deformation theorem

$$w_{-}(t) = \lim_{\epsilon \to 0} \frac{1}{2\pi i} \left(\int_{\Gamma \setminus \gamma_{\epsilon}} + \int_{C'_{\epsilon}} \right) \frac{f(\zeta)}{\zeta - t} \, \mathrm{d}\zeta = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(\zeta)}{\zeta - t} \, \mathrm{d}\zeta - \frac{1}{2} f(t). \tag{4.10}$$

In this case we are integrating in the opposite direction around the semi-circle, so that the residue contribution is -f(t)/2.

Equations (4.8) and (4.10) are known as the **Plemelj formulae**. In deriving them, we have assumed that Γ is a smooth contour and that f is continuous on $\overline{\Gamma}$. These conditions may be relaxed (see e.g. Ablowitz & Fokas), but we will persist with these assumptions henceforth. It follows that w(z) is holomorphic and that w(z) = O(1/z) as $z \to \infty$.

The contour deformation approach shown in Figures 4.1 and 4.2 clearly does not work if $t = t_e$ (= a or b) is an end-point of Γ . The local behaviour as $z \to t_e$ depends on the local behaviour of $f(\zeta)$. The following results may be derived using perturbation methods or quoted from Ablowitz & Fokas.

As
$$z \to t_e$$
 with $z \in \mathbb{C} \setminus \Gamma$:
if $f(\zeta) \to 0$ as $\zeta \to t_e$, then $w(z) = O(1)$; (4.11a)
if $f(\zeta) = O(1)$ as $\zeta \to t_e$, then $w(z) = O(\log(z - t_e))$; (4.11b)
if $f(\zeta) = O((\zeta - t_e)^{-\alpha})$ as $\zeta \to t_e$, with $\alpha \in (0, 1)$, then $w(z) = O((z - t_e)^{-\alpha})$. (4.11c)

4.3 Solving problems with the Plemelj formulae

Problem 1

Find a function w(z) holomorphic on $\mathbb{C} \setminus \overline{\Gamma}$ such that the limiting values of w(z) as $z \to t \in \Gamma$ from either side satisfy

$$w_{+}(t) - w_{-}(t) = G(t), \qquad (4.12)$$

where G is continuous on $\overline{\Gamma}$.

Solution. We seek a solution for w as a Cauchy integral

$$w(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(\zeta) \,\mathrm{d}\zeta}{\zeta - z},\tag{4.13}$$

where our aim is to use the jump condition (4.12) to determine the density function f. By subtracting the Plemelj formulae (4.10) and (4.8) we find that

$$w_{+}(t) - w_{-}(t) = f(t) \tag{4.14}$$

on Γ . Hence, we read off f = G, and a solution is given by

$$w(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{G(\zeta) \,\mathrm{d}\zeta}{\zeta - z}.$$
(4.15)

This shows that the Plemelj formulae allow us easily to find a solution w(z) that is holomorphic on $\mathbb{C} \setminus \overline{\Gamma}$ and satisfies the jump condition (4.12). However, the solution (4.15) is not unique. The homogeneous problem with G = 0 consists of finding a function that is holomorphic on $\mathbb{C} \setminus \overline{\Gamma}$ and continuous across Γ , which is satisfied by any function w(z) = h(z)that is holomorphic on $\mathbb{C} \setminus \{a, b\}$. Morera's Theorem may be used to prove that all solutions of the homogeneous problem must be of this form. Therefore the general solution of Problem 1 is

$$w(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{G(\zeta) \,\mathrm{d}\zeta}{\zeta - z} + h(z), \tag{4.16}$$

where h(z) is an arbitrary function of z that is holomorphic on $\mathbb{C} \setminus \{a, b\}$.

To pin down h, it is necessary to prescribe the behaviour of w at a, b and ∞ . For example, suppose we impose the additional conditions:

- (I) w is finite or has a logarithmic singularity at each of the endpoints of Γ ;
- (II) there exists $n \in \mathbb{N}$ such that $w(z) = O(z^n)$ as $|z| \to \infty$.

Then, (I), the quotable results (4.11) and Laurent's Theorem imply that h can only have removable singularities at a and b, so that h is in fact entire. Hence, by (II) and the corollary to Liouville's theorem, $h(z) = p_n(z)$, an arbitrary polynomial of degree n.

Problem 2

Consider the particular case where Γ is a line segment on the real axis: $\Gamma = \{x : 0 < x < c\}$ for some c > 0. Suppose we are given $\operatorname{Im} w_{\pm}(x) = g_{\pm}(x)$ on Γ , with w holomorphic on $\mathbb{C} \setminus \overline{\Gamma}$. Find w when (1) $g_{+}(x) = -g_{-}(x) = g(x)$ and (2) $g_{+}(x) = g_{-}(x) = g(x)$, where g(x) is continuous on $\overline{\Gamma}$.

Remark. If w(z) = u(x, y) + iv(x, y), then this problem is equivalent to the problem of finding v such that $\nabla^2 v = 0$ away from $\overline{\Gamma}$, and $v_{\pm}(x) = g_{\pm}(x)$ on Γ .

Solution. Seek a solution for w as a Cauchy integral of the form

$$w(z) = \frac{1}{2\pi i} \int_0^c \frac{f(\xi) \,\mathrm{d}\xi}{\xi - z},\tag{4.17}$$

which is holomorphic on $\mathbb{C} \setminus \overline{\Gamma}$, assuming f is sufficiently regular. The Plemelj formulae (4.8)–(4.10) become

$$w_{\pm}(x) = u_{\pm}(x) + \mathrm{i}g_{\pm}(x) = \pm \frac{1}{2}f(x) - \mathrm{i}F(x) \quad \text{on } \Gamma,$$
(4.18)

C5.6 Applied Complex Variables

where we define

$$F(x) = \frac{1}{2\pi} \int_0^c \frac{f(\xi)}{\xi - x} d\xi.$$
 (4.19)

Note that F(x) is real on Γ if and only if f(x) is real on Γ (because ξ , x are real on Γ).

Problem 2.1: If $g_+(x) = -g_-(x) = g(x)$, then (4.18) implies that

$$w_{+}(x) + w_{-}(x) = u_{+}(x) + u_{-}(x) = -2iF(x)$$
 on Γ , (4.20a)

$$w_{+}(x) - w_{-}(x) = u_{+}(x) - u_{-}(x) + 2ig(x) = f(x)$$
 on Γ . (4.20b)

By (4.20a), F must be pure imaginary, and hence f must be pure imaginary on Γ . Thus, by (4.20b), we have $u_+(x) - u_-(x) = 0$ and f(x) = 2ig(x) on Γ . It follows that a solution for w is given by

$$w(z) = \frac{1}{\pi} \int_0^c \frac{g(\xi) \,\mathrm{d}\xi}{\xi - z} + h(z), \tag{4.21}$$

where h(z) is an arbitrary function of z that is holomorphic on $\mathbb{C} \setminus \{0, c\}$ and real on Γ (thus a solution of the homogeneous problem in which g = 0).

Problem 2.2: If $g_+(x) = g_-(x) = g(x)$, then (4.18) becomes

$$w_{+}(x) + w_{-}(x) = u_{+}(x) + u_{-}(x) + 2ig(x) = -2iF(x) \qquad \text{on } \Gamma, \qquad (4.22a)$$

$$w_{+}(x) - w_{+}(x) = u_{+}(x) - u_{-}(x) = f(x)$$
 on Γ . (4.22b)

By (4.22b), f must be real, and hence F must likewise be real, on Γ ; thus, by (4.22a), we have $u_+(x) + u_-(x) = 0$ and F(x) = -g(x) on Γ . It follows that

$$w(z) = \frac{1}{2\pi i} \int_0^c \frac{f(\xi) \,\mathrm{d}\xi}{\xi - z}$$
(4.23)

is a solution provided f satisfies the Cauchy singular integral equation

$$\frac{1}{\pi} \int_0^c \frac{f(\xi) \,\mathrm{d}\xi}{\xi - x} = -2g(x) \qquad (0 < x < c), \tag{4.24}$$

which we need to invert to find f.

Remark: In Problem 2.1 the data gives $w_+ - w_-$ and hence f directly. In Problem 2.2 the data gives $w_+ + w_-$ leading to a Cauchy singular integral equation for f.

Solution. Suppose we can find an auxiliary function $\tilde{w}(z)$ such that:

- $\tilde{w}(z)$ is holomorphic and non-zero on $\mathbb{C} \setminus \overline{\Gamma}$; (4.25a)
- $\tilde{w}(z)$ satisfies $\tilde{w}_+(x) = -\tilde{w}_-(x) \neq 0$ on Γ , (4.25b)
- i.e. \tilde{w} is a solution of the homogeneous problem (in which g = 0) that is non-zero on $\mathbb{C} \setminus \{a, b\}$. Now we define

$$W(z) = \frac{w(z)}{\tilde{w}(z)},\tag{4.26}$$

so that

$$W_{+}(x) - W_{-}(x) = \frac{w_{+}(x)}{\tilde{w}_{+}(x)} - \frac{w_{-}(x)}{\tilde{w}_{-}(x)}$$
$$= \frac{w_{+}(x)}{\tilde{w}_{+}(x)} - \frac{w_{-}(x)}{-\tilde{w}_{+}(x)}$$
$$= \frac{w_{+}(x) + w_{-}(x)}{\tilde{w}_{+}(x)}$$
$$= \frac{2ig(x)}{\tilde{w}_{+}(x)} \quad \text{on } \Gamma.$$
(4.27)

If \tilde{w}_+ is known, then $W_+ - W_-$ is known (because g is known). Therefore we have turned Problem 2.2 (in which $w_+ + w_-$ is given) into a version of Problem 1 (in which $W_+ - W_-$ is given). By Problem 1, equation (4.15), a solution for W is given by

$$W(z) = \frac{1}{2\pi i} \int_0^c \frac{\tilde{f}(\xi) \,\mathrm{d}\xi}{\xi - z} + \tilde{H}(z), \qquad (4.28)$$

where

$$\tilde{f}(x) = \frac{2ig(x)}{\tilde{w}_+(x)} \quad \text{on } \Gamma,$$
(4.29)

and $\tilde{H}(z)$ is an arbitrary function holomorphic on $\mathbb{C} \setminus \{0, c\}$. Thus the solution of Problem 2.2 takes the form

$$w(z) = \tilde{w}(z) \left(\frac{1}{\pi} \int_0^c \frac{g(\xi) \,\mathrm{d}\xi}{\tilde{w}_+(\xi)(\xi-z)} + \tilde{H}(z)\right). \tag{4.30}$$

With W given by (4.28), the Plemelj formulae give

$$W_{\pm}(x) = \pm \frac{1}{2}\tilde{f}(x) + \frac{1}{2\pi i} \int_0^c \frac{f(\xi) \,\mathrm{d}\xi}{\xi - x} + \tilde{H}(x) \qquad (0 < x < c), \tag{4.31}$$

so that

$$\tilde{f}(x) = W_{+}(x) - W_{-}(x) = \frac{2ig(x)}{\tilde{w}_{+}(x)}$$
 on Γ , (4.32)

as required. Moreover,

$$\frac{1}{\pi i} \int_{0}^{c} \frac{\tilde{f}(\xi) d\xi}{\xi - x} + 2\tilde{H}(x) = W_{+}(x) + W_{-}(x)$$

$$= \frac{w_{+}(x)}{\tilde{w}_{+}(x)} + \frac{w_{-}(x)}{\tilde{w}_{-}(x)}$$

$$= \frac{w_{+}(x) - w_{-}(x)}{\tilde{w}_{+}(x)}$$

$$= \frac{f(x)}{\tilde{w}_{+}(x)} \text{ on } \Gamma, \qquad (4.33)$$

and, with \tilde{f} given by (4.29), we deduce that

$$f(x) = \tilde{w}_{+}(x) \left(W_{+}(x) + W_{-}(x) \right) = 2\tilde{w}_{+}(x) \left(\frac{1}{\pi} \int_{0}^{c} \frac{g(\xi) \,\mathrm{d}\xi}{\tilde{w}_{+}(\xi)(\xi - x)} + \tilde{H}(x) \right)$$
(4.34)

satisfies the Cauchy singular integral equation (4.24).

Finding \tilde{w}

We have shown that the decomposition (4.26) allows us to transform Problem 2.2 into a version of Problem 1, and then solve it using the Plemelj formulae. As a bonus, (4.34) gives the solution f(x) of the singular integral equation (4.24). It just remains to find an auxillary function $\tilde{w}(z)$ satisfying the properties (4.25), where $\Gamma = \{x + iy : 0 < x < c, y = 0\}$ and $\overline{\Gamma} = \{x + iy : 0 \leq x \leq c, y = 0\}$. We need to find a function whose value as Γ is approached from above is minus that as Γ is approached from below, as shown schematically in Figure 4.3.

Figure 4.3: The jump conditions satisfied by the auxiliary function across Γ .

Example 1. When $c = \infty$, we can use $\tilde{w}(z) = z^{1/2}$, provided we take the branch cut along the positive real axis, i.e. $z^{1/2} = r^{1/2} e^{i\theta/2}$ for $z = r e^{i\theta}$, with r > 0 and $0 < \theta \le 2\pi$. Then we will have $\tilde{w}_{\pm}(x) = \pm x^{1/2} \neq 0$ for x > 0, as required. We can obtain another valid solution by multiplying $\tilde{w}(z)$ by any function of z that is holomorphic and non-zero on $\mathbb{C} \setminus \{0\}$.

Example 2. When $0 < c < \infty$, we can use $\tilde{w}(z) = z^{1/2}(c-z)^{1/2}$, where we take the branch cut along Γ and then $\tilde{w}_{\pm}(x) = \pm x^{1/2}(c-x)^{1/2} \neq 0$ for 0 < x < c. In this case, we can obtain another valid solution by multiplying $\tilde{w}(z)$ by any function of z that is holomorphic and non-zero on $\mathbb{C} \setminus \{0, c\}$.

In the above two examples, the auxiliary function $\tilde{w}(z)$ could plausibly have been found by inspection. However, we might wonder whether the functions so obtained are unique, and also how one could find \tilde{w} more generally. We have $\tilde{w}_+/\tilde{w}_- = -1$ on Γ , so

$$\log \tilde{w}_{+} - \log \tilde{w}_{-} = \log(-1) = (2m+1)\pi i \text{ on } \Gamma, \qquad (4.35)$$

where $m \in \mathbb{Z}$, corresponding to the infinite number of branches of the logarithm. Equation (4.35) is a version of Problem 1, and we read off from equations (4.12) and (4.16) the solution

$$\log \tilde{w}(z) = \frac{1}{2\pi i} \int_0^c \frac{(2m+1)\pi i}{\xi - z} d\xi + \tilde{h}(z) = \left(m + \frac{1}{2}\right) \left[\log(c-z) - \log z\right] + \tilde{h}(z),$$
(4.36)

where $\tilde{h}(z)$ is an arbitrary function holomorphic on $\mathbb{C} \setminus \{0, c\}$. Therefore the general form for $\tilde{w}(z)$ is

$$\tilde{w}(z) = h^*(z) \left(\frac{c-z}{z}\right)^{m+1/2},$$
(4.37)

where $h^*(z) = e^{\tilde{h}(z)}$ is again an arbitrary function of z holomorphic and nonzero on $\mathbb{C} \setminus \{0, c\}$. The general solution (4.37) includes the particular form for \tilde{w} found in Example 2 above, with m = 0 and $h^*(z) = z$.

Evidently the solution of Problem 2.2 is far from unique. There is a lot of freedom in the general form (4.37) for \tilde{w} , and also the arbitrary function $\tilde{H}(z)$ in (4.30) must be determined. We will now work through two concrete examples to show how a unique solution may be selected by prescribing the allowed behaviour of w(z) at z = 0, z = c and as $z \to \infty$.

4.4 Example: Fracture in solid mechanics

A famous problem in elasticity is to calculate the displacement field $(0, 0, \Phi(x, y))$ in antiplane strain around a crack at y = 0, 0 < x < c, as illustrated in Figure 4.4(a). The displacement Φ is such that:

- $\nabla^2 \Phi = 0$ except on the crack;
- $\lim_{y \downarrow \uparrow 0} \partial \Phi / \partial y = 0$ for 0 < x < c (zero traction on the crack surface);
- $|\nabla \Phi|$ has an inverse square-root singularity at (0,0) and at (c,0) (so that the displacement Φ is finite at the crack tips);
- $\partial \Phi / \partial y = T + O(r^{-2})$ as $r^2 = x^2 + y^2 \to \infty$ (uniform shearing at large distances).

Figure 4.4: (a) Antiplane strain around a crack. (b) The two-dimensional problem for $\phi(x, y)$. Setting $\Phi = Ty - \phi(x, y)$ and $\phi_y = \text{Im } w(z)$, we find that the corresponding properties of w are:

• w(z) is holomorphic on $\mathbb{C} \setminus \overline{\Gamma}$;

- Im $w_{\pm}(x) = T$ on $\Gamma = \{x + iy : 0 < x < c, y = 0\};$
- $w(z) = O(z^{-1/2})$ as $z \to 0$ and $w(z) = O((z-c)^{-1/2})$ as $z \to c$;
- $w(z) = O(z^{-2})$ as $z \to \infty$.

This is equivalent to Problem 2.2, with g(x) = T = constant, so a solution is given by equation (4.30), namely

$$w(z) = \tilde{w}(z) \left(\frac{1}{\pi} \int_0^c \frac{g(\xi) \,\mathrm{d}\xi}{\tilde{w}_+(\xi)(\xi - z)} + \tilde{H}(z)\right),\tag{4.38}$$

where $\tilde{H}(z)$ is an arbitrary function of z holomorphic on $\mathbb{C}\setminus\{0, c\}$. We now make a specific choice for \tilde{w} , namely

$$\tilde{w}(z) = z^{-1/2} (c-z)^{-1/2},$$
(4.39)

with the branch cut along Γ , so that $\tilde{w}_{\pm}(x) = \pm x^{-1/2}(c-x)^{-1/2}$ for 0 < x < c, and equation (4.38) becomes

$$w(z) = \frac{1}{z^{1/2}(c-z)^{1/2}} \left(\frac{1}{\pi} \int_0^c \frac{\xi^{1/2}(c-\xi)^{1/2}g(\xi)}{(\xi-z)} \,\mathrm{d}\xi + \tilde{H}(z) \right).$$
(4.40)

Now we will use the prescribed properties of w(z) to argue that $\tilde{H}(z)$ must in fact be zero.

- At the endpoints z = 0 and z = c of Γ , the integral in (4.40) is finite (because of the choice we made for $\tilde{w}(z)$).
- Since $\tilde{H}(z)$ is holomorphic on $\mathbb{C}\setminus\{0, c\}$, it can only have *isolated* singularities at the end points.
- Since $w = O(z^{-1/2})$ as $z \to 0$ and $w = O((c-z)^{-1/2})$ as $z \to c$, it follows that $\tilde{H}(z)$ can only have *removable* singularities at z = 0 and z = c, and therefore $\tilde{H}(z)$ is *entire*.
- Finally, $w = O(z^{-2})$ as $z \to \infty$ if and only if $\tilde{H}(z) = O(z^{-1})$ as $z \to \infty$, and therefore $\tilde{H}(z) \equiv 0$ by Liouville's theorem.

Hence, the unique solution for w(z) is given by

$$w(z) = \frac{T}{\pi z^{1/2} (c-z)^{1/2}} \int_0^c \frac{\xi^{1/2} (c-\xi)^{1/2} \,\mathrm{d}\xi}{(\xi-z)}.$$
(4.41)

The integral in equation (4.41) can be evaluated explicitly as follows. First note that

$$\int_0^c \frac{\xi^{1/2} (c-\xi)^{1/2} \,\mathrm{d}\xi}{(\xi-z)} = \frac{1}{2} \oint_C \frac{\zeta^{1/2} (c-\zeta)^{1/2} \,\mathrm{d}\zeta}{(\zeta-z)},\tag{4.42}$$

where C is a small clockwise contour that encloses Γ , as shown in Figure 4.5(a). Now deform the contour C to infinity, as shown in Figure 4.5(b). There is a residue contribution from the pole at $\zeta = z$ of $\pi i z^{1/2} (c-z)^{1/2}$. To evaluate the contribution from a large circle at infinity expand the integrand as

$$\frac{\zeta^{1/2}(c-\zeta)^{1/2}}{(\zeta-z)} \sim -i\left(1-\frac{c}{\zeta}\right)^{1/2} \left(1-\frac{z}{\zeta}\right)^{-1} \sim -i\left(1+\frac{2z-c}{2\zeta}+\cdots\right)$$
(4.43)

Figure 4.5: Integration contours for the integral (4.41).

which integrates to $-\pi(z-c/2)$. Thus the explicit solution for w(z) is

$$w = \frac{T}{\pi z^{1/2} (c-z)^{1/2}} \left(\pi i z^{1/2} (c-z)^{1/2} - \pi \left(z - \frac{c}{2} \right) \right) = T i - \frac{T (z-c/2)}{z^{1/2} (c-z)^{1/2}}.$$
 (4.44)

We can easily verify that the solution (4.44) for w(z) has all of the required properties. In principle we would have obtained exactly the same solution if we made a different choice of the auxiliary function $\tilde{w}(z)$: it would just have made the job of determining $\tilde{H}(z)$ slightly more difficult. In general, a judicious choice of $\tilde{w}(z)$ will make the whole solution procedure as straightforward as possible.

4.5 Example: Aerodynamics of a thin aerofoil

Here the physical model is the flow of a uniform stream of ideal fluid past a thin aerofoil with a sharp trailing edge and a small angle of attack, as illustrated in Figure 4.6(a). We denote

Figure 4.6: Flow past a thin aerofoil. (a) The problem for the velocity potential $\Phi(x, y)$. (b) The linearised problem for the disturbance potential $\phi(x, y)$.

the boundary of the aerofoil by $y = \epsilon g_{\pm}(x)$ for 0 < x < c, where $g_{-}(x) \leq g_{+}(x)$ and $\epsilon \ll 1$. If $\Phi(x, y)$ is the velocity potential, then:

• $\nabla^2 \Phi = 0$ in the fluid surrounding the aerofoil;

- the no-flux boundary condition states that $\partial \Phi / \partial n = 0$ on the boundary of the aerofoil;
- there is an *inverse square root* singularity in the velocity at the leading edge, so that $|\nabla \Phi| = O(r^{-1/2})$ as $r = \sqrt{x^2 + y^2} \to 0$;
- the *Kutta condition* states that the velocity $\nabla \Phi$ must be finite at the sharp trailing edge;
- the velocity is uniform at infinity, so that $\nabla \Phi \sim (1,0) + O(r^{-1})$ as $r \to \infty$.

In the limit of a thin aerofoil, $\epsilon \to 0$ and we can expand about the uniform flow, setting $\Phi(x,y) \sim x + \epsilon \phi(x,y)$. Since the outward normal to the upper surface of the aerofoil is proportional to $(-\epsilon g'_+, 1)$, the no-flux boundary condition on the upper surface implies

$$0 = (-\epsilon g'_{+}, 1) \cdot \nabla \Phi \quad \text{on } y = \epsilon g_{+}(x)$$

= $(-\epsilon g'_{+}, 1) \cdot (1 + \epsilon \phi_{x}(x, \epsilon g_{+}), \phi_{y}(x, \epsilon g_{+}))$
 $\sim -\epsilon g'_{+} + \epsilon \phi_{y}(x, 0) + O(\epsilon^{2})$ (4.45)

as $\epsilon \to 0$. A similar expansion holds for the no-flux boundary condition on the lower surface. Thus the boundary conditions which were originally imposed on the surface of the aerofoil may be linearised down onto the x-axis when ϵ is small.

The leading-order problem for the disturbance potential $\phi(x, y)$ is:

- $\nabla^2 \phi = 0$ except on the line segment $\{(x, y) : 0 \le x \le c, y = 0\};$
- $\frac{\partial \phi}{\partial y} = g'_{\pm}(x)$ on $0 < x < c, y = 0_{\pm};$
- $|\nabla \phi| = O(r^{-1/2})$ as $r \to 0;$
- $\nabla \phi$ is finite as $(x, y) \rightarrow (c, 0)$;
- $|\nabla \phi| = O(r^{-1})$ as $r \to \infty$.

We translate this into a Plemelj type problem by defining

$$w(z) = -(\phi_x(x,y) - \mathrm{i}\phi_y(x,y)) \tag{4.46}$$

(the unconventional minus sign is taken for convenience). Then w(z) has the properties

- w(z) is holomorphic on $\mathbb{C} \setminus \overline{\Gamma}$;
- Im $w_{\pm}(x) = g'_{\pm}(x)$ on $\Gamma = \{x + iy : 0 < x < c, y = 0\};$
- $w(z) = O(z^{-1/2})$ as $z \to 0$ and w(z) = O(1) as $z \to c$;
- $w(z) = O(z^{-1})$ as $z \to \infty$.

	fracture	aerofoil
$z \rightarrow 0$	$w(z) = O\left(z^{-1/2}\right)$	$w(z) = O\left(z^{-1/2}\right)$
$z \rightarrow c$	$w(z) = O\left((z-c)^{-1/2}\right)$	$w(z) = O\left(1\right)$
$z \to \infty$	$w(z) = O\left(z^{-2}\right)$	$w(z) = O\left(z^{-1}\right)$

Table 1: Comparison between the prescribed behaviours of w(z) in the fracture and aerofoil problems.

Figure 4.7: Schematic of a symmetric aerofoil (left); a zero-thickness aerofoil (right).

Remark: In Table 1 we summarise the conditions specified for w(z) at z = 0, z = c and as $z \to \infty$ in the fracture and aerofoil problems. Compared with the fracture problem, we have now *strengthened* the condition at z = c but *weakened* the condition at infinity.

For a symmetric aerofoil, $g_+(x) = -g_-(x)$, so that $g'_+(x) = -g'_-(x)$ and we must solve an easy problem as in Problem 2.1. A zero-thickness aerofoil has $g_+(x) = g_-(x)$, as shown in Figure 4.7, so that $g'_+(x) = g'_-(x)$ and we must solve a harder problem as in Problem 2.2.

In the latter case, we let $g'_+(x) = g'_-(x) = g(x)$ and again choose $\tilde{w}(z) = z^{-1/2}(c-z)^{-1/2}$, so that we can use the same solution (4.40) as for the crack problem. As in the crack problem, $\tilde{H}(z)$ can only have isolated singularities at the endpoints of Γ and is therefore entire. However, now the weaker condition $w = O(z^{-1})$ as $z \to \infty$ implies that $\tilde{H}(z) = O(1)$ as $z \to \infty$, so $\tilde{H}(z)$ is constant by Liouville's theorem (in contrast to the crack problem). Finally, we ensure that w is finite as the trailing edge z = c by setting

$$\tilde{H}(z) = \tilde{H}(c) = -\frac{1}{\pi} \int_0^c \frac{g(\xi)\xi^{1/2}(c-\xi)^{1/2}}{\xi-z} \,\mathrm{d}\xi \bigg|_{z=c},$$
(4.47)

giving

$$w(z) = \frac{1}{\pi z^{1/2} (c-z)^{1/2}} \int_0^c g(\xi) \xi^{1/2} (c-\xi)^{1/2} \left(\frac{1}{\xi-z} - \frac{1}{\xi-c}\right) d\xi$$
$$= \frac{(c-z)^{1/2}}{\pi z^{1/2}} \int_0^c \frac{g(\xi) \xi^{1/2}}{(c-\xi)^{1/2} (\xi-z)} d\xi.$$
(4.48)

It is an exercise in perturbation methods to verify that the solution (4.48) satisfies w(z) = O(1) as $z \to c$. Equation (4.48) could have been obtained more directly by choosing $\tilde{w}(z) = (c-z)^{1/2}/z^{1/2}$, thereby incorporating the specified behaviour of w(z) near the end points.

4.6 General Hilbert problem

We have seen that when $w_+ - w_-$ is given on Γ we can solve immediately for f and therefore for w. When $w_+ + w_-$ is given on Γ , we find a singular integral equation for f, but we can find w (and f) by introducing \tilde{w} such that $\tilde{w}_{+} = -\tilde{w}_{-} \neq 0$ on Γ . What about more general relations between w_{+} and w_{-} on Γ ?

The general so-called *Hilbert problem* is

$$a(z)w_{+}(z) + b(z)w_{-}(z) = c(z) \quad \text{on } \Gamma,$$
(4.49)

with $a, b \neq 0$ and c prescribed on Γ . Suppose we can find $\tilde{w}(z)$ holomorphic and non-zero away from Γ , with

$$a(z)\tilde{w}_{+}(z) = -b(z)\tilde{w}_{-}(z) \neq 0 \text{ on } \Gamma.$$
 (4.50)

Then $W(z) = w(z)/\tilde{w}(z)$ satisfies

$$W_{+}(z) - W_{-}(z) = \frac{w_{+}(z)}{\tilde{w}_{+}(z)} - \frac{w_{-}(z)}{\tilde{w}_{-}(z)}$$
$$= \frac{w_{+}(z)}{\tilde{w}_{+}(z)} - \frac{w_{-}(z)}{-a(z)\tilde{w}_{+}(z)/b(z)}$$
$$= \frac{a(z)w_{+}(z) + b(z)w_{-}(z)}{a(z)\tilde{w}_{+}(z)}$$
$$= \frac{c(z)}{a(z)\tilde{w}_{+}(z)} \quad \text{on } \Gamma, \qquad (4.51)$$

giving

$$W(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{c(\zeta)}{a(\zeta)\tilde{w}_+(\zeta)(\zeta-z)} \,\mathrm{d}\zeta + H(z), \qquad (4.52)$$

where H(z) is an arbitrary function of z that is holomorphic away from the endpoints of Γ . To solve for $\tilde{w}(z)$ we again take logs. Since $\tilde{w}_+(z)/\tilde{w}_-(z) = -b(z)/a(z)$, we get

$$\log \tilde{w}_{+}(z) - \log \tilde{w}_{-}(z) = \log \left(-\frac{b(z)}{a(z)}\right) \quad \text{on } \Gamma.$$
(4.53)

We can therefore use the Plemelj formulae as before to solve for $\tilde{w}(z)$ and hence find w(z).

The general linear Cauchy singular integral equation for f:

$$a(z)f(z) + b(z)\int_{\Gamma} \frac{f(\zeta)\,\mathrm{d}\zeta}{\zeta - z} = c(z),\tag{4.54}$$

can be rewritten as a Hilbert problem for

$$w(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(z)}{\zeta - z} d\zeta,$$

using the Plemelj formulae, and hence solved by following the above strategy.