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4 Plemelj formulae and
applications

4.1 Introduction

The problem of determining a holomorphic function w(z) in terms of its values on a curve Γ
is equivalent to solving a Cauchy problem for Laplace’s equation and therefore ill-posed : the
solution may not exist or may not be unique or it may not depend continuously on the
boundary values.

Example. If w(z) is holomorphic in y > 0 and

w(x) =
δ2ε

δ2 + x2
for y = 0, −∞ < x <∞, (4.1)

then

w(z) =
δ2ε

δ2 + z2
. (4.2)

Thus |w| ≤ ε on y = 0, and w → ∞ as z → iδ. Since ε and δ may be arbitrarily small, we
see that, however small w is on y = 0, it may become arbitrarily large an arbitrarily small
distance from y = 0.

This example illustrates that trying to specify w(z) on a given curve is ill posed. However,
well-posed problems may be formulated in which, for example, Rew or Imw are specified on Γ
or the jump in w across Γ is prescribed. We will show how a wide class of such problems may
be tackled using the so-called Plemelj formulae.

4.2 Plemelj formulae

Recall that if w is holomorphic inside and on the closed contour Γ and z is a point inside Γ,
then Cauchy’s integral formula states that

w(z) =
1

2πi

∮

Γ

w(ζ) dζ

ζ − z . (4.3)

This relates the values of w inside the contour to the values of w on the contour.

Let us consider more generally the Cauchy integral

w(z) =
1

2πi

∫

Γ

f(ζ) dζ

ζ − z , (4.4)
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where f is a given function on the contour Γ, which may now be closed or open. If Γ is open,
it is convenient in the subsequent analysis to adopt the convention that it does not contain
its endpoints, a, b ∈ C say. Thus, an open contour may be parametrized by

Γ = {γ(t) ∈ C : t0 < t < t1}, (4.5)

where a = γ(t0) 6= γ(t1) = b and t0 < t1 are real constants. We then define

Γ = {γ(t) ∈ C : t0 ≤ t ≤ t1} (4.6)

to be the (topological) closure of Γ, i.e. Γ is the union of Γ and its endpoints. (If Γ is a closed
contour, then Γ = Γ because Γ is (topologically) closed.)

If f is sufficiently smooth (e.g. continuous) on Γ, then the function w(z) defined by the
Cauchy integral (4.4) is holomorphic on C \Γ (its derivatives may be found by differentiating
under the integral sign). Now we pose the question: what is the limiting value of w(z) as z
approaches Γ? It turns out that the answer depends on which side of Γ is approached by z.

Suppose t ∈ Γ is any point at which Γ is smooth and that f is holomorphic in a neigh-
bourhood of t and continuous on Γ. Let us label the left-hand side of Γ (as Γ is traversed
in the direction of integration) as “+”, and the right-hand side as “−”. Let z approach
t ∈ Γ from the positive side as illustrated in Figure 4.1(a). We deform Γ near t by replacing

(a) Original contour (b) Deformed contour

Figure 4.1: Deformed integration contour for w+(z).

γε = Γ ∩ D(t; ε) ⊂ Γ with a small semi-circle Cε as illustrated in Figure 4.1(b), where ε is
sufficiently small that f is holomorphic in the disc D(t; 2ε) = {z : |z − t| < 2ε} say. By the
deformation theorem,

w+(t) = lim
z→t

1

2πi

(∫

Γ\γε
+

∫

Cε

)
f(ζ)

ζ − z dζ =
1

2πi

(∫

Γ\γε
+

∫

Cε

)
f(ζ)

ζ − t dζ. (4.7)

As ε→ 0, the semi-circle gives a residue contribution

1

2
× 2πi× f(t)

2πi
=

1

2
f(t),

where the factor of 1/2 arises because we are only integrating over a semi-circle. Hence,

w+(t) = lim
ε→0

1

2πi

(∫

Γ\γε
+

∫

Cε

)
f(ζ)

ζ − t dζ =
1

2πi
−
∫

Γ

f(ζ)

ζ − t dζ +
1

2
f(t), (4.8)

where we define the Principal Value integral as

−
∫

Γ

f(ζ)

ζ − t dζ = lim
ε→0

∫

Γ\γε

f(ζ)

ζ − t dζ. (4.9)
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(a) Original contour (b) Deformed contour

Figure 4.2: Deformed integration contour for w−(z).

This limit always exists because the log singularities from the endpoints cancel as ε→ 0 when
f is continuous on Γ.

If we let z → t ∈ Γ from the minus side as illustrated in Figure 4.2(a), then we must deform
Γ near ζ = t by replacing γε ⊂ Γ with a small semi-circle C ′ε as illustrated in Figure 4.2(b).
Again by the deformation theorem

w−(t) = lim
ε→0

1

2πi

(∫

Γ\γε
+

∫

C′
ε

)
f(ζ)

ζ − t dζ =
1

2πi
−
∫

Γ

f(ζ)

ζ − t dζ − 1

2
f(t). (4.10)

In this case we are integrating in the opposite direction around the semi-circle, so that the
residue contribution is −f(t)/2.

Equations (4.8) and (4.10) are known as the Plemelj formulae. In deriving them, we
have assumed that Γ is a smooth contour and that f is continuous on Γ. These conditions may
be relaxed (see e.g. Ablowitz & Fokas), but we will persist with these assumptions henceforth.
It follows that w(z) is holomorphic and that w(z) = O(1/z) as z →∞.

The contour deformation approach shown in Figures 4.1 and 4.2 clearly does not work
if t = te (= a or b) is an end-point of Γ. The local behaviour as z → te depends on the
local behaviour of f(ζ). The following results may be derived using perturbation methods or
quoted from Ablowitz & Fokas.

As z → te with z ∈ C \ Γ :

if f(ζ)→ 0 as ζ → te, then w(z) = O(1); (4.11a)

if f(ζ) = O(1) as ζ → te, then w(z) = O
(
log(z − te)

)
; (4.11b)

if f(ζ) = O
(
(ζ − te)−α

)
as ζ → te, with α ∈ (0, 1), then w(z) = O

(
(z − te)−α

)
. (4.11c)

4.3 Solving problems with the Plemelj formulae

Problem 1

Find a function w(z) holomorphic on C \Γ such that the limiting values of w(z) as z → t ∈ Γ
from either side satisfy

w+(t)− w−(t) = G(t), (4.12)

where G is continuous on Γ.

Solution. We seek a solution for w as a Cauchy integral

w(z) =
1

2πi

∫

Γ

f(ζ) dζ

ζ − z , (4.13)
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where our aim is to use the jump condition (4.12) to determine the density function f . By
subtracting the Plemelj formulae (4.10) and (4.8) we find that

w+(t)− w−(t) = f(t) (4.14)

on Γ. Hence, we read off f = G, and a solution is given by

w(z) =
1

2πi

∫

Γ

G(ζ) dζ

ζ − z . (4.15)

This shows that the Plemelj formulae allow us easily to find a solution w(z) that is
holomorphic on C \ Γ and satisfies the jump condition (4.12). However, the solution (4.15)
is not unique. The homogeneous problem with G = 0 consists of finding a function that is
holomorphic on C\Γ and continuous across Γ, which is satisfied by any function w(z) = h(z)
that is holomorphic on C\{a, b}. Morera’s Theorem may be used to prove that all solutions of
the homogeneous problem must be of this form. Therefore the general solution of Problem 1
is

w(z) =
1

2πi

∫

Γ

G(ζ) dζ

ζ − z + h(z), (4.16)

where h(z) is an arbitrary function of z that is holomorphic on C\{a, b}.
To pin down h, it is necessary to prescribe the behaviour of w at a, b and∞. For example,

suppose we impose the additional conditions:

(I) w is finite or has a logarithmic singularity at each of the endpoints of Γ;

(II) there exists n ∈ N such that w(z) = O(zn) as |z| → ∞.

Then, (I), the quotable results (4.11) and Laurent’s Theorem imply that h can only have
removable singularities at a and b, so that h is in fact entire. Hence, by (II) and the corollary
to Liouville’s theorem, h(z) = pn(z), an arbitrary polynomial of degree n.

Problem 2

Consider the particular case where Γ is a line segment on the real axis: Γ = {x : 0 < x < c}
for some c > 0. Suppose we are given Imw±(x) = g±(x) on Γ, with w holomorphic on C \ Γ.
Find w when (1) g+(x) = −g−(x) = g(x) and (2) g+(x) = g−(x) = g(x), where g(x) is
continuous on Γ.

Remark. If w(z) = u(x, y) + iv(x, y), then this problem is equivalent to the problem of
finding v such that ∇2v = 0 away from Γ, and v±(x) = g±(x) on Γ.

Solution. Seek a solution for w as a Cauchy integral of the form

w(z) =
1

2πi

∫ c

0

f(ξ) dξ

ξ − z , (4.17)

which is holomorphic on C \ Γ, assuming f is sufficiently regular. The Plemelj formulae
(4.8)–(4.10) become

w±(x) = u±(x) + ig±(x) = ±1

2
f(x)− iF (x) on Γ, (4.18)
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where we define

F (x) =
1

2π
−
∫ c

0

f(ξ)

ξ − xdξ. (4.19)

Note that F (x) is real on Γ if and only if f(x) is real on Γ (because ξ, x are real on Γ).

Problem 2.1: If g+(x) = −g−(x) = g(x), then (4.18) implies that

w+(x) + w−(x) = u+(x) + u−(x) = −2iF (x) on Γ, (4.20a)

w+(x)− w−(x) = u+(x)− u−(x) + 2ig(x) = f(x) on Γ. (4.20b)

By (4.20a), F must be pure imaginary, and hence f must be pure imaginary on Γ. Thus, by
(4.20b), we have u+(x)− u−(x) = 0 and f(x) = 2ig(x) on Γ. It follows that a solution for w
is given by

w(z) =
1

π

∫ c

0

g(ξ) dξ

ξ − z + h(z), (4.21)

where h(z) is an arbitrary function of z that is holomorphic on C \ {0, c} and real on Γ (thus
a solution of the homogeneous problem in which g = 0).

Problem 2.2: If g+(x) = g−(x) = g(x), then (4.18) becomes

w+(x) + w−(x) = u+(x) + u−(x) + 2ig(x) = −2iF (x) on Γ, (4.22a)

w+(x)− w+(x) = u+(x)− u−(x) = f(x) on Γ. (4.22b)

By (4.22b), f must be real, and hence F must likewise be real, on Γ; thus, by (4.22a), we
have u+(x) + u−(x) = 0 and F (x) = −g(x) on Γ. It follows that

w(z) =
1

2πi

∫ c

0

f(ξ) dξ

ξ − z (4.23)

is a solution provided f satisfies the Cauchy singular integral equation

1

π
−
∫ c

0

f(ξ) dξ

ξ − x = −2g(x) (0 < x < c), (4.24)

which we need to invert to find f .

Remark: In Problem 2.1 the data gives w+−w− and hence f directly. In Problem 2.2 the
data gives w+ + w− leading to a Cauchy singular integral equation for f .

Solution. Suppose we can find an auxillary function w̃(z) such that:

• w̃(z) is holomorphic and non-zero on C \ Γ; (4.25a)

• w̃(z) satisfies w̃+(x) = −w̃−(x) 6= 0 on Γ, (4.25b)

i.e. w̃ is a solution of the homogeneous problem (in which g = 0) that is non-zero on C\{a, b}.
Now we define

W (z) =
w(z)

w̃(z)
, (4.26)
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so that

W+(x)−W−(x) =
w+(x)

w̃+(x)
− w−(x)

w̃−(x)

=
w+(x)

w̃+(x)
− w−(x)

−w̃+(x)

=
w+(x) + w−(x)

w̃+(x)

=
2ig(x)

w̃+(x)
on Γ. (4.27)

If w̃+ is known, then W+ −W− is known (because g is known). Therefore we have turned
Problem 2.2 (in which w+ + w− is given) into a version of Problem 1 (in which W+ −W− is
given). By Problem 1, equation (4.15), a solution for W is given by

W (z) =
1

2πi

∫ c

0

f̃(ξ) dξ

ξ − z + H̃(z), (4.28)

where

f̃(x) =
2ig(x)

w̃+(x)
on Γ, (4.29)

and H̃(z) is an arbitrary function holomorphic on C\{0, c}. Thus the solution of Problem 2.2
takes the form

w(z) = w̃(z)

(
1

π

∫ c

0

g(ξ) dξ

w̃+(ξ)(ξ − z) + H̃(z)

)
. (4.30)

With W given by (4.28), the Plemelj formulae give

W±(x) = ±1

2
f̃(x) +

1

2πi

∫ c

0

f̃(ξ) dξ

ξ − x + H̃(x) (0 < x < c), (4.31)

so that

f̃(x) = W+(x)−W−(x) =
2ig(x)

w̃+(x)
on Γ, (4.32)

as required. Moreover,

1

πi
−
∫ c

0

f̃(ξ) dξ

ξ − x + 2H̃(x) = W+(x) +W−(x)

=
w+(x)

w̃+(x)
+
w−(x)

w̃−(x)

=
w+(x)− w−(x)

w̃+(x)

=
f(x)

w̃+(x)
on Γ, (4.33)

and, with f̃ given by (4.29), we deduce that

f(x) = w̃+(x)
(
W+(x) +W−(x)

)
= 2w̃+(x)

(
1

π
−
∫ c

0

g(ξ) dξ

w̃+(ξ)(ξ − x)
+ H̃(x)

)
(4.34)

satisfies the Cauchy singular integral equation (4.24).
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Finding w̃

We have shown that the decomposition (4.26) allows us to transform Problem 2.2 into a
version of Problem 1, and then solve it using the Plemelj formulae. As a bonus, (4.34) gives
the solution f(x) of the singular integral equation (4.24). It just remains to find an auxillary
function w̃(z) satisfying the properties (4.25), where Γ = {x + iy : 0 < x < c, y = 0} and
Γ = {x+ iy : 0 ≤ x ≤ c, y = 0}. We need to find a function whose value as Γ is approached
from above is minus that as Γ is approached from below, as shown schematically in Figure 4.3.

� + = -� -

� -

�
��(�)

��(�)

Figure 4.3: The jump conditions satisfied by the auxiliary function across Γ.

Example 1. When c =∞, we can use w̃(z) = z1/2, provided we take the branch cut along
the positive real axis, i.e. z1/2 = r1/2eiθ/2 for z = reiθ, with r > 0 and 0 < θ ≤ 2π. Then we
will have w̃±(x) = ±x1/2 6= 0 for x > 0, as required. We can obtain another valid solution by
multiplying w̃(z) by any function of z that is holomorphic and non-zero on C \ {0}.

Example 2. When 0 < c <∞, we can use w̃(z) = z1/2(c− z)1/2, where we take the branch
cut along Γ and then w̃±(x) = ±x1/2(c − x)1/2 6= 0 for 0 < x < c. In this case, we can
obtain another valid solution by multiplying w̃(z) by any function of z that is holomorphic
and non-zero on C \ {0, c}.

In the above two examples, the auxiliary function w̃(z) could plausibly have been found
by inspection. However, we might wonder whether the functions so obtained are unique, and
also how one could find w̃ more generally. We have w̃+/w̃− = −1 on Γ, so

log w̃+ − log w̃− = log(−1) = (2m+ 1)πi on Γ, (4.35)

where m ∈ Z, corresponding to the infinite number of branches of the logarithm. Equation
(4.35) is a version of Problem 1, and we read off from equations (4.12) and (4.16) the solution

log w̃(z) =
1

2πi

∫ c

0

(2m+ 1)πi

ξ − z dξ + h̃(z)

=

(
m+

1

2

)[
log(c− z)− log z

]
+ h̃(z), (4.36)
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where h̃(z) is an arbitrary function holomorphic on C \ {0, c}. Therefore the general form for
w̃(z) is

w̃(z) = h∗(z)
(
c− z
z

)m+1/2

, (4.37)

where h∗(z) = eh̃(z) is again an arbitrary function of z holomorphic and nonzero on C\{0, c}.
The general solution (4.37) includes the particular form for w̃ found in Example 2 above, with
m = 0 and h∗(z) = z.

Evidently the solution of Problem 2.2 is far from unique. There is a lot of freedom in the
general form (4.37) for w̃, and also the arbitrary function H̃(z) in (4.30) must be determined.
We will now work through two concrete examples to show how a unique solution may be
selected by prescribing the allowed behaviour of w(z) at z = 0, z = c and as z →∞.

4.4 Example: Fracture in solid mechanics

A famous problem in elasticity is to calculate the displacement field
(
0, 0,Φ(x, y)

)
in antiplane

strain around a crack at y = 0, 0 < x < c, as illustrated in Figure 4.4(a). The displacement
Φ is such that:

• ∇2Φ = 0 except on the crack;

• limy↓↑0 ∂Φ/∂y = 0 for 0 < x < c (zero traction on the crack surface);

• |∇Φ| has an inverse square-root singularity at (0, 0) and at (c, 0) (so that the displace-
ment Φ is finite at the crack tips);

• ∂Φ/∂y = T +O
(
r−2
)

as r2 = x2 + y2 →∞ (uniform shearing at large distances).

for some n, m ∈ Z.
As |z| → ∞, w = O(w̃/z). Since we want |∇φ| → 0 at infinity we therefore don’t want w̃ to

grow as fast as z as |z| → ∞. This gives n + m ≤ 0.
Also w has branch points where w̃ has, i.e. at the leading and trailing edge of the aerofoil, z = 0

and z = c. But in a wind tunnel it is observed that the velocity w is bounded at the trailing edge
z = c. Thus w̃ must have a positive power of z − c, so that n ≥ 0. But a power of z − c greater
than one would make 1/w̃+ non-integrable. Therefore n = 0. Thus we have

w̃ = (z − c)1/2zm−1/2,

where m ≤ 0. The velocity at the trailing edge is infinite due to the negative power if z. The
solution which is least singular is that corresponding to m = 0.

Example: Fracture in solids

Let Φ(x, y) be the vertical displacement and let Φ = Ty + φ. Then

T = ∂Φ
∂y

∂Φ
∂y

= 0

T = ∂Φ
∂y

∇2Φ = 0

∇2φ = 0

∂φ
∂y

= T

This is again a difficult problem requiring w̃. Since there is no difference between the left and
right crack tips, symmetry requires that we have the same power of z we have of z − c. Thus

w̃ = zn+1/2(z − c)n+1/2

for some n ∈ Z. For W to be bounded at infinity we require n ≤ −1. The solution which is least
singular is n = −1. Then

w =
T

πz1/2(c − z)1/2

∫ c

0

ξ1/2(c − ξ)1/2 dξ

(ξ − z)
.

Amazingly, this integral can be evaluated explicitly. First note that

∫ c

0

ξ1/2(c − ξ)1/2 dξ

(ξ − z)
=

1

2

∫

Γ

ζ1/2(c − ζ)1/2 dζ

(ζ − z)

since the square root changes sign on the bottom integral, while the direction of integration is
reversed.

42

(a) (b)

Figure 4.4: (a) Antiplane strain around a crack. (b) The two-dimensional problem for φ(x, y).

Setting Φ = Ty − φ(x, y) and φy = Imw(z), we find that the corresponding properties of w
are:

• w(z) is holomorphic on C \ Γ;
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• Imw±(x) = T on Γ = {x+ iy : 0 < x < c, y = 0};

• w(z) = O
(
z−1/2

)
as z → 0 and w(z) = O

(
(z − c)−1/2

)
as z → c;

• w(z) = O(z−2) as z →∞.

This is equivalent to Problem 2.2, with g(x) = T = constant, so a solution is given by
equation (4.30), namely

w(z) = w̃(z)

(
1

π

∫ c

0

g(ξ) dξ

w̃+(ξ)(ξ − z) + H̃(z)

)
, (4.38)

where H̃(z) is an arbitrary function of z holomorphic on C\{0, c}. We now make a specific
choice for w̃, namely

w̃(z) = z−1/2(c− z)−1/2, (4.39)

with the branch cut along Γ, so that w̃±(x) = ±x−1/2(c− x)−1/2 for 0 < x < c, and equation
(4.38) becomes

w(z) =
1

z1/2(c− z)1/2

(
1

π

∫ c

0

ξ1/2(c− ξ)1/2g(ξ)

(ξ − z) dξ + H̃(z)

)
. (4.40)

Now we will use the prescribed properties of w(z) to argue that H̃(z) must in fact be zero.

• At the endpoints z = 0 and z = c of Γ, the integral in (4.40) is finite (because of the
choice we made for w̃(z)).

• Since H̃(z) is holomorphic on C\{0, c}, it can only have isolated singularities at the
end points.

• Since w = O
(
z−1/2

)
as z → 0 and w = O

(
(c− z)−1/2

)
as z → c, it follows that H̃(z)

can only have removable singularities at z = 0 and z = c, and therefore H̃(z) is entire.

• Finally, w = O
(
z−2
)

as z →∞ if and only if H̃(z) = O
(
z−1
)

as z →∞, and therefore

H̃(z) ≡ 0 by Liouville’s theorem.

Hence, the unique solution for w(z) is given by

w(z) =
T

πz1/2(c− z)1/2

∫ c

0

ξ1/2(c− ξ)1/2 dξ

(ξ − z) . (4.41)

The integral in equation (4.41) can be evaluated explicitly as follows. First note that

∫ c

0

ξ1/2(c− ξ)1/2 dξ

(ξ − z) =
1

2

∮

C

ζ1/2(c− ζ)1/2 dζ

(ζ − z) , (4.42)

where C is a small clockwise contour that encloses Γ, as shown in Figure 4.5(a). Now deform
the contour C to infinity, as shown in Figure 4.5(b). There is a residue contribution from the
pole at ζ = z of πiz1/2(c − z)1/2. To evaluate the contribution from a large circle at infinity
expand the integrand as

ζ1/2(c− ζ)1/2

(ζ − z) ∼ −i

(
1− c

ζ

)1/2(
1− z

ζ

)−1

∼ −i

(
1 +

2z − c
2ζ

+ · · ·
)

(4.43)
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(a) (b)

Figure 4.5: Integration contours for the integral (4.41).

which integrates to −π(z − c/2). Thus the explicit solution for w(z) is

w =
T

πz1/2(c− z)1/2

(
πiz1/2(c− z)1/2 − π

(
z − c

2

))
= T i− T (z − c/2)

z1/2(c− z)1/2
. (4.44)

We can easily verify that the solution (4.44) for w(z) has all of the required properties.
In principle we would have obtained exactly the same solution if we made a different choice
of the auxiliary function w̃(z): it would just have made the job of determining H̃(z) slightly
more difficult. In general, a judicious choice of w̃(z) will make the whole solution procedure
as straightforward as possible.

4.5 Example: Aerodynamics of a thin aerofoil

Here the physical model is the flow of a uniform stream of ideal fluid past a thin aerofoil with
a sharp trailing edge and a small angle of attack, as illustrated in Figure 4.6(a). We denote

Lecture 12

Example: Aerodynamics

Here the physical model is a thin wing y = εg±(x), ε ! 1. The model is inviscid, irrotational
(⇒ u = ∇Φ), incompressible (⇒ ∇ · u = 0), flow, giving

∇2Φ = 0.

The boundary conditions are a uniform stream at infinity (u → (1, 0) as x2 + y2 → ∞), and no
flow through the wing (u · n = 0). Expanding

u = (1, 0) + ε∇φ

gives
∇2φ = 0,

with φ → 0 at infinity. Since the normal to the wing is (−εg′, 1) the boundary condition on the
wing gives

0 = u · n = (1, 0) · (−εg′, 1) + ε(φx(x, εg),φy(x, εg)) · (−εg′, 1) = −εg′ + εφy(x, 0) + O(ε2).

At leading order,
φy(x,±0) = g′

±(x).

∇2Φ = 0

Φ → x as x2 + y2 → ∞.

y = εg+(x)

y = εg−(x)

∂Φ
∂n

= 0

∇2φ = 0

φ → 0 as x2 + y2 → ∞.

∂φ
∂y

= g′
+(x)

∂φ
∂y

= g′
−(x)

Thus at leading order the wing is replaced by boundary conditions on y = ±0, 0 < x < c. A
symmetric aerofoil has g+ = −g− (easy problem). A zero-thickness aerofoil has g+ = g− (difficult,
requiring w̃).

g+ = −g− g+ = g−

We want Im(w) = ∂φ/∂y so that there is a jump in Im(w) across y = 0, 0 < x < c. Thus
w = i(φy + iψy) = −ψy + iφy = −φx + iψy = −u + iv. We know that

w̃ = (z − c)n+1/2zm−1/2

42

(a) (b)

Figure 4.6: Flow past a thin aerofoil. (a) The problem for the velocity potential Φ(x, y).
(b) The linearised problem for the disturbance potential φ(x, y).

the boundary of the aerofoil by y = εg±(x) for 0 < x < c, where g−(x) ≤ g+(x) and ε� 1. If
Φ(x, y) is the velocity potential, then:

• ∇2Φ = 0 in the fluid surrounding the aerofoil;
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• the no-flux boundary condition states that ∂Φ/∂n = 0 on the boundary of the aerofoil;

• there is an inverse square root singularity in the velocity at the leading edge, so that
|∇Φ| = O

(
r−1/2

)
as r =

√
x2 + y2 → 0;

• the Kutta condition states that the velocity ∇Φ must be finite at the sharp trailing
edge;

• the velocity is uniform at infinity, so that ∇Φ ∼ (1, 0) +O
(
r−1
)

as r →∞.

In the limit of a thin aerofoil, ε → 0 and we can expand about the uniform flow, setting
Φ(x, y) ∼ x + εφ(x, y). Since the outward normal to the upper surface of the aerofoil is
proportional to (−εg′+, 1), the no-flux boundary condition on the upper surface implies

0 = (−εg′+, 1) · ∇Φ on y = εg+(x)

= (−εg′+, 1) ·
(
1 + εφx(x, εg+), φy(x, εg+)

)

∼ −εg′+ + εφy(x, 0) +O(ε2) (4.45)

as ε→ 0. A similar expansion holds for the no-flux boundary condition on the lower surface.
Thus the boundary conditions which were originally imposed on the surface of the aerofoil
may be linearised down onto the x-axis when ε is small.

The leading-order problem for the disturbance potential φ(x, y) is:

• ∇2φ = 0 except on the line segment {(x, y) : 0 ≤ x ≤ c, y = 0};

• ∂φ

∂y
= g′±(x) on 0 < x < c, y = 0±;

• |∇φ| = O
(
r−1/2

)
as r → 0;

• ∇φ is finite as (x, y)→ (c, 0);

• |∇φ| = O
(
r−1
)

as r →∞.

We translate this into a Plemelj type problem by defining

w(z) = −
(
φx(x, y)− iφy(x, y)

)
(4.46)

(the unconventional minus sign is taken for convenience). Then w(z) has the properties

• w(z) is holomorphic on C \ Γ;

• Imw±(x) = g′±(x) on Γ = {x+ iy : 0 < x < c, y = 0};

• w(z) = O(z−1/2) as z → 0 and w(z) = O(1) as z → c;

• w(z) = O
(
z−1
)

as z →∞.



4–12 OCIAM Mathematical Institute University of Oxford

fracture aerofoil

z → 0 w(z) = O
(
z−1/2

)
w(z) = O

(
z−1/2

)

z → c w(z) = O
(
(z − c)−1/2

)
w(z) = O (1)

z →∞ w(z) = O
(
z−2
)

w(z) = O
(
z−1
)

Table 1: Comparison between the prescribed behaviours of w(z) in the fracture and aerofoil
problems.
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Figure 4.7: Schematic of a symmetric aerofoil (left); a zero-thickness aerofoil (right).

Remark: In Table 1 we summarise the conditions specified for w(z) at z = 0, z = c and as
z →∞ in the fracture and aerofoil problems. Compared with the fracture problem, we have
now strengthened the condition at z = c but weakened the condition at infinity.

For a symmetric aerofoil, g+(x) = −g−(x), so that g′+(x) = −g′−(x) and we must solve
an easy problem as in Problem 2.1. A zero-thickness aerofoil has g+(x) = g−(x), as shown in
Figure 4.7, so that g′+(x) = g′−(x) and we must solve a harder problem as in Problem 2.2.

In the latter case, we let g′+(x) = g′−(x) = g(x) and again choose w̃(z) = z−1/2(c− z)−1/2,
so that we can use the same solution (4.40) as for the crack problem. As in the crack
problem, H̃(z) can only have isolated singularities at the endpoints of Γ and is therefore
entire. However, now the weaker condition w = O(z−1) as z →∞ implies that H̃(z) = O(1)
as z → ∞, so H̃(z) is constant by Liouville’s theorem (in contrast to the crack problem).
Finally, we ensure that w is finite as the trailing edge z = c by setting

H̃(z) = H̃(c) = − 1

π

∫ c

0

g(ξ)ξ1/2(c− ξ)1/2

ξ − z dξ

∣∣∣∣∣
z=c

, (4.47)

giving

w(z) =
1

πz1/2(c− z)1/2

∫ c

0
g(ξ)ξ1/2(c− ξ)1/2

(
1

ξ − z −
1

ξ − c

)
dξ

=
(c− z)1/2

πz1/2

∫ c

0

g(ξ)ξ1/2

(c− ξ)1/2(ξ − z) dξ. (4.48)

It is an exercise in perturbation methods to verify that the solution (4.48) satisfies
w(z) = O(1) as z → c. Equation (4.48) could have been obtained more directly by choosing
w̃(z) = (c− z)1/2/z1/2, thereby incorporating the specified behaviour of w(z) near the end
points.

4.6 General Hilbert problem

We have seen that when w+−w− is given on Γ we can solve immediately for f and therefore
for w. When w+ + w− is given on Γ, we find a singular integral equation for f , but we can
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find w (and f) by introducing w̃ such that w̃+ = −w̃− 6= 0 on Γ. What about more general
relations between w+ and w− on Γ?

The general so-called Hilbert problem is

a(z)w+(z) + b(z)w−(z) = c(z) on Γ, (4.49)

with a, b 6= 0 and c prescribed on Γ. Suppose we can find w̃(z) holomorphic and non-zero
away from Γ, with

a(z)w̃+(z) = −b(z)w̃−(z) 6= 0 on Γ. (4.50)

Then W (z) = w(z)/w̃(z) satisfies

W+(z)−W−(z) =
w+(z)

w̃+(z)
− w−(z)

w̃−(z)

=
w+(z)

w̃+(z)
− w−(z)

−a(z)w̃+(z)/b(z)

=
a(z)w+(z) + b(z)w−(z)

a(z)w̃+(z)

=
c(z)

a(z)w̃+(z)
on Γ, (4.51)

giving

W (z) =
1

2πi

∫

Γ

c(ζ)

a(ζ)w̃+(ζ)(ζ − z) dζ +H(z), (4.52)

where H(z) is an arbitrary function of z that is holomorphic away from the endpoints of Γ.
To solve for w̃(z) we again take logs. Since w̃+(z)/w̃−(z) = −b(z)/a(z), we get

log w̃+(z)− log w̃−(z) = log

(
− b(z)
a(z)

)
on Γ. (4.53)

We can therefore use the Plemelj formulae as before to solve for w̃(z) and hence find w(z).
The general linear Cauchy singular integral equation for f :

a(z)f(z) + b(z)

∫

Γ

f(ζ) dζ

ζ − z = c(z), (4.54)

can be rewritten as a Hilbert problem for

w(z) =
1

2πi

∫

Γ

f(z)

ζ − zdζ,

using the Plemelj formulae, and hence solved by following the above strategy.


