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Index of Notation

B(a,r)
Ba,r)
B(X,Y)
Bx

CkU,Y)

c*(U,Y)

LV, W)
Mat,,,(R)
Mat,(R)

Ox

Oy (lIxI)

oy(llxl)

U, a)

the open ball of radius f centred ata.

the closed ball of radius r centred at a.

the space of bounded linear maps 5: X — Y between normed vector spaces X and Y.
the closed ball B(Oy, 1) of radius 1 centred at Oy in a normed vector space X.

for k anon-negative integer this is the space of continuous functions f: U — Y defined on an open
subset U of a normed vector space X taking values in a normed vector space Y which are k times
continuously differentiable.

the space of infinitely differentiable functions on an open subset U of a normed vector space X
taking values in a normed vector space Y.

the space of linear maps @: V — W between vector spaces V and W.
the space of n X m matrices with entries in R.
the space of n X n matrices with entries in R.

the zero vector in a vector space X. If V = R,, we write 0, in place of Og», and if the vector space in
question is clear from the context we suppress the subscript and write O rather than Oy.

the space of functions f defined on a neighbourhood of Oy in a normed vector space X taking values
in anormed vector space Y with the property that there exist constants C, r > Osuch that % <C
for all x € B(Ox, r).

the space of functions f defined on aneighbourhood of Ox in anormed vector space X taking values

in a normed vector space Y with the property that lim,_,g ”Jﬂfﬁ)” =0.

a pointed set, i.e. Uisasetand a € U is an element of U.

Course Outline

o Definition of a derivative of a function from R” to R™; examples; elementary properties; partial derivatives;

the chain rule; the gradient of a function from R” to R; Jacobian. Continuous partial derivatives imply
differentiability. Mean Value Theorems. [3 lectures]

e The Inverse Function Theorem and the Implicit Function Theorem (proofs are non-examinable). [2 lec-

tures]

o The definition of a submanifold of R”. Its tangent and normal space at a point, examples, including two-

dimensional surfaces in R3. [2 lectures]

e Lagrange multipliers. [1lecture]



1 Review from Al: Linear maps and continuity

Everything in sections §1.1 and §1.2 apart from Definition 1.10 is covered in the Metric Spaces part of the A.1 core course.
The only significant new result is proved in section §1.3: Theorem 1.17 shows that a linear map between normed vector
spaces whose domain is finite-dimensional is automatically continuous.

1.1 Normed vector spaces

Before discussing the notion of differentiability for functions of many (real) variables, we begin by reviewing the
relationship between the conditions of continuity and linearity for functions, in the natural context where both
notions are defined, namely that of normed vector spaces.

Definition 1.1. Anormed vector space (X, ||.||) is a pair consisting of a real' vector space X and a function |[.||: X —
R which satisfies, forallv,w € X and 1 € R:

L |vll = 0 with equality if and only if v = 0. (Positivity.)
2. ||Av]| = |A]|IVIl. (Homogeneity.)
3. v+ wl| < ||| + [wll. (Triangle inequality.)

We write Oy for the zero vector in X (or simply 0 if there is no possibility for confusion). Taking A = 0in (2) we
see that ||Ox|| = 0 and thus by (2) and (3) we must have

0 = [10xl < [Wll + I = vIl = 2[Iv]I.

Hence (2) and (3) in fact imply the inequality in (1), however the implication ||[v|| = 0 = v = 0 does not follow
from (2) and (3). A normed vector space is automatically a metric space, where the distance between v, v, € V
is defined to be ||[v; — v2||.

Remark 1.2. We will normally write ||.|| for the norm on an arbitrary vector space, as it will be clear from context
which vector space is in question. When there might be ambiguity?, such as when we consider more than one
norm on the same vector space, we will decorate the norm with a subscript, e.g. ||.|[x or ||.|/1-

We will largely follow the notational conventions of the Metric Spaces and Complex Analysis course, and
write, for example, fora € X andr > 0

Ba,r)={xeX:|x—al<r}), Bar={xeX:|x—al<r},

for the open and closed balls respectively about a of radius r. Note that in a normed vector space, unlike in a
general metric space, if > 0 then the closed ball B(a, ) is always the closure B(a, ) of B(a, r). When V = R" we
will write 0, in place of Ogn.

We will also write By for the closed ball B(Ox, 1) and Sx = {v € X : |[v|| = 1} for its boundary, the unit sphere
centred at Oy.

Recall thatif X is a normed vector space and a € X we say thata subset U C X is a neighbourhood of a if there
is some r > 0 such that the open ball B(a, r) of radius r centred at a is contained in U. We say U is open if it is a
neighbourhood of each of its points, that is, for every x € U there is some r, > 0 such that Bxr, C U.

Example 1.3. If X is one-dimensional, it is easy to understand all possible norms on X. Indeed if we pick e; €
X\{0}, then for any v € X thereisaunique A € R suchthatv = d.e;. Nowif f: X — Ry ishomogeneous, so that
f@v) =t|.f(v)forallt € R, then f(v) = |A].f(e1). Sinceitis easy to check that the absolute-value function  — [¢|
on R is a norm, it follows from the formula f(v) = |1|f(e;) that fis anorm on X provided f is notidentically zero.
Since any norm on X necessarily satisfies the homogeneity condition, it follows that any norm ||.|| on X has the
form ||v|| = c.|4| for ¢ > 0 a positive real number (where, as above, v = l.e}).

'In fact onejust needs a field with a sensible notion of “absolute value” —for example the complex numbers equipped with the modulus
function.
*If you find an ambiguity I have missed, please let me know.



If dim(X) > 1 —indeed even for dim(X) = 2 — one cannot give such an explicit classification of all possible
norms®, but we will shortly see that, for finite dimensional vector spaces, all norms are equivalent in a sense which
immediately implies they all yield the same notion of convergence, continuity, and uniform continuity.

Example 1.4. Let X = R". Then there are many norms which are natural to consider. Perhaps the three most

commonly used ones are the following: Forv = (vi,...,v,) € R", we set
[Vlleo = max |x;],
1<i<n

Il

n
> il
i=1
n 1/2
2

i=1

[Ivll2

Where it is important to emphasize which norm we are using on R", we will write €f; for the normed vector space

R I.ll+) (where T € {1, 2, oo}).

Example 1.5. The normed vector space {7 is an example of an inner product space, meaning that the norm comes
from a positive definite symmetric bilinear form (or inner product): if x, y € R”, then the pairing {x,y) = 37| x;y;
(the standard “dot product”) is such a form and ||x|| = (x, /2. Inner product spaces have both a notion of
distance and angle.

If X and Y are are finite-dimensional inner product spaces, and we write (v1, v2)x denote the inner product
on X and (w1, wy)y the inner product on Y, then, as in AO Linear Algebra, for any T € L(X, Y), there is a unique
T* € L(Y, X) such that

(TOW),wyy = v, T*W))x, YveXweY. )

Indeed if one picks orthonormal bases Bx and By for X and Y respectively, then applying (1) to the elements
of Bx and By shows that if 7 has matrix A with respect to these bases then 7* must have matrix A’. On the other
hand it is easy to see using bilinearity (“multiplying out”) that if 7™ satisfies () forv € By and w € By then it
satisfies (T) forallv € X and w € Y, thus 7™ is just the linear map corresponding to the matrix A’ and the bases
By, By. Notice that this also shows tr(T) = tr(T*) since the trace of a matrix is equal to that of its transpose.

When X and Y are inner product spaces, we can make £ := £(X, Y)) into an inner product spaces by setting

(S1,82)2 = ux(S1S2) = uy(S351), VS1,52€ LIX,Y)

where the second equality holds because (§752)" = S5(S7)" = S35 and since, as noted above, for any T' €
L(X, Y)wehave tr(T™) = tr(T), this is a symmetric bilinear form.

If we pick orthonormal bases By = {by,...,b,} and By = {cy,...cn} of X and Y respectively, thenif A =
(aij) = By[S 1By is the matrix of § with respect to these bases, we have a;; = (c;, S (b;))y, and hence

t t 2

S, S)r=u@A)= > dap= Y
1<k<n 1<k<n
1<j<m 1<j<m

hence (S, T') is positive definite —indeed it follows that £ has an orthonormal basis consisting of the linear maps
corresponding to the elemenary matrices {E;}1<;, j<n- The associated norm on £(X, Y)is called the Hilbert-Schmidt

norm, |[S|lus = (S, )%

*Giving anorm ||.|| on R" is equivalent to giving the set By, = {v € V : ||v|| < 1} of vectors in its closed unit ball. Such a set Bj must
be closed and bounded (both with respect to the Euclidean metric), convex, and preserved by the map x +— —x, but otherwise can be
arbitrary.




1.2 Bounded linear maps

Definition 1.6. If X and Y are vector spaces, we write £(X, ¥) for the vector space of all linear maps from X to Y.
If X = Y then we write Ix for the identity map from X to itself. (In the case where X = R" we will usually write I,
rather than Ign.)

If we pick bases Bx = {e1,...,e,} of X and By = {f1, ..., fin} of Y respectively, then we can identify £(X, Y)
with Mat,, ,(R) the space of n-by-m matrices whereif @ € L(X,Y)thea = A = (a;)) with a(e)) = 37", a;; fi. If
dim(X) = dim(Y) = n, then we write Mat,(R) instead of Mat,, ,(R).

Definition 1.7. Alinearmap 7': X — Y is said to be bounded if there is some constant C > 0 such that
1Tl < Clixll, VxeX.

We will write B(X, Y) for the set of bounded linear maps from X to Y. Note that, for x # 0, this condition is
equivalent to ||T(”—;:”)||S C, thus T is bounded if and only if || T'(x)|| is bounded on B(Ox, 1).

Exercise 1.8. In Problem Sheet 1, you are asked to show that alinear map T € L(X, Y) is bounded if and only if
it takes bounded subsets of X to bounded subsets of Y.

Bounded linear maps are clearly continuous, indeed Lipschitz continuous: if C is an upper bound for 7: X —
Y on B(Ox, 1) then if x1, x; € X then ||T(x1) — T(x2)|| = ||T(x; — x2)|| < C.||x; — x2]|, so that T is Lipschitz con-
tinuous with Lipschitz constant C. The following Lemma refines this observation slightly, using the notational
conventions described in §5.1 of the Appendix.

Lemma 1.9. Let X and Y be normed vector spaces. Then if CO(X, Y) denotes the space of continuous functions from X to
Y we have

BX,Y) = Oy(IM) N LX,Y) = C°(X,Y) N LX,Y) = No(X, Y) N L(X,Y)
In particular, B(X, Y) is a vector space.

Proof. f T: X — Y isbounded then itis clear from the definition thatitlies in Oy(||.||), and we have already seen
above that it must be continuous. Since continuity implies continuity at Oy, to complete the proof it suffices to
show that if T is continuous at Oy, then it is bounded. Butif T is continuous at Oy, then thereisa § > 0 such
that||[T(v)|| < 1forallv € B(0x, ). But then for any v € X with |[v|| < 1, we have (1/26).v € B(0y, 9) so that
IT((6/2).v)|| < 1,and henceforallv € Vwith ||[v|]| £ 1 wehave ||[T(v)|| < 2/6, thatis, T is bounded. O

Definition 1.10. The space of bounded linear maps B(X, Y) is a normed vector space, with the norm, known as
the operator norm given by T +— ||T||, where ||T||« is defined as above. Using standard facts about suprema, you
can check that this norm is submultiplicative, in the sense thatif X, Y and Z are normed vector spaces, S : X = Y
and,asaboveT: Y — Z,then||T © S|lco < IT |lco-IS llco-

Remark 1.11. In Metric Spaces, you studied the space B(X) of real-valued bounded functions on an arbitrary set
X and, for a metric space X, the space of bounded, real-valued, continuous functions Cp(X). In that setting, a
function is said to be bounded if its image is a bounded set. The image of a non-zero linearmapa: X — Y
between normed vector spaces is never bounded, thus the usages are not, at first sight, consistent.

This apparent inconsistency is not, however, impossible to resolve*: Since it is compatible with scaling, a
linear map a is completely determined by its values on Bx = B(Oy, 1), indeed if v # 0 then u = v/||v|| € Bx and
a(v) = |[v|la(u). Thus we get an injective map r: B(X, Y) — C(By, Y), from B(X, Y) to the space of continuous
functions on By taking valuesin Y. Here r(@) is just the restriction of @ to the closed ball Bx. By definition, it gives
an isometric embedding of B(X, Y), equipped with the operator norm, into C»(By, Y), where the latter space is
equipped with the usual supremum norm: || f|le = sup{|[f(x)|| : x € Bx}.

Definition 1.12. If X and Y are normed vector spaces, we say thata € B(X, Y) is a topological isomorphism if it has
a bounded linear inverse. More precisely, @ € B(X, Y) is a topologial isomorphism if there is a § € B(Y, X) such
thata o 8 = Iy and 8 o @ = Ix. By Lemma 1.9, this is equivalent to the condition that @ has a continuous linear
inverse. When such an isomorphism exists, we say that X and Y are topologically isomorphic.

“It, of course, is perfectly acceptable to just remember the apparent inconsistency in usage.



Note that because a linear map is continuous if and only if it is uniformly continuous, and indeed Lipschitz
continuous, if X and Y are normed vector spaces and X is a complete, then if Y is topologically isomorphic to X,
it must also be complete, since uniformly continuous maps preserve Cauchy sequences.

Definition 1.13. If X is a vector space with two norms ||.||; and ||.||», then ||.]|; and ||.]|» are equivalent if the identity
map is a topological isomorphism from (X, |.||4) to (X, ||.|»)-

To make this explicit, let¢: (X, ||.|ls) = (X, ]|.|l») be the identity map viewed as a map between two different
normed vector spaces (X, ||.||;) and (X, ||.||»). The fact that:is bounded is equivalent to the existence of a constant
C1 > Osuch that, for all v € X we have |[v|l, = [lt()|l» < C1.]v|le. On the other hand, the fact that ™! is bounded
is equivalent to the existence of a constant C; > 0 such that |||, = Wl < Calvilp. Setting ¢ = Cl_1 and
C = (), this is equivalent to the existence of constants ¢, C > 0 such that

clvlly < IVlla < Clvll, Vv e X. (11)

If||./l; and ||.||» are equivalent, then they yield the same notions of continuity, convergence, and uniform con-
tinuity and a function f is o(||x||,) if and only if it is o(]|x|[5).

Example 1.14. Consider the norms||.||; and||.|| on R" defined above. We claim that they are equivalent. Indeed
ifx = (xq,..., Xx), then clearly

n

n n
2 2 2 2 2
B = >kl < Dl +2 ) bbbl = (O ) = I
i=1 i=1

i<j i=1

so that x|l < ||x|l;. On the other hand, applying Cauchy-Schwarz to the vectors u1 = (1,1...,1)and u; =
(Jx1l, ..., |xal), we see that
n n
12
bl = " il = > Lxil < n' 2 lxdl,
i=1 i=1

Remark 1.15. Let X = C([0, 1]) be the space of continuous functions on the interval [0, 1] andletY = C (1)([0, 1]
be the space of continuously differentiable functions on the same interval (with one-sided derivatives at the end-
points) which vanish at the origin. View both X and Y as normed vector spaces using the supremum norm. Then
we have alinearmap 7: X — Y, whereif f € X,

T(f)x) = fo fdr.

The fundamental theorem of calculus shows that T(f)isindeedin Y = C(l)([O, 1])if f € C([0, 1]), and the triangle

equality for integrals shows that ||T(f)|| < fol lfOldt < ||flleo, so that T € B(X, Y). While T is invertible with
inverse D: Y — X, where D(g) = g’ forall g € Y, itis easy to see that D is unbounded. Thus while T is a linear
isomorphism, it is not a topological isomorphism.

This difference between integration and differentiation is closely related to the ideas discussed in Picard’s
Theorem in Differential Equations 1.

1.3 Finite dimensional normed vector spaces

Lemma 1.16. Let X be a normed vector space and let T : £} — X be a linear map, (where €7 = (R",||.||1)). Then T is
automatically bounded, and moreover, if T is bijective, then it is a topological isomorphism.

Proof. Letf{ey,...,e,}be the standard basis of R"?, and set M| = max{||T'(¢;)|| : 1 < i < n}. Now any x € R" can
be written as x = 221:1 Aje;, and hence

n n
TGN =11 )" AT (el < D LT (el < My ixl,
i=1 i=1

and so T is bounded.



Now suppose that T is bijective. Its set-theoretic inverse is automatically linear, and to show it is continuous,
i.e. bounded, we must show there is some M, > 0 such that [T ()|} < M|y, forallv € X, or equivalently
(settingx = T~ '(v)and C = Mz_l) some C > 0 such that

Nowif S| = {x € R" : ||x]|l; = 1} (the “sphere” of unit radius in the ||.||; -norm) then, by Bolzano-Weierstrass, S |
is compact, and x — ||T(x)|| is continuous, its image is closed and bounded in R. Now since ||7'(x)|| > O for all
x € S (since||.||is anorm) m = min{||T(x)|| : x € §1} > 0, and hence we may take C = m. O

X
Claly <IIT)| &= C < HT(M)

Theorem 1.17. Let X and Y be normed vector spaces. If X is finite-dimensional then L(X,Y) = B(X, Y), that is, every
linear mayp from X to Y is automatically continuous. In particular, any two norms on X are equivalent.

Proof. Letn = dim(X) and suppose T: X — Y is a linear map. Picking a basis B = {vy,...,v,} of X induces
an bijective linear map ¢: R" — X given by ¢p(11,...,4,)" = 2, 4;v;. Then by the previous Lemma we see
that ¢p is a topological isomorphism, and also that the composition T o ¢p: R* — Y is continuous. But then
T=To¢p)o ¢1_31 is a composition of continuous functions and hence is continuous as required.

For the final sentence, let ||.||; and ||.||, be two norms on X, By the first part of the Lemma, the identity map,
viewed as a map from (X, ||.||) to (X, ||.||l») is continuous, as is its inverse, which is the identity map viewed as a
map from (X, ||.|[5) to (X, ||.||), which precisely says that||.||, and ||.||, are equivalent. O

Corollary 1.18. Let X be a normed vector space and let F be a finite dimensional subspace. Then F is a closed subset of
X.

Proof. 1fdim(F) = k, then Theorem 1.17 show that a linear isomorphism ¢: RF 5 Fis automatically continuous
(viewing R as a normed vector space with the ||.||; -norm). Since a continuous linear map is automatically Lips-
chitz continuous, and R¥ is complete, so is F. As a complete subspace of a metric space it must be closed (see the
proof of Lemma 6.2.11n [?] —a closed subset of a complete metric space is complete, but a complete subspace of a
metric space is always closed whether or not the the ambient space is complete). O

Remark 1.19. The upshot of the previous discussion is that, for the purposes of this course, we do not lose any
generality by assuming our normed vector spaces are of the form R” equipped with the ||.|[; norm associated
to the standard dot product (and thus the spaces of linear maps between them can also be viewed as an inner
product space using the Hilbert-Schmidt norm, or as a normed vector space using the operator norm). However,
the results of this section shows that we are free to use whichever norm is convenient (e.g. in the proof of the
previous corollary, the ||.||; norm is the simplest to consider) and that, even if we state results for (R”", ||.|l»), they
hold for any finite-dimensional normed vector space.

Indeed part of our goal in this course is to show the advantages of being able to choose good “local” coordi-
nates when studying differentiable functions, by analogy with the way in which we study linear maps by finding
a basis with respect to which they are as simple as possible (e.g. diagonalisable) we will take care however to
point out when the concepts we study require a choice of basis for our vector space or not.



2 The derivative in higher dimensions

Suppose that U is an open subset of R” and f: U — R™is an R™-valued function. We would like to extend the
one-variable notion of the differentiability to functions of this kind, which have both higher-dimensional input
and output. First however, it is important to note that we must equip R” and R” with metrics in order for the
notion of a limit to make sense, and if such a metric obeys some natural compatibilities with vector addition and
scalar multiplication, itis induced by a norm. Thus a more invariant (or “coordinate free”) way to phrase our goal,
is the following: Given (finite-dimensional) normed vector spaces X and Y and an open subset U of X, whatis a
sensible definition of the derivative of a function f: U — Y?

To extend the notion of differentiability to the case where n > 1, itis useful to recall some of the natural inter-
pretations of the (one-variable) derivative: In dynamics, the derivative arises from the notion of instantaneous
speed or velocity, while in geometry, the derivative at a point a gives the slope of the tangent line to the graph of

f atthe point (a, f(a)).
2.1 The one-dimensional case

Let us first consider the case of a function f: X — Y, where dim(X) = dim(Y) = 1. Recall that, for a function
g: R — R, the derivative of g at a pointa € R is defined to be

De(a) = g'(a) = lim 8 8@

X—a X—da
B (2.1
iy 8@t )~ g(@)
h—0 h

But now if we are given a function f: X — Y between two 1-dimensional different vector spaces, theif x # a
are vectors in X, the difference f(x) — f(a) is a vector in Y, while x — a is a vector in X so it seems meaningless
to consider their quotient. The obvious response to this problem is to pick coordinates so that we can identify
both X and Y with R, and then apply the standard definition. Thus let us pick a basis vector e; € X and a basis
vector e € Y, and let us identify X with R viat +— ij(f) = a + fej, and similarly we identify ¥ with R via
s — ir(s) = f(a) + sey, thatis, we centre our coordinates at a and f(a) respectively.

Using these identifications, we obtain a scalar function F,, ., : R — R, which is given by the equation

f(@) + Fe e,(t).€2 = fla+tey).

One can view this equation as the requirement that, in the diagram:

OXeXL>Y50y

3 Js

0eR——=R>0

e1.ep
if one goes from the bottom left to top right by either of the possible compositions, one gets the same answer, that
is foi] =iy 0F,, ,,. Notethat F, ,,(0) = 0, and, as a function from R to itself we can askif F,, ., is differentiable
att = 0, thatis, as F,, ,,(0) = 0, if

lim Fel,ez(t)
t—0 t
exists. If it does, we denote itby D, ., f(a) = F}, ,,(0).

IfD,, ., f(a) was actually independent of the choice of bases {e1 }, {e2}, then it would give a natural defintion of
the derivative of f at a. However, if we choose different basis vectors ¢] = Ad.ej and €/, = p.e;, then the associated
scalar function Fe’l,eé is given by Ferl,e/2 (1 = y_l Fe¢, ¢,(A.1), and hence F;,l P 0) = (A/w).F;, .,(0). In other words

De’l ,eéf(a) = (/1//1)D61 ,ezf(a)-
Remark 2.1. One conclusion we might draw from the calculations above is that this is not the correct definition.

With a bit more thought, however, it turns out that the correct conclusion to take from them is that the derivative
Df(a)is notin fact a scalar! Itis instead an object to which we can associate a scalar once we choose bases of X



and Y respectively. Moreover, if we know this scalar for one choice of bases {e}}, {e2}, we can determine the scalar
associated to any other choice of bases provided we can express those bases in terms of the bases {e}, {e2}.

If this sounds esoteric, it is worth noticing that in fact we already knew this from physics: Recall that if a
particle moves in space so that its position x() is a function of the time ¢, then the derivative %(Z) is the velocity
of the particle at time 7. But velocity is not a dimensionless scalar, it has (S.I.) units ms~!, and the factor 1/u we
found above matches those units: the choice of e provided our “units”, or scale, for the domain of f (which in
the case of x(¢) is time, which is measured in seconds) and the choice of ¢; provides “units” for the codomain of
f, which for x(7) is space, and distance is measured in metres. Viewing a change of the choice of bases from {e;}
and {e,} to {e"1 } and {e’z} as a change of units, for example, changing the unit of time to hours, so that 4 = 3600s,
and the unit of distance to kilometres, so that km = 1000m, then if the velocity is v(¢) = %(I) inms™!, itbecomes
3.6 = 3600/1000 times v(¢) in km.h~!, which is precisely the factor (4/u) which we just observed above.

The previous remark hopefully confirms that D f(a) has to be something other than a scalar, but perhaps it
does not quite tell us how what kind of object we should expect D f(a) to be. We can gain some insight into this
simply by considering more carefully where we are forced to take coordinates (rather than just picking coordinates
wherever we can). Noticing that in a vector space we can of course divide by any nonzero scalar, we see that it

lim fla+tey) - f(a)

t—0 t

makes sense to ask if the limit

exists — that s, the standard formula for the derivative becomes syntactically coherent as soon as we chose a basis
{e1} of X, so we did not need to pick a basis for Y. For ¢; € X non-zero, we may therefore define

fla+te) - fla)
t

D,, f(a) :=lim (2.2)
t—0

wherever this limit exits. Note that D,, f; is now an element of Y, rather than a scalar. However, as

fla+tey) - f(a) _ Fep e, (D) ¢
t t
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it follows easily that that D,, f(a) = D, ¢, f(a).e2. Thus simply by replacing D,, ., f(a) by the corresponding
multiple of e, we remove the dependence on the choice of abasisis Y. Now consider (2.2) whene| € X is arbitrary:

(i) If wetakee; = Oxin (2.2), then f(a + 2.0x) = f(a) and hence the limit on the right-hand side exists, and
is equal to Oy.

(i) Itfollows thatif the limitin (2.2) exists for some non-zero vector in X, say a vector eg with ||eg|| = 1. Then
(2.2) defines, for any v € X, a vector D, f(a) in Y where if v = A.eg then D, f(a) = A.D,,f(a). Since
dim(X) = 1, this shows thatv — D, f(a) is a linear map from X to Y.

Thus we have finally have a natural description of what D f(a) is: it is a linear map from X to Y sending v € X to
D,f(a) €Y.

Remark 2.2. Of course, in addition to velocity and speed, the classicinterpretation of the derivative of a function
f atapointa is as the “slope of the tangent line” to the graph of f at(a, f(a)). Indeed the tangent line is just the
graph of the function f(¢) = f(a) + f'(a)(t — a). Here again we can see that viewing the derivative, or slope, as a
scalar is adequate if one is considering functions from R to itself, but as soon as we consider functions f: X —» Y
between two arbitrary one-dimensional vector spaces, we see that the tangent line mustbe the graph of a function
of the formt — f(a) + a(t — a), where @ € L(X, Y) is linear. Thus we are also led to consider Df(a) as a linear
function from X to Y by the “slope” interpretation of the derivative.

Notice thatwhen X = Y, the scalar multiplication action of R on X gives a naturalisomorphism R — £(X, X).
Thus when X = Y = R the linear map really is just the scalar which gives its slope.

Remark 2.3. The considerations above for the one-dimensional case also really only used the fact thatdim(X) =
1 —the dimension of Y was notimportant. Thus we have in fact obtained a definition of the derivative for functions
from an open subset of a one-dimensional vector space to a vector space of arbitrary dimension.



Definition 2.4. (The I-dimensional case.) Let X and Y be normed vector spaces and suppose thatdim(X) = 1. Let
U C X be an open set and suppose f: U — Yisafunction. If a € U then we define the derivative of f ata to be
the linear map Df, € L(X, Y) given by

Df(v) = }ina fla+ f-\;) - f(a)’

where this limit exists. As noted above, the limit is compatible with scalar multplication, so that Df,(1.v) =
ADf,(v)forany A € Rand v € X, and as X is 1-dimensional, this implies Df, is a linear map. Indeed this also
shows that if we know Df,(v) exists for a single non-zero vector vy € X, then it exists for any v € X.

2.2 The general case

Our consideration of the one-dimensional case gives some indication of what we should seek in the higher di-
mensional context: If X and Y are arbitrary finite-dimensional vector spaces, and f: U — Yis afunction defined
on an open subset U of X, then for a € U, given our examination of the one-dimensional case, it is natural to
demand that the derivative® Df, of f atais an element of £(X, Y).

Moreover, our definition in the one-dimensional case also yields a sensible notion in higher dimensions:

Definition 2.5. Let f: U — Y be as above and supposea € U and v € X. The directional derivative of f ata € U
in the direction v is defined to be
fla+1tv)— f(a)

t

where this limit exists. Assuming it exists, it is an easy exercise to check that, for any s € R, we have d,, f(a) =
5.0y f(a). That s, the directional derivative is homogeneous in v. For this reason, when taking a directional deriva-
tive we normally assume the direction vector v has unit length, i.e. ||v|]| = 1. Note also that, if dim(X) = 1, then

we have Df,(v) = 0, f(a).

d,f(a) = lim
t—0

The above definition and its relation to the derivative in the one-dimensional case suggests that either of
following might be reasonable:
Provisional Definitions: If f: U — Y is a function defined on an open subset U of a normed vector space X
taking values in a normed vector space Y, then:

1. Proposal I: f is differentiable at a if all the directional derivatives at a exist, and we define its derivative® at
a to be the function Py f,(v) = 9, f(a).

2. Proposal 2: f is differentiable at a if there is a linear map T € L(X,Y) such thatfor all v € X, we have

T(v) = 0y f(a). This linear map T, if it exists, is certainly unique, and will be denoted P, f;. Clearly, when
itexists P, f, = P1 fa.

The following examples show that these proposals are genuinely different:
Example 2.6.
(i) Let f: R? — Rin Figure 1 given by

x1x(x1 +x2)/(xF +x3),  (x1,x2) # (0,0),

fi(x1,x2) = { 0, (x1, x2) = (0,0)

Consider the directional derivative of f] in the directionv = (vy,2 ).

f»)

Slxy, 1) lim Pyiva(vi +v2) v +v)
t

8,£(0) = lim -
Y -0 =0 112} + 12v3) vi+13

Thus all the directional derivatives exist, and so using Proposal 1, f is differentiable at 0, with P fo, = fi,
thatis, f] is its own derivative at 0;! On the other hand, since f] is clearly not a linear function, f] is not
differentiable in the sense of Proposal 2.

SWe write D, rather than D f(a) because Df, € L(X, Y) soitis a function itself, and D f;,(v) is more compact to read than D f(a)(v).
5The use of the letter “P” is to indicate “provisional”.
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Figure 1: Graph of f(x1,x2) = x1x(x1 + x2)/ (x% + x%). All its directional derivatives exist at 0, but it is not
differentiable there.

(if) LetQ be the open subset {(x], x7) € RZ:0<x,0<x < x%} and let f, = 1 be the indicator function of
Q, sothat fo(x1, xp) = 1if (x1, x3) € Qand fo(x1, x2) = 0 otherwise. To calculate the directional derivatives
of f> at 0, suppose thatv = (v, v3) € Sge. Clearly, since f>(£.(v,v2)) = O whenever vi.vy < 0,09, /2(0,) =
O unless vi.vo > 0. Butif vi.vp > 0, thenif |f] < |V2|/V%, t.(vi,vz) € Q, hence lim,_,o fo(¢.(vi,v2))/t =
lim,0 0/t = 0. Hence all of the directional derivative 9, f>(0) exists and equal 0;. It follows that f; is
differentiable in the sense of both proposals, with it derivative P; fj), being the zero linear map.

The function f] above shows the difficulty with Proposal 1: this notion of differentiability will only be useful
if we first develop a theory of homogeneous functions, as D f, will only be homogeneous, i.e. be compatible with
scalar multiplication, rather than linear. If you note that a homogeneous function is determined by its values on
the unit sphere S , and that any continuous function f: Sx — Y from the unit sphere on X to a normed vector
space Y extends to a homogeneous function from X to Y provided f(—x) = —f(x) for all x € Sy, itis clear that
the space of continuous homogeneous functions from X to Y is a much more complicated one that the space of
linear maps from X to Y, so any such theory will be much harder than linear algebra. Indeed the function fj in
Example 2.6 is differentiable at 0, according to suggestion 1, but by the provisional definition P the derivative is
Dfi0,(v) = fi(v), so that passing to D f; does not provide a simpler object to study.

On the other hand, the function f, shows that simply demanding that the directional derivatives yield alinear
function may not be the correct condition: If we recall the idea that the derivative at a point a should provide the
tangent plane to the function at q, then the plane T = {(x1, x2,0) : x1, x> € R} does not seem like a reasonable
candidate for the tangent plane to the graph of f; at0,.

Moreover, f> is not even continuous at the origin. Indeed if we consider the curve c(f) = (¢, ) fort € R, then
since for # € (0, 1) we have 0 < 3 < 2, we see that limy o fo(c(?)) = 1, while limy o fo(¢.v) = Oforallv € R2,v #
0,. This example suggests one way in which our considerations so far might be deficient: In one dimension there
are only two ways to approach a point (from the left or the right), however, even in two dimensions, there are
infinitely many different curves through which one can approach a point, and moreover many more than simply
by travelling along a straight line — focusing on directional derivatives therefore does an injustice to the geometry
of linear spaces of dimension greater than 1.

This issue can be resolved easily however, in that it was already addressed in the Metric Spaces material of
AO: if f: X — Ris areal-valued function on a metric space, then for f(x) to tend to alimit@ as x — a € X, the
values of f must be close to a for all x sufficiently close to a. There is simply no need to specify a curve on which
x lies as it tends to a. In order to be able to use this idea however, we need to rewrite the expression we have for
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a directional derivative in a way which only uses the norm functions. Let us do this first in the one-dimensional
case: the condition that D f;(v) is given by the directional derivative as

lim fla+1v) - fa) — Dfa(tv)

t—0 t

1
=0y & lin(} m”f(a +tv)—f(a)-Df,(tv)|=0 VveX,v+0.
—

Notice that this formulation does not utilise the norm on X. This is however a relic of the Prelims definition

we started with: by the homogeneity of directional derivatives, we may assume |[v|| = 1, and then if we let x =
a+tv € X, then||x — al|| = |t|, and the above condition becomes
lim Il (x) = f(a) = Dfa(x — a)ll 50 (2.3)
x—a llx — all

Butitmakes sense to ask for the same limit to hold forany f: U — Y defined on an open subset U C X taking
values in ¥, where X and Y are normed vector spaces, and this (finally!) gives us the definition of the derivative
in higher dimensional that we will use:

Definition 2.7. Let X and Y be finite-dimensional normed vector spaces and let U C X be an open subset of X.
If f: U — Yisafunction and a € U, we say that f is differentiable at a if there is a linear map T € L(X, Y) such
thatif the function €: U — Y given by €(a) = 0 and, for x € U\{a} by the equation

f&x) = f@)+T(x—a)+|lx — all.e(x),
then € is continuous at g, thatis lim,_,, €(x) = Oy = €(a). If such a map T exists, it is unique and we denote it by
Df,.”
Remark 2.8. This definition takes some time to absorb!

1. Note thatfor x # a,
_f®-f@-TGx-a)
l|lx — all

e(x)

so that the continuity of € at a is precisely the condition of Equation (2.3).

2. Thefunction f; from Example 2.6 is not differentiable ata = 0, in the above sense. Indeed because all of the
directional derivatives of f> exist and equal 0, the only candidate for D f; , is the zero linear map. But since
0, lies in the closure of Q, we have | f2(x) — f2(02)| = 1 for x arbitrarily close to 0y, and so | f(x) — f(02)|/||x]| is
unbounded near 0,, hence the zero linear map fails to satisfy the requirement of Definition 2.7. In particular,
itis important to note that Definition 2.7 requires more than the existence of all directional derivatives.

3. As the previous point notes, the linear map Df; is unique if it exists, because its values are given by the
directional derivatives, which are certainly unique (again, assuming they exist). One can also prove the
uniqueness of the linear map D f; directly, and the problem set asks you to do this.

4. One can write the condition required of the linear map D f, using the little 0 notation, thatis, as f(a + h) =

f(a) + Df,(h) + o(||h]]), where h = x — a.

5. f Uisanopensubsetof R" and f: U — R™, thenif f = (f1,..., fi), then, as promised in the discussion of
the definition of differentiability, f'is differentiableata € Uifandonlyifeach f;is,and Df, = 3.\’ Dfi.e;,
thatis, if v € R", we have Df,(v) = X" | Df; 4(v).e;. This can be checked directly, and is in essence a very
special case of the multi-variable version of the Chain Rule, which we will prove shortly.

6. Itis straight-forward to check that equivalent norms yield the same condition for a function to be differen-
tiable, since they give the same notion of convergence. Since all norms on finite-dimensional vector space
are equivalent, it follows that the definition of the derivative is independent of the choice of norms on X
and Y when both X and Y are finite-dimensional.

[ *Non-examinable: Since norms on an infinite-dimensional space need not be equivalent however, in the infinite-
dimensional setting, the notion of differentiability may depend on the norm. Moreover, in the infinite-dimensional
setting, the total derivative D f, is required to be a bounded linear map, a condition which, by Corollary 1.17, is
automatic in the finite-dimensional setting. |

"The total derivative in this sense is sometimes called the Fréchet derivative.
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7. If f: U — Y is differentiable on U, then it defines a function Df: U — L(X,Y). Viewed as a function
“taking values in (linear) functions” it appears to be a more complicated object than the original function
f- However, L(X, Y) isjusta dim(X). dim(Y)-dimensional normed vector space — using the operator norm
|I.llo — and if we pick a basis of X and Y then we can identify it with Mat,, ,(R). Thus, at least in principle,
D f is no more complicated an object than f. We discuss this in more detail in Section 2.8.

Asin the one-variable case, if f is differentiable at a point g, then it is continuous there:

Lemma 2.9. Let X and Y be normed vector spaces and let U be an open subset of X. If f: U — Y is a function which is
differentiable at a € U, then there are constants C, r > 0 such that for all x € B(a, r),

lf(x) = f(@ll < Clllx —all.
In particular, f is continuous at a.

Proof. Replacing f(x) with the function f(x—a)— f(a) we may assume thata = Oy and f(a) = Oy. The statement
of the Lemma is then simply that if f is differentiable at Oy then f € Oy(||x]]). But f(x) = Dfo,(x) + oy(||x|]), and
since Dy, is abounded linear map itliesin Oy(||x||), while oy (||x]|) is a subspace of Oy(]|x||), hence f(x) € Oy(||x||)
as required. O

Definition 2.10. If X and Y are normed vector spaces and U is an open subset of X, then we write CU, Y)for the
vector space of continuous functions on U taking valuesin Y. The previous Lemma thus shows thatif f: U — Y
is differentiable on all of U then f € U, ).

Example 2.11. Constant functions ¢: X — Y are clearly differentiable, with derivative 0, since if ¢ is constant
c(x) =c(a). UT: X — Yislinear, thatis T € L(X, Y), then, for any a € X we have Df, = T, since

T(x)=T(@)+T(x-a),

(and thus the error term €(x).||x|| is identically zero). Thusif f = T islinear, Df: X — L(X,Y) is the constant
functionx +— T,forallx € U.

If Uis an open subsetof X and f, g: U — Y are differentiable ata pointa € U thenitis easy to see that f + g
is also, and D(f + g), = Df, + Dg,. In particular, if f(x) = T(x) + b,where T € L(X,Y)and b € Y, then [ is
differentiable with Df, = T foralla € U.

Example 2.12. If||.||is anorm onR", we may viewitas afunction|.||: R" — R. This function is not differentiable
at the origin: Indeed suppose that 7 is a linear map. Then e(h) = A (IRl — T(R)) = 1 — T(h/||hl]), and since
T (h/||k|l) is independent of ||A]|, if e(h) — 0 as ||A|| — 0 we must have T'(h/||hl|) = 1. Butsince T(=h/|| — A||) =
—T (h/||h|]) this is impossible.

The question of whether a norm is differentiable at other points in R” may depend on the norm — consider for
example the norms ||.||1, ||-||2 and ||.||co-

2.3 Partial derivatives and the total derivative

We now relate the notion of the total derivative to the notion of partial derivatives which were introduced in
Prelims multivariable calculus:
In fact we work in slightly greater generality, as it clarifies the idea and reduces the notational clutter.

Definition 2.13. Suppose that X and Y are normed vector spaces and U C X is an opensubsetwith f: U — Ya
function defined on U. If we are further given a subspace Z of X, then we can consider the function f, 7: Z - ¥
given by f, z(x) = f(a + z), and we set 9z f(a) = Df,z(0z), so that 0z f(a) satisfies

If(a+2) - fl@) - ozf (@@l _

llzIl

0,asz— 0, (z€2).
It is immediate from the definitions that, if the total derivative D f(a) exists, then D f(a);z = 0zf(a). Similarly,

the values of the partial derivative dzf(a) € L(Z,7Y), like the total derivative, are given by the corresponding
directional derivatives of f, so itis unique if it exists.
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If we have a decomposition of X into a direct sum X = X; @ Xj, then the partial derivatives dy, f(a) and
0x,(f)(a) determine Df(a): if 11: X — X; andm: X — X, denote the projection maps from X to X; and X»
respectively, and (1 : X1 — X, Xo — X denote the inclusion maps, then

Ix =t1om +1y0omy,
where Iy denotes the identity map from X to itself. Thus, noting that Df(a)x, = Df(a)o; (j € {1,2}), we have

Df(a) = Df(a)o Ix = Df(a) o (111 + tam2) = (Df(a)y) o my + (Df(a)z) o mo
= Df(a)x, o w1 + Df(a)x, o m

and hence

Df(a) = dx, f(a) o my + x, f(a) o m2 (2.4)

Remark 2.14. Obviously, in the same way, if we have any direct sum decomposition X = X| @ X, @ ... ® Xj of
X, the partial derivatives dx; f(a) determine D f(a), whereif 7;: X — X denotes the projection map to the j-th
summand X,

k
Df(a) = )" dx,f(@) o x;. (2.5)
j=1

Motivated by matrix notation, we will sometimes write Df, = (dx, f(a) | dx, f(a)) to express the decompo-
sition of D f(a) according to the direct sum decomposition £L(X,Y) = L(X;,Y) ® L(X», Y).d

2.3.1 Partial derivatives in multivariable calculus

In multivariable calculus, the term “partial derivative” usually refers to the directional derivatives of a function
in the directions given by a choice of basis of X. This is essentially a special case of the above setting, as we now
explain: Let By = {v{,V2,...,V,} beabasis of X, and let X; = R.v; denote the line spanned by v; (1 < j < n). We
thus obtain a direct sum decomposition X = X| @ ... X, of X into n lines, i.e., ] -dimensional subspaces.
Applying (2.5) to this decomposition, we see that D f(a) = ;le Ox,f(a)omj. Butif By = {x1,..., x,},so that
ifu € X,wehaveu = Z'}zl x;(u).v;, and hence 7 () = x;(u).v;. Thus
Ox, f(@)rj(u) = Ox, f(a)(x;m)v;) = x;(u).0x, f(@)(v;) = x;(u)Dfa(v;) = x;(u)dy, f(a).

Thus the directional derivative d,, f(a) completely determines dx, f(a) € L(X}, Y).

Definition 2.15. If we are given a basis B = {v[, ..., V,} of X, then we will write
) . fla+1tv)) - f(a)
d,f(a) = 6—f(a) = d,,f(a) = lim / ey
Xj t—0 t

The fractional notation ng is commonplace, but becomes cumbersome when considering higher-order partial
J

derivatives. We will normally prefer to write 0 if.

Using this notation, the expression for the total derivative becomes

n n
af
Df(a) = ; xj.0jf(a) = ; x j.a—xj(a). (2.6)
We may refine this further if we pick a basis By = {wy, ..., wy,} of Y: Using By we may write f(x) = 2.7, fi(x).w;

where fi: U — R, and hence we have Df(a) = )i’ Dfi(a).w;. Applying (2.6) to each Df; and summing we
obtain

m n m

Df(a)= )| > difi@.x;|wi= )

j=1 i=1

i=1 i

[ % (a).x j] w; (2.7)
F 6Xj
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Notice that this last equation shows that the matrix of D f(a) with respect to the bases By of X and By of Y is
just
difita) ... Oufi(a)
By[Dfalpy = : - :
O1fm(@) ... Onfm(@)

Thus, if we know the derivative exists, then we can compute its matrix with respect to a choice of bases of X and
Y by computing the directional derivatives of the components of f along the directions given by the basis in X.

Definition 2.16. As in multi-variable calculus, the above matrix (6 I ﬁ(a)) is called the jacobian matrix of the
partial derivatives of f at a. Note that the determinant det(Df,) = det(d, f;(a)), is also often called the Jacobian.
We will refer to it as the Jacobian determinant. It is often denoted J¢(a).

Remark 2.17. In a similar way, if X = X @ X,, the partial derivative (9;(_/. f(a) are given by block submatrices
of the Jacobian matrix, and if you like, you can think of them as essentially just a notational shorthand for such
submatrices. Indeed as we already noted above, if D f, exists then dx, f(a) is just the restriction of D f, to X. But
if our basis Bx = {vi,...,V,} is adapted to this direct sum decomposition, so that for some k, 1 < k < n, the
subsets B] = {vy,...,v}and By = {v¢41, ..., V,} are bases of X| and X, respectively, then

By [Dfulpy = ( By[0x, f(@)]B, By[0x,f(a)]B, )

Example 2.18. If U is an open subset of C and f: U — C is holomorphic, then, identifying C with R? via
7 (R(2), 3(2)), we may view f as a function from R? to itself, which, for clarity, we write as F'. Since complex
multiplication is R-linear, F is differentiable in the real sense: explicitly, if f’(z) = a + ib then the total derivative
of F at zis the R-linear map given by multiplication by f’(z), and hence its matrix is

a -b
DF—(xy) =( b a )

The Cauchy-Riemann equations follow immediately from this — they express the fact that the linear map given
by the derivative is complex-linear rather than just real-linear, and so is given by multiplication by a complex
number.

Remark 2.19. Example 2.6 shows that the existence of all the partial derivatives for the function f>: R> — R
at the origin 0 is not sufficient to ensure that f, is continuous at that point. Since Lemma 2.9 shows that the
existence of the total derivative at a pointimplies continuity at that point, this gives another way of seeing that f,
is not differentiable at the origin. The function f; : R> — R in the same Example is continuous at the origin, but
nevertheless, even though all of its directional derivatives exist at the origin, it is not differentiable there. (The
first problem sheet asks you to check this).

We will see shortly, however, that if the partial derivatives exist and are continuous, then this is sufficient to
show that the total derivative exists.

2.4 The Chain Rule

One of the fundamental properties of the differentiablity is thatitis preserved under composition, just like conti-
nuity. The single variable version of this result is both a basic computational tool, and also the key to one version
of the Fundamental Theorem of Calculus. We now establish its higher-dimensional analogue.

Theorem 2.20. Let X, Y and Z be normed vector spaces, let f: Uy — Y be a function defined on an open subset U1 of
X, andlet g: Uy — Z be a function defined on an open subset U, of Y. Suppose thata € Uy and f(a) = b € Uy, thenif
f is differentiable at a and g is differentiable at b, their compositionh = g o f: f~(Uy) — Z is differentiable at a and
its derivative is given by

Dha = Dgf(a) o Dfa.
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Proof. Note that since f is differentiable at @, it is continuous there, and hence f_] (U3) is a neighbourhood of q,
hence it makes sense to ask if /1 is differentiable at a. By translating if necessary, we may assume thata = Oy and
f(a) = b = Oy. To avoid cluttered notation, we will write O for the zero vector in all vector spaces in the rest of
this proof.

Since f is differentiable at O we see that f(x) = Dfy(x) + €1(x) where €/(x) € oy(]|x][). Similarly since g is
differentiable at f(0) = 0, we have g(y) = Dgo(y) + (), where &2(¥) € oz(|[y|]). It follows that

g © f(x) = Dgo(Dfo(x)) + Dgo(€1(x)) + e(f(x)).

Thus to complete the proof, we must show that Dgo(€;(x)) + e2(f(x)) € oz(||x]|), which certainly follows if each
summand lies in oz(||x|[). But since the linear map Dgg is bounded and €;(x) € oy(||x]]),

IDgoer (Il _ IDgoll ller (Ol

[1xl [l

-0, asx—0.

hence Dgo(€1(x)) € oz(||x||). For the second term, recall that we may write &,(y) = ||y||.n(y) wheren(y) — 0 = n(0)
asy — 0. Then
le(FCI _ IFOl

Il llxl

AlnCf I

But now since f is differentiable at 0, we have f € O(||x||), hence the ratio || f(x)||/||x]| is bounded as x — 0, hence
it suffices to show that n(f(x)) — 0 as x — 0. But by definition n(y) — O asy — 0, thus we need only check
f(x) = 0= f(0)as x — 0, but this again follows from f € O(]|x||) (see Lemma 2.9) and so we are done.

O

Remark 2.21. Itis worth noticing that this is almost word-for-word the proof in the single-variable case. The
only differenceliesin the fact thatin higher dimensions we can only bound the ratio of norms || f(x)— f(a)||/||x—all,
whereas in the single-variable case, the ratio (f(x) — f(a))/(x — a) of course converges to f”(a).

2.5 The Mean Value Inequality

For functions of a single variable, the Mean Value Theorem asserts that, if f: U — R is differentiable on an open
subset U of R and [a, b] C U, then (f(b) — f(a))/(b — a), the slope of the chord between (a, f(a)) and (b, f(b)),is
equal to f’(c) for some ¢ € (a, b). In higher dimensions, as we have noted before, we can only divide by scalars,
and so to obtain a statement which atleastis syntactically correct, we can rewrite this as f(b)—f(a) = f’(c).(b—a).
There is however a more fundamental issue here: Namely the condition that c lies “between a and b”, that is,
¢ € (a, b), is not a meaningful one in higher dimensions: two points in an open subset U of R” do not bound any
region in U. One consequence of this is that the most naive attempt to generalize the Mean Value Theorem to
arbitrary dimensions is simply false:

Example 2.22. Let f: R! - R2be given by f(f) = (cos(2nt), sin(2nt)). Then the derivative of fis f/(f) =
2n(— sin(2nt), cos(2nt)), which is non-zero for all #. Butif we takea = 0 and b = 1 then f(b) — f(a) = 0, while
for any #o € [0, 1] we have (2 — 0)f"(t9) = 4m*(— sin(2nt), cos(2nt)) # 0.

Example 2.22 also suggests what the reason for the failure of the naive attempt at a generalisation of the Mean
Value Theorem: Notice that /() = 2n(— sin(2xt), cos(2nxt)), and so by the Fundamental Theorem of Calculus®
we have

1 1 1
f() - f(0) = f f(0dt = 2n( f — sin(2xt)dt, f cos(2nt)dt ) = (0, 0).
0 0 0

Thus itis still true that f(1)— f(0) is the average value of f’(¢) over the interval [0, 1], itisjust that this average
value is not the value of f’(¢) for any # € [0, 1]. This suggests that it should be possible to bound |[f(b) — f(a)|l
relative to [b — a| by bounding || D fi||«, that is, we will prove a Mean Value Inequality rather than an equality.

80ne can define the integral of a function f: [0, 1] — X where X is a finite-dimensional normed vector space by picking a basis and
integrating componentwise. The resulting integral does not depend on the choice of basis made.
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Definition 2.23. If X is a normed vector space and a, b € X we write y,;: [0, 1] — X for the line-segment path
Yab(t) = (1 — Ha + tb, and write [y, 5] for its image, thatis [y, ] = {y.s(?) : £ € [0, 1]}.
Recall that a subset C of X is convex if, for any a, b € C we have [y,;] C C.

Theorem 2.24. (Mean Value Inequality.) Let X and Y be finite-dimensional normed vector spaces and let U C X be an
open subset. Suppose that f: U — Y is differentiable, and 21,z € U are such that the image of v, ., lies entirely in U.
Then there is some ¢ € [y;, -, ] such that

1f(z2) = f@DIl £ IDfe(z2 = 2Dl

In particular, if U is convex and ||D fx||o < K forall x € U then||f(x) — f)|| < K.||x — Y|l forall x,y € U, thatis, f is
Lipchitz continuous with constant K.

Proof. We give a proof only in the case where X is an inner product space. If f(z;) = f(z2), we may choose ¢
arbitrarily, so we may assume f(z1) # f(z2). Lete = ||f(z2) — f@)II"'.(f(z2) — f(z1)). Define

g(x) = (e, f(x) = f(z1)),

so that g(z1) = 0 and g(z2) = |If(z2) — f(z1)|l. Now if we let G(r) = g(y,, ,, (1)), we see that G: [0,1] — Risa
real-valued function on [0, 1], satisfying G(1) — G(0) = ||f(z1) — f(z1)|l- Applying the Mean Value Theorem for a
single variable shows that there is some & € (0, 1) such that

1/(z2) = feDll = G(1) = G(0) = G'(€) = Dgy,, &)V, ()

But Dg.(v) = (e, Df,(v)), and 7;1 (D) = (22— z21), henceif welet ¢ = y;, ;,(£), the right-hand side of the previous
equality is just{e, D f,.(z2 — 22)), and so by the Cauchy-Schwarz inequality we see

lf(z2) = fzDIl < llell D fe(z2 = 20l = 1D fe(z2 = zo)l;

as required.

For the final part, since ||D f.(z2 — 2Dl < |IDfelloo-ll22 = z1ll, if U is convex and [|D fy]lo < K forall x € U, we
may apply the first part of the Theorem to any x,y € U and the above inequalities to see that f is Lipschitz with
constant K on U. O

Remark 2.25. The reason the above proof needs to assume X is an inner product space is so that we can identify
(X*, |I-llco) as @a normed vector space with (X, ||.||) via the map v — [x — (x, v)]. If X is an arbitrary normed vector
space, given v = f(z2) — f(z1), one needs to find § € X* such that §(f(z2) — f(z1)) = |If(z2) — f(z1)lland ||6]|e = 1.
Clearly, if e is as in the proof above, we want §(e) = 1, but then one needs to show that this functional on R.e can
be extended to all of X without increasing its operator norm. This is possible, and the required result is proved in
Appendix 5.5.

Any easy application of this result is the following:

Proposition 2.26. Suppose that U is a connected open subset of R" and f: U — R™. Thenif Df, = Oforallx € U
the function f is constant.

Proof. Since U is open and connected in R”, it is path connected, and in fact any two points can be joined by
piecewise-linear path. Butif y, 4 is a line-segment path whose image lies in U then Proposition 2.24 and the
hypothesis Df = 0 on U shows that f(b) = f(a). It follows immediately that f must be constant on U as
required. O

2.6 Continuity of partial derivatives and the existence of the total derivative

The next result shows that however that the existence and continuity of the partial derivatives give a sufficient
condition for the total derivative to exist.
First note that,if X = X; @ X, and 7 : X — Xjandm: X — X5 denote the corresponding projections, then

llxlla == llry (Ol + Nl (oll,
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is anorm on X. Indeed the triangle inequality follows from the linearity of the projection maps and the triangle
inequality for ||.||, the original norm on X, and the positivity follows in the same way. Now since for any x € X
we have x = m((x) + m(x), the triangle inequality shows that ||x|| < ||x||z. On the other hand, we have ||x||; =
[l (O] + Nl < (Irtlleo + lI2llco)-l1x]l, so that .|| and ||.]|s are equivalent norms on X. (Of course, all norms
on a finite dimensional vector space are equivalent, but this discussion gives more precise information on the
relationship between the two norms.)

The above discussion shows that, if we are given a decomposition of X into a direct sum X = X| @ X,, then,
replacing the norm ||.|| on X by the equivalent norm ||.||;, we may assume thatif x = (x1, xp) where x; € Xj, then
[xll = leell + [lx2l-

Example 2.27. If X is an inner product space, then if X is a subspace, it has a natural complement given by
Xp = Xll ={veX:(v,x) =0, VxeX;}.Ifn,n denote the projection maps to X| and X, respectively, then

lIxl? = (x, x) = (71 (x) + ma(x), 711 (x) + 72 (X))

= (m1(x), 1 (0) + (T2(x), 12(0) = I (I + (I,
hence in this case (c.f. Example 1.14), |71 (x)|| + [|m2(x)]| < \/§||x||

Theorem 2.28. Let X and Y be finite-dimensional normed vector spaces and suppose that f: U — Y is a function
defined on an open subset of X. Suppose that X = X| ® Xo, and that the partial derivatives Ox, f(x), Ox, f(x) both exist
forall x € U. Then if for some a € U both Ox, f(x) and Ox, f(x) are contiuous at a, then the total derivative of f exists,
where necessarily Df, = (0x, f(a) | 0x, f(a)) and hence D f, is also continuous at a.

Proof. Letmy,m; be the projections to X| and X, respectively. As the statement of the theorem notes, if D f;, exists,
it must be given by dx, f(0) o m; + dx, f(0) o m2, hence replacing f(x) by

fix) = fla+ x) - f(a) - 0x, f(a) o my — Ox, f(a) o m,

we need only consider the case where a = Oy, f(0x) = Oy and dy, f(0) = 0 and dy, f(0) = 0. Moreover, since the
theorem is local, we may replace U by a sufficiently small ball centred at Ox, and hence we may assume that U is
convex.

Given these assumption, to prove the theorem, we must show that f(x) € oy(||x||). Now since dx, f(0) = 0
it follows that f(x1,0) € oy(||x]]), so that, if € > 0 is given, there is some 6; > 0 such that if ||x{|| < &, then
1/ (x1, Ol < €lxq ]I

Moreover, the partial derivative Jx, f(x) is continuous at x = 0, and 9y, f(0) = 0, hence thereis a §, > O such
that, for ||x|| < 2 we have||0x, f(X)|l < €. Thus applying Theorem 2.24, || f(x1, x2) — f(x1, 0)|| < €.]|x2]|, provided
[lxll = llx1 Il + [lx2ll < 62 (since then ||(xy, 2.x)|| = |lx1]] + 2.|lx2l| < 62 for allz € [0, 1]).

It follows thatif 6 = min{d;, 02} and ||x|| < ¢, then

f Cers x2)ll = (1 Cer, 0) + (F(x1, x2) = fCer, O < {1 G, Ol + (1 Crr, x2) = f(x1, O)]

< ellxll + elx2ll = €[lxl|
so that || f(x1, x2)|| = oy(||x]|) as required. O

Corollary 2.29. If f: U — Y is as in the previous theorem, and Bx = {vi,...,v,} and By = {wy,...,wy,} are bases
of X and Y respectively, then if the partial derivatives 0 f;(x) exist on U and are continuous at a € U, the total derivative
D, exists and is given by the matrix (0} fi(a)) and therefore it is also continuous.

Proof. Use induction on dim(X) = |Bx| and the previous Theorem. In more detail, for n = 1 the resultis trivial. If
dim(X) > 1, thenwrite X = X|®X,, where X| = Span{vy,...,v,—1}and X, = R.v,. Thensincedim(X;) = n—1 <
dim(X), by induction we know that dx, f(a) exists and is continuous at a (recall that the matrix of dx, f(a) is just
the submatrix of D f, given by the first # — 1 columns of the Jacobian matrix for Df,), and since 0y, f(a) is given
by the final column vector d, fi(x) itis also continuous at . We may thus apply the previous theorem to conclude
that D, exists and has matrix given by the Jacobian matrix of partial derivatives (J;f;(a)) as required. O
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Remark 2.30. Note thatin fact the proof of Corollary 2.29 doesn’tin fact need the full strength of the hypothesis
of the theorem — we assumed the existence and continuity of all of the partial derivatives of f at a, but it sufficed
to know the continuity for all but one of them to conclude that f is real-differentiable at a (as one might suspect
considering the case n = 1 of course!) In practice however, this weaker hypothesis is rarely useful.

Definition 2.31. If X and Y are finite dimensional normed vector spaces and U is an open subset of X then if
f: U — Y, we say that f is continuously differentiable if’ Df: U — L(X,Y)is continuous. This is equivalent to
requiring the continuity of all of the partial derivatives d; f;, where f = (fi,..., fu)and1 < j<n,1 <i<m. We
will write C!(U, Y) for the vector space of continuously differentiable functions on U taking valuesin Y.

*Remark 2.32. If f: U — Y anda € U, we say that f is strongly differentiable at a if there is a linear map
T € L(X,Y) such that, for any € > O thereisad > 0

If(x) = fO)—T(x =y < €ellx—yll, VYx,y € B(a,d).

Equivalently, lim, . || f(x) — f(y) = T(x — Y)|l/llx = yll = 0. The linear map 7 is then the strong total derivative of
fata. Taking y = a one sees immediately that if the strong total derivative exists, then f is differentiable and the
total derivative is equal to 7. On the other hand, a function which is differentiable at a point need not be strongly
differentiable there.

Modifying the proof of Theorem 2.29 by applying the same technique used for dy, f to dx, f as well, one can
show thatif X and Y are finite-dimensional and the partial derivatives of f: U — Y existin a neighbourhood of
a € U and are continuous at g, then f is strongly differentiable at a.

2.7 Real-valued functions on an inner product space

Let E be a normed finite-dimensional vector space. (If you prefer you can take E to be R”, the reason we do not
do that here is to try and make clearer what structures are being used where).

If U C Eisan open subset and f: E — R is differentiable on U, then its derivative Df takes values in
E* = L(E,R). If the norm on E comes from an inner product (v, w) — v - w however, we can use it to identify £
and E* viathemap §: E — E*, where d(a)(v) = a-vforalla,v € E.

Definition 2.33. If f: U — Ris differentiable on U then we define Vf: U — E to be the gradient vector field of
f, where Vf(a) = 6~ 1(Df,). Thus V f(a) is characterized by the property that

Df,.(v)y=Vf@)-v, VveE.

Example 2.34. If we take £ = R", with the standard dot product, then we may view D f, as a row vector, with
entries 0, f(a). The vector field V f(a) is then just the corresponding column vector.

V f(a) points in the direction of greatest change for f. More precisely, if v € E is a direction vector with norm
1, the directional derivative at a of f in the direction vis

dvf(a) = Dfu(v) = Vf(a)-v.

By the Cauchy-Schwarz inequality, |V f(a) - v| < |V f(a)||.|IVl] = [IVf(a)||, with equality if and only if v and V f(a)
are in the same direction. Thus the magnitude of the directional derivative of f at a is maximized when visin the
direction of V f(a).

Another important observation about the gradient vector field is that it is a normal vector to the level sets of
f, that s, in a suitable sense, it is perpendicular to the level sets of f: If y: (=1,1) — R"is a curve such that
f(y(®) = c for some constant ¢ € R, and p = ¥(0), the gradient Vf, is perpendicular to y’(0), the “velocity
vector” of y at p, because, for all t € (—1, 1) we have g(¢t) = f(y(¢)) = ¢, hence by Theorem 2.20:

_dg

0= =Dho'O)=Vf(p)y©)=0.

We will explore this in more detail when we discuss tangent spaces.

?Since, as X is finite-dimensional, £(X, Y) = B(X, Y)is anormed vector space, it makes sense toaskif Df : U — L(X, Y)is continuous.
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2.8 *Higher order derivatives

We briefly wish to discuss the notion of higher derivatives for functions f: U — Y, where as before, the domain
of fis an open subset U of a normed vector space X and its codomain is a normed vector space Y. There are two
ways of thinking about these, the first of which takes bases and works concretely with partial derivatives, while
the second works with the total derivative in a coordinate-free manner.

Givenbases {vi,...,v,} of Xand {wy,...,w,} of Y, we obtain the components f; of fas f(x) = 21", fi(x).wj,
and then the directional derivatives in the direction of the v;s give the partial derivatives 0, f;. But these are just
real-valued functions on U, and hence we can consider all of their partial derivatives d; 0}, f;, where ji, jo» €
{1,...,n}andi € {1,...,m}. If these all exist and are continuous, we say that f is twice continuously differen-
tiable. Indeed we can proceed inductively and define:

Definition 2.35. If f: U — Yisasaboveand f = 37", fi.w; so that the f; are the components of f, we define
that higher partial derivatives of f inductively as follows: If k = 1 these are just the partial derivatives 0, f;,
(1 <j<n,1<i<m).Fork > 1,wesuppose that by induction we have defined the partial derivatives of order
k — 1, and write them as dg f; where 8 = (ji, j2,..., ji-1) € {1,2,... ,nY*"!. The k-th partial derivatives of f are
indexed by pairs (@, i) where @ € {1,2,.. .,n}k andi € {1,2,...,m}, whereif @ = (ji, jo,..., jn) then setting

B=(,....j)e{l,2,...,n} ! wedefine

Oafi :=0;,(08f1)
=0;,0j,...0) fi.

We say that f is k-times continuously differentiable, and write f € CHU,Y) , if the partial derivatives 0, f;
exist and are continuous foralla € {1,...,n}*andi € {1,...,m}. We say that f is smooth or infinitely differentiable
if the partial derivatives of all orders k > 1 exist, and write C*(U, Y) for the space of smooth functions on U taking
valuesin Y.

Remark 2.36. One unsatisfactory aspect of this approach to the higher derivatives is that we do not get any
sense for how to think about the second derivative D(D(f)) of f. In the case of the first derivative, the total
derivative gives us the description of Df, as the “best linear approximation” to f near a. In the same way, we
gain a more conceptual understanding of the higher derivatives by considering the higher total derivative D(Df)
of Df. Theorem 2.29 shows that f € C!(U, Y) if and only if the total derivative exists and is continuous. The latter
condition makes sense because the total derivative Df is a function from U to £(X, Y), and L(X, Y) is a normed
vector space when equipped with the operator norm |[|.||. By the same token, our definition of the derivative
makes sense, and we can askif Df: U — L(X,Y) is (continuously) differentiable! This leads to an alternative
definition of C*(U, Y), namely

CHUY)={f: U—Y:DIDf): U— L(X,L(X,Y)) exists and is continuous}.

To see how this relates to our definition using partial derivatives, notice that our choice of bases for X and Y allows
us to identify £(X, Y) with Mat,, ,(R), the space of m X n matrices'®. The space Mat,, ,(R) can then be identified
with R and the components of D f with respect to this identification are the (first) partial derivatives of f.!!
Theorem 2.29 thus shows that D f is continuously differentiable if and only if all the second partial derivatives
exist and are continuous. In this way you can show by induction that the condition the k-th total derivative of f
exists and is continuous is equivalent to the condition that all the k-th partial derivatives exist and are continuous.

We still, however, have not given a satisfactory answer to the question of how one should think of the second
derivative. with the total derivative approach we see that D? fa € LX, L(X,Y)), thatis D? fuis alinear map from
X to the space of linear maps from X to Y. Which is a mouthful.

The standard way to deal with this issue is to notice that £L(X, £(X, Y)) can be less painfully thought of as the
space of bilinear maps from X X X to Y! The details of this identification are in the Appendices, and we content
ourselves here to trying to understand, explicitly, how one sees this for real-valued functions on an open subset
of a normed vector space X.

101f we associate a matrix to the linear map given by left-multiplication on column vectors, L(R", R™) is identified with the space of
matrices with m rows and n columns.
"Here we are identifying the directional derivatives Of;;(Df) with the partial derivative associated to the subspace R.Ej;.
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Example 2.37. Let X be an n-dimensional normed vector space, and let B = {ey, ..., e,} be a basis for X. Write
B* ={x1,x2,...,x,} C X" for the corresponding dual basis.

Suppose that U is an open subset of X and f: U — R s twice differentiable on U. The derivative of f is a
functionDf: U — L(X,R) = X*. Itscomponents with respect to the basis B* of X* are just the partial derivatives
0;f of f,sinceif Df, = Z?:l cj(a).xj, where cj(a) € R, then

cj(a) = Dfy(ej) = 0.jf(a) = 0;f(a).

andsoDf = Z’}Zl (0;f)x;. But now, as we already noted, the derivative D is a linear map, hence to calculate D*f
in terms of the second partial derivatives, we simply apply the same reasoning to each component d;f: U — R
of Df: Indeed since the derivative is linear, we have

D(Df) = D(Zn: 5if-xi] = Zn: D(0;f)xi = Zn: [z”: aj(aif)-xj] x; = Z if)-(xjxi).
i=1 i=1 '

i=1 \ j=1 1<i,j<n

In the second equality we use the fact thatifw € X* and g: U — R, then D(g.w) = (Dg).w, which follows, for
example, by the chain rule applied to the composition of g with the map # — r.w (for # € R). Thus we see that the
basis for £L2(X,R) = L£(X, £L(X,R)) induced by our choice of basis {vi,...,v,} of Vistheset {x;x; : 1 <1, j <n},
of pairwise products of the dual basis vectors.

Itis useful to explicitly describe x;.x; as an element of L2(X,R): ifv; € X then (x;.x;)(v1) should be an element
of X*, and we may obtain one simply by applying x; to v{ to obtain x;(v).x;. Explicitly, it is the functional which
assigns to a vector v; € X the scalar x;(v1)x;(v2).

But it is equally reasonable, however, to think of x;.x; as a real-valued function of a pair of vectors (v, v2) €
X X X, namely the function (v, v2) = x;(v1).x;(v2). From this point of view it is easy to check that {x;.x; : 1 <
i,j < n}is abasis of the space MZ(X, R) of bilinear maps from X X X to R, and hence, since it is just a linear
combination of the x;x;s we may view D?f,, as a bilinear form on X X X taking values in R. To see this more
concretely, if we let H = (0;; f) be the Hessian matrix of D? f,and noting thatif u € X thenu = 3 | x;(u).e;, we
see thatfor anyv,w € X

D2 fw) = > @) IC)mIow) Y- xj)@f)xitw) = XY Hx(w)
1<i,j<n ij=1

where we write x(v) for the column vector (x1(v), x2(v), ..., x,(v)). Thus we see that the second derivative is
just the symmetric bilinear form given by the Hessian (where the symmetry is a consequence of the symmetry of
mixed partial derivatives — Appendix 5.2 gives more details on this which are however non-examinable).

21



3 The Inverse and Implicit Function Theorems

In this chapter we will discuss the theorems which lie at the heart of all the main results of this course.
Lemma 3.1. Let Q) C L(X, Y) be the set of invertible linear maps from X to Y. The we have

1. The set Q) is open.

2. Theinversemap 1. Q — Qgiven by (@) = a™' is continuous.

Proof. The first problem sheet asks you to establish this carefully. If X and Y have different dimensions, then Q is
empty and there is nothing to prove. If they have the same dimension, then there is an isomorphismy: ¥ — X
and it induces a linear map y..: L(X,Y) — L(X,X) given by @ — 7 o a. Its inverse is (y™1). and since in the
finite-dimensional setting all linear maps are continuous, it follows that v, is a topological isomorphism, so we
may assume that X = Y. But then Q forms a group under composition, which acts on itself by left multiplication.
Since || o@2lloo < ||@1lloo-|l2]]oo, this action is by homeomorphisms, hence it follows that to show that Q is open,
itis enough to check thatitis a neighbourhood of Ix. In fact we have B(Ix, 1) C Q.

To see this, note that any element of B(Ix, 1) can be written as Iy — H where ||H||lc < 1. Now let s5,(H) =
Do H*. Then s,(H)(Ix — H) = Ix — H"!, and since ||[H"*!||l < ||H|IZF" — 0, it follows that, if we can show
sp(H) converges, then its limit s(H) is (Ix — H )~! and soin particular Iy — H € Q as claimed.

But L(X, X) is complete (since it is finite dimensional) hence it suffices to show that (s,(H)),>0 is a Cauchy
sequence. Butif ||H||l = 7 < 1 then for m < n we have

n-1 n pmtl
— k k
lsuCH) = (Dl =11 3 Hillow < 3 1Yo < T
k=m k=m+1

and so since ¥ /(1 — r) — 0 asm — oo we see that (s,(H)),>0 is Cauchy as required.
Finally, to see that the inversion map ¢ is continuous on €2, the left action of Q on itself can again be used to
show that it suffices to check that ¢ is continuous at Iy. But «(Ix) = Ix, hence

lle(Ix) — u(Ix — H)|| = ,}Lngo lso(H) — 5,(H)llco,

but we saw above that ||so(H) — s,(H)|| < ||H||e/(1 = ||[H||w) = 0 as||H|lcc — 0, hence¢is continuous atly. O

3.1 The Inverse Function Theorem

Theorem 3.2. Suppose that X and Y are finite-dimensional normed vector spaces, U C X an open subset, and f: U —
Y is a differentiable function. If a € U is such that Df, is invertible and D f is continuous at a, then there is an open
neighbourhood Uy C U of a such that fy, is a homeomorphism from Uy to Vi = f(U) an open neighbourhood of
b = f(a). Moreoverifg: Vi — U denotes the inverse of f, then g is differentiable with

Dgy = (ng(y))_l, Yy e V.

Thus by the Lemma 3.1, Dg is continuous at y whenever D f is continuous at x = g(y). In particular, Dg is continuous at

f(a.

Strategy of proof : Since linear maps are their own derivatives, one can replace f with (Df,)~! o f and hence assume
f: X — Xand Df, = Ix. Moreover, we can further replace f by f(x + a) — f(a) and hence assume a = f(a) = 0.

We then write f(x) = x + ¢(x), so that ¢(x) measures the difference between f and the identity map. The
intuition is then that a function which is a “small perturbation” of the identity should remain invertible. The
insight is then that a “small perturbation” should be rigorously interpreted as a contraction mapping! Using the
Mean Value Inequality and the continuity of Df at Oy, one can show that, in B(Ox, ) for small enough r, ¢ is
Lipschitz with a Lipschitz constant less than 1. This ensures f is injective on B(Ox, r) and, by an application of
the contraction mapping theorem, that f(B(Ox, 7)) is a neighbourhood of Ox = f(0x). It then follows that there
is an open set V] containing Ox such that fjy, is a homoeomorphism and moreover both f and its inverse g are
Lipschitz continuous. Itis then easy to check that the inverse function g is differentiable.
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Remark 3.3. A few comments about the theorem:

e Checking the condition that Df, is invertible is straight-forward: It is equivalent to the non-vanishing of
the determinant J¢(a) = det(Df,) of the Jacobian matrix of D f,.

e Let U C Xand V C Y be open subsets of normed vector spaces X and Y respectively. We say that a
continuously differentiable function f: U — Y is a diffeomorphism from U to V if itis injective with image
f(U) = V,anditsinverse g: V — U is continuously differentiable. The inverse function theorem can then
be stated as follows: Let f: D — Y be a continuously differentiable function on an open subset D C X
taking values in a normed vector space Y. If Df, is invertible, then there is an open neighbourhood U C D
of a on which f restricts to a diffeomorphism between U and its image f(U) C Y.

[Warning: some references may only require f and g to be differentiable, while others may require that f
and g are infinitely differentiable. To avoid ambiguity, one can also say C!-diffeomorphism.]

e The formula for the derivative of g is forced on us by the chain rule — if g is differentiable, the chain rule
applied to the composite Iy = f o g, shows that Iy = DIy = Df(g(y)) o Dg(y) and so Dg(y) = Df(g(y))~".

e Itisnotsufficient, even if just wanted f to have a continuous inverse, for the function f to be differentiable
with f’(a) invertible: Consider the example f: R — R, where f(x) = x + 2x% sin(1/x), which is extended
by continuity to x = 0, so f(0) = 0. Then computing directly from the definition, we find f”(0) = 1 (which
is invertible), but f is not injective in any neighborhood of 0.

[ *For those who read Remark 2.32, the function f is differentiable but not strongly differentiable at x = 0.]

e The hypotheses of the theorem are also not necessary for f to have a continuous inverse — the function
f: R — Rgiven by f(x) = x° is continuous and has a continuous inverse x — x!/3, however f"(0) = 0 so
the inverse function theorem does not apply (and indeed the inverse function is not differentiable at 0).

o If f: U — R"is continuously differentiable with D f, invertible for all x € U, then although f(U) is open
in R” (as we shall see below) f need not give a diffeomorphism between U and f(U). Indeed f need not
be injective. This happens already in two dimensions: Suppose that U = R?\{0} and f: U — R? s given
by f(x1,x2) = (x% - x%, 2x1x72). Then f(U) = U, and we have

2)C1 —2)62
2)62 2x 1 ’

Dfxi ) = (

Since det(D fix, xy) = 4(x} + x3) we see that Dy, x,) is invertible on all of R?\{0}. But clearly f(x;, x) =
f(—=x1,—x3), so that f is not injective on U. If however we assume in addition that f: U — R" is injective,
then itis indeed a diffeomorphism from U to f(U) — see below.

3.2 *Proof of the Inverse Function Theorem

As noted above, by replacing f with Df;'(f(x + a) — f(a)) we may assume that Y = X and Df, = I, and that
a = f(a) = Ox.

The heart of the proofis the following Proposition, which establishes a rigorous version of the idea that a small
perturbation of the identity map should still be invertible, that is Ix + ¢ should be invertible is ¢ is sufficiently
small” compared to Ix. In the case of the space of linear maps £(X, X), our proof of Lemma 3.1 shows that B(Ix, 1)
consists of invertible elements, so in this case a “small perturbation” can be taken to mean a linear map map
of operator norm strictly less than 1. But a linear map a has ||la||ls < 1 exactly when it is a contraction (that
is, a Lipschitz map with a Lipschitz factor less than 1), and thus a natural candidate for a “small perturbation”
is a contraction map i.e. a Lipschitz map with Lipschitz constant less than 1. (Note this is consistent with the
requirement in the linear case at least!)

The next Proposition shows that using this notion of a small perturbation for functions defined on a closed
ball, the contraction mapping theorem does indeed provide the tools to show that such a perturbation has a con-
tinuous (in fact Lipschitz continuous) inverse, at least if we shrink the domain of f to a ball of smaller radius.
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Proposition 3.4. Let X be a finite-dimensional normed vector space. Suppose that for somer > 0,C € (0, 1) we are
given a function ¢: B(Ox, r) — X satisfying (Ox) = Ox and

lle(x) — eIl < Cllx = yll - Vx,y € B(O,r).

Then if f: B(Ox,r) — X is given by f(x) = x + ¢(x), andy € B(0,1 — C).r), there is a unique x € B(0, r) such that
f(x) = y. Moreover, the function g: B(0,(1 — C).r) — B(0,r) defined by f(g(y)) = y is Lipschitz continuous with
Lipschitz constant (1 — C )l

Proof. Giveny € B((,0)(1 — C).r,let @y(x) =y — ¢(x). Then we have

eyl = lly = eIl < Iyl + llell < (1 = C).r + Cor =1,

so that ¢, maps B(0, r) to itself. Since B(0,r) C X is closed and X is complete, B(0, r) itself is complete and
non-empty (since Ox € B(0, r)). Moreover,

lley(x) = oy (X = llp(x") = eIl < Cllx = Xll, VY, 2" € B(O, 7),

thus ¢, is a contraction on B(0, r). The Contraction Mapping Theorem thus implies that there is a unique point
xy with @y(x,) = x,, thatis, f(xy) = xy + ¢(xy) = y. Let g: B(0,r/2) — B(0,r) be given by g(y) = Xy.
To see that g is continuous, let y1, y2 € B(0, r). Thenif x; = g(y1), x» = g(y2) we have

If ) = fOeall = 11 = x2) + (@(x1) = @)l 2 [lx1 = 22l = lle(x1) = @)l
> [lx1 = w2l = Cllxy = x2ll = (1 = O).Jlx1 — x|,

thus |ly; — y2ll < (1 = C)"L]lg(y1) — g(»2)|| and hence g is Lipschitz continuous on B(0, (1 — C).r). O

The proof the Inverse Function Theorem for differentiable functions follows from this Proposition and two addi-
tional facts:

i) If Dfy, = Ix and D f; is continuous at Oy, then f is a “small” perturbation of Iy in B(0x, r) for sufficiently
small r > 0, so that we can apply the above Proposition.

ii) The inverse function g given by the Proposition is differentiable aty = f(x) provided f is differentiable at
X.

The first of these is an easy consequence of the Mean Value Inequality. Indeed we can even choose which value of
C we prefer, for example we may take C = 1/2.

Lemma 3.5. Suppose that X is a finite-dimensional normed vector space, U C X is an open neighbourhood of Ox, and
let f: U — X be a differentiable function on U. If D f is continuous at Ox and D fy, = Ix, thenifp: U — X is given by
@o(x) = f(x) — x, there isan r > O such that for all x,y € B(Ox,r) C U,

1
lle(0) = Ol < Z-llx =yl

Proof. By definition, since f is differentiable at x € U, so is ¢. Indeed for all x € U we have Dy, = Dfy — I,.
In particular, Dgo, = Orxx). Since Dy is continuous at a, there is an r; > 0 such that |[[Dg,|lc < 1/2 for all
x € B(0x, r1). But then by the Mean Value Inequality (Theorem 2.24), we have [|p(x) — ¢(y)]| < %le — || for all
x,y € B(0, r1) hence on B(0, r) for any r € (0, ry). O

The final part of the proof, checking where the inverse function is differentiable, is also straight-forward:

Lemma 3.6. Suppose that X is a finite-dimensional normed vector space, U is an open subset of X, and f: U — X
a injective function whose image f(U) contains an open subset V. If g: V. — U is the inverse of the restriction of f to
£~V and g is continuous at b = f(a) € V, where D, is invertible, then g is differentiable at b and Dg;, = (Df,)™".
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Proof. By replacing f by x — Dfa_] (f(a + x) — f(a)) we may assume thata = f(a) = Ox, and Dfy, = Ix, so that

£ = x + el (3.1)

where €(x) is continuous at x = Oy and €(0x) = Oy. In order to show that g = f~! is differentiable at Ox with
derivative equal to I;(l = Ix, we must show that g(y) = y + ox(|[y|).

But now g(¥) = x and f(x) = y, hence in terms of g, Equation (3.1) becomes g(y) = y — ||g(y)||e(g(y)), and so
we must show that [|g(y)|].€(g(y)) € ox(||yl]), that is, we must show

B0 (g3 - 0as Iyl = 0.
Il

But € and g are continuous at Oy and €(0xy) = g(0x) = Ox, and hence €(g(y)) — €(g(0x)) = Ox asy — Ox.
Thus it suffices to show that ||g(y)||/||y|| is bounded for [[y|| small. But by the continuity of €(g(y)), thereisad > 0
such that if ||y|| < ¢ then |le(g(y))| < 1/2. Thusif|]y]| < 6, sincey = gy) + e(g(¥).llgM)l, we have |[y|| >
gl = (1/2).llgWIl = (1/2).lIg(y)ll, and hence [lgW)II/II¥ll < 2 as required. O

Remark 3.7. Itis worth comparing the proof of the Inverse Function Theorem above to the proof of the single-
variable theorem. In that case, the differentiable inverse function theorem is also deduced from a continuous
inverse function theorem. This is often misleadingly'* presented as follows: Each y € V hasy = g(x) for a unique
x € U, or equivalently f(x) = y, hence

lim 89 —=800) _ . 8U)) —g(f(x0) _ . X=X "N )

X
= - =N - =
% y—yo  vw f)—f(o) v f() - f(x) v f(x) — f(x0)

The algebraic manipulation is of course straight-forward, however the real content in the deduction is the justifi-
cation for the second-last equality, thatis, showing that one can switch from taking lim,_,, to taking lim,_, . It

is here that the continuity of the inverse function is essential, since if g = f~! is continuous at y, then and hence
ify — yo then g(y) — g(3o), thatis x — xp, and thus the change of limit is indeed legitimate.

Remark 3.8. The continuous inverse function theorem in the single-variable case has a rather different proof
to the many-variable case. This is because it is usually stated for functions on a closed interval, f: [a,b] — R.
In this case, if f is injective, you can show it must be strictly increasing or decreasing, and replacing f with (—f)
if necessary we can assume it is increasing. It is then easy to see that the inverse, f~': f([a,b]) — [a,b]is
also increasing, and by the Intermediate Value Theorem, f([a, b]) is the interval [ f(a), f(b)]. But an increasing
function can only have “jump” discontinuities, i.e., the one-sided limits f(xg)* = lim,_, ¢ f(x) and f(xg)~ =
lim)Hx(; f(x) both exist, and f(xo)” < f(x) < f(xo)*, but the inequalities may all be strict. Since the image
of f~!is, by assumption, the interval [a,b], there can be no such discontinuities in the case of f~!, and so it is
continuous.

Thus, rather bizarrely, the continuity of the inverse in the one-dimensional theorem proved in Prelims is de-
duced from a criterion for continuity for increasing functions on an interval — namely that it is necessary and
sufficient for its image to be an interval. In higher dimensions there is no reasonable notion of an increasing or
decreasing function, so this argument does not generalise.

Remark 3.9. If, instead of assuming that f: U — R" is differentiable on U with D f continuous ata = 0, we
assume only that it is strongly differentiable at a (see Remark 2.32), then one can modify the proof of Lemma 2.9
to show that Proposition 3.4 still holds on B(0, r) for small enough r. Similarly, Lemma 3.6 can be adapted to
show that the inverse g is (strongly) differentiable at y if f is (strongly) differentiable at x = g(y).

**Remark 3.10. One canin fact somewhatweaken the hypotheses of the Inverse Function Theorem in a number
of ways: if U is an open subset of R” and f: U — R”" has Df, invertible for all x € U, then f is locally invertible
with differentiable inverse: More explicitly, for any a € U there are open sets Uy, V] witha € U; € U and

f(a) € U, such that f restricts to a bijection from U; to U, and if g = fﬁ : Uy — Uy, then g is differentiable

with derivative D fg_&) for ally € U;. Indeed by the chain rule, it follows that invertibility of D f; for all x € U is
equivalent to the local invertibility of f.

In that it hides the key point in a subscript.
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More importantly, especially for applications in the study of partial differential equations, the inverse func-
tion theorem holds for continuously differentiable functions on open subsets of any complete normed vector
space, whether or not it is finite dimensional. In this context, the derivative must be a continuous linear map
(thatis, a bounded linear map — see Section 1). Thus the condition that the derivative at a point be invertible has
to demand instead that the inverse linear map exists and is bounded, but then the whole theorem (and its proof)
go through just as above. In fact, it is the case (though we do not quite have the tools to show it) thatin a complete
normed vector space (the ones in which the inverse function theorem holds) if a linear map is invertible (i.e. has
alinear inverse) then its inverse is automatically continuous.

3.3 Applications of the Inverse Function Theorem

Definition 3.11. Let (X, d) and (Y, p) be metric spaces. A continuous function g: X — Y is said to be an open
mapping if, for any open set U C X, its image g(U) is open in Y. Notice that a continuous bijection is a homeo-
morphism precisely if it is an open mapping.

Corollary 3.12. Let U C R" be an open set, and f: U — R" be a continuously differentiable function such that D f is
invertible for every x € U. Then f is an open mapping.

Proof. LetV be an open subset of R” contained in £. We want to show that f(V)is open. Pickb € f(V). We need
to show that f(V) contains some open ball centered at b. Now b = f(a) for some a € O, and the inverse function
theorem appliesto fiy: V — R" and a € V. Hence there are open sets V|, Vo witha € Vi C Vand f(a) =b e V;
such that f is a bijection between V| and V5. But then thereis a § > 0 such that B(b,0) C V, = f(V1) C f(V),
and we are done. O

Remark 3.13. In fact the proof of this theorem used only the first part of the inverse function theorem — the fact
that the inverse of f on U is continuously differentiable was not needed.

Another consequence of the inverse function theorem is the following:

Corollary 3.14. Let E C R" be an open subset and let f: E — R" be continuously differentiable, such that f is injective
and D, is invertible for all x € E. Then f is a diffeomorphism between E and f(E).

Proof. Byassumption, giveny € f(F)thereisauniquex € E with f(x) = y,sothatwecandefineh: f(E) — Eby
setting /(y) to be this point x. But then g is continuously differentiable by the inverse function theorem, since at
anypointy € f(E),if x = g(y) there are open sets U, V containing x and y respectively, such that fiy: U — Visa
diffeomorphism. But then gy is continuously differentiable, and so g is continuously differentiableaty € V. O

3.4 Systems of local coordinates and the Implicit Function Theorem.

The goal of our study of differentiable functions is to try to extend to such functions, in as much as this makes
sense, results from linear algebra. To try and make this analogy between results in the linear and non-linear
setting a little more concrete, consider the notion of coordinates on a vector space: If X is an n-dimensional vector
space, then picking a basis Bx = {vy, ..., V,} of X gives us coordinates for the vectors in V: for any vector v € X
we assign to it the coordinates (cy, ..., c,) € R" wherev = 3", ¢;v;. Equivalently, the basis defines an invertible
linear map : X — R”" given by sending By to the standard basis of R". Thus giving such a map is equivalent
to giving a (linear) coordinate systems on X. In the setting of differentiable functions, diffeomorphisms play the
same role: if U is an open subset of X and f: U — R" is a diffeomorphism onto its image f(U) C R", then we
can use the components of f to parameterise the points in U.

This gives one way of thinking of the Inverse Function Theorem, namely, it ensures that if U is open in X
and f: U — R"is continuously differentiable, then if Df) is invertible, at least near p, f is a diffeomorphism.
In other words, if the derivative D), gives (linear) coordinates on X, then, the components of f provide a (non-
linear) parameterization of neighbourhood of p.

Example 3.15. Suppose that X is 2-dimensional with basis {v{, v2}. The function g: R? — X givenby g: (r, 5)
rcos(s).vy + rsin(s).v; has Jacobian determinant J, = r, thusif welet V = (0,00) X (0,27), theng: V — U,
where U = X\{t.v| : 1 > 0},and J; # Oon all of V, so the inverse function theorem ensures that g has an inverse
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f: U — V =(0,00) X (0,2m). Since g(f(v)) = v, the function f simply assigns to v € V its “polar coordinates”
(r,0).

Note that U, the domain of f,is not all of X. If we wanted to enlarge the domain of definition of f, we would
need to extend g to some U 2 U to make it bijective, but it we try and do this, two problems present them-
selves: Firstly, if (7, s) has s close to 27 and s’ close to 0, then g(r, s) and g(r, s”) will both be close to rvy, indeed
limg_p, g(r, s) = limgy_,0g(r,s’) = rvy. This forces the inverse of g to have a discontinuity at rv; — the limits
limy o g(rvi + tv2) = (r,0) while limyyp g(rv1 + tv2) = (7, 2r). Worse still, for Oy to lie in the image of g, we must
add to U an element of (0, 5), say (0, sg) but for any s; € R we have lim,_,¢ g(7, s1) = Oy, so that any choice of s
will for f to be discontinuous at Ox. This latter problem is a consequence of the fact that, although g is defined on
all of R?, its derivative is only nonsingular when r # 0. The former problem is an example of the local nature of
the inverse function theorem — a continuously differentiable inverse is only guaranteed to exist sufficiently close
to the point you apply it to. This is often less problematic — for example with polar coordinates, although any
choice will have a discontinuity along any path which encircles the origin, we can control where this appears:
for example we can chose U’ = (0, ) X (@, @ + 2r) for the domain of g so that f is discontinuous on the ray
t(cos(a)vy + sin(a@)vy).

Definition 3.16. A pointed set is a pair (X, @) consisting of a set X and an element a of X. If (X, a) and (Y, b) are
pointed sets, then we will write f: (X,a) — (Y, D) to indicate that f is a function from X to ¥ which maps a to
b, thatis, f(a) = b.for a function f: X — Y which satisfies f(a) = b, and refer to it as a map (or function) of
pointed sets.

Remark 3.17. Many algebraic objects are naturally pointed — a vector space X has a zero vector, any group has
an identity element etc.

Definition 3.18. Suppose that X is a normed vector space and p € X. A system of local coordinates at p is a dif-
feomorphism : (U, p) — (€, 0,,) from a connected'® open neighbourhood U of the origin p in X to a connected
open neighbourhood Q of 0, € R". The standard coordinates (xi, ..., x,) of R" at 0, then give a system of coor-
dinates (t1,...,t,) at p, where, fory € U, we set t;(y) = x; o y(y),fori € {1,...,n}.

If f: U — R¥is any function, then by the chain rule, f o ! is continuously differentiable when f is, and
similarly, if a function g: QQ — R¥is continuously differentiable, then sois g o ¥, since, as ¥ is a diffeomorphism,
both ¢ and ! are continuously differentiable. Thus the map *: C1(Q, R¥) — C'(U, R¥) given by y*(f) = foy
is an isomorphism of vector spaces, with inverse (i~ !)* where (y!)*(g) = goy~!. More prosaically, this just says
that if we wish to check if a function f: U — RF is continuously differentiable, we just need to check that it is
continuously differentiable when viewed as a function of the coordinates (¢1, . . . , ,,) given by the diffeomorphism

v

In this section we will use the Inverse Function Theorem to show that, for functions f € C Y(U, RY), structural
information about the linear map Df), at a point p € U can often be extended to give information about the
behaviour of f near p.

Our main example of this is the Implicit Function Theorem. The linear algebra toy model for this theorem is

the description of a surjective linear map @: X — Y. If {vy,..., v} is a basis for ker(a), then we may extend it to a
basis {vy, ..., Vg+} of X. The images the additional vectors yield a basis of Y, and in the coordinates these provide
for X and Y the map « takes the form a(t, . . ., tx+;) = (tk+15 - - - » tk41)- Similarly, the basis {vy, ..., v;} provide a set

of coordinates ¢ : ker(a) — R! for ker(a).

From a computational point of view however, there is still the question of how one constructs the basis
{vi,...,vi} of ker(@). In practiceif @: X — Y is a surjective linear map, it is likely to be given via its matrix
with respect to some bases By, By of X and Y respectively which have no particular compatibility with @.*. In
such cases, it may be easier to find a subspace X, € X such thata|y,: Xo — Y is actually bijective. Then, if we
pick any complementary subspace X1, we may decompose a accordingly as @ = (@] + @2), where @; = @ o 7; for
i = 1,2 and the maps 7; are the natural projection operators with images X and X, respectively. For example,

Bthe assumption that ( is connected is not necessary, but it is easy to ensure —if V is an arbitrary open neighborhood of Oy then if C
is the connected component of V containing Oy, it is again an open neighbourhood of Ox which is, of course, connected.

“In the context of experimental science or economics, for example, the bases By and By are likely to be constructed in a way that reflects
those qualities we can most readily measure.
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if we have chosen bases By and By for X and ¥ and A = p,[a]p, € Maty,(R) is the matrix of o with respect to
these bases, then in low rank cases it is often not hard to find a k X k submatrix of A which has full rank. This
partitioning of the columns of A into two sets of size k and n — k then yield a correspond to a decomposition of
X into a direct sum X @ X». The following Lemma then shows that one can obtain a concrete description of the
kernel of @ using this decomposition. (This is really the description one obtains from the reduced row eschelon
form of a matrix as in Prelims Linear algebra.)

Lemma 3.19. Leta: X — Y be a surjective linear map and suppose B = By U By is a basis of X such that if X; =
Span(B)), fori = 1,2, then a|x,: Xo — Y is an isomorphism. Then there is a linear map 6: X1 — X such that
ker(a) = {(x,0(x)) : x € X1}.

Moreover, if By = a(B3) is a basis of Y, and is we set B‘l) = {(b,0(b)) : b € By}, then Bfl) is a basis of ker(a) and if
BY = B‘f U By, then B is a basis of X and the matrix p,[a] go with respect to these bases is in the canonical form (0|1).

Proof. Letmy,m; be the projection maps from X to X| and X, respectively (so ker(z;) = X; and ker(mp) = Xj). If
v: Y — X istheinverse of a|x,, we may use it to identify Y with X, that is, we replace @ with 8 = y o @, so that
we may view « as a linear map from X to X, where if §; = m; o Sthen 8 = 81 + 82 and 52(x) = mp oy o @ = mp(x).

NowletT: X — X begiven by T(x) = m(x) + B8(x) = x + B1(x), so that in terms of the decomposition

X=X ®X,wehaveT = ;1 n(_) . Then T hasinverse T~!(x) = x — 8 (x). It follows that 8(x) = 0if and only
1 M2

if m(x) = B1(x), so thatker(a) = {(x,81(x)) : x € X1} asrequired. The final sentence then follows immediately

from the above. O

We now state the Implicit Function Theorem: Its formulation is almost identical to the linear algebra result
given above: we take a differentiable function f: U — Y in place of the linear map «, but then, for a point p € U
where the hypothesis of the previous Lemma are satisfied by the derivative D), of our function at p, just as in
the case of the Inverse Function Theorem, we obtain a “local” consequence for the function f, thatis, a statement
about the nature of our function in a neighbourhood of the point in question.

Definition 3.20. If X and Y are normed vector spaces and f € C'(U,Y), and p € U is such that Df,: X =Y
is surjective, the set Uy = {x € U : Df, issurjective} is an open neighbourhood of p and we say that the
restriction of f to Upay is a submersion.

Exercise 3.21. Check that you see why Up,.x is open — compare with Lemma 3.1.

Theorem 3.22. (The Implicit Function Theorem.) Suppose that X and Y are normed vector spaces and we are given a
direct sum decomposition X = X| ® Xy, with iy, mp the corresponding projections to X| and X, respectively. Let U be
an open subset of X, and let f: U — Y be a differentiable function. If p = (xo,y0) € U is such that f(xo,y0) = 0
and, fori = 1,2, we write 0 f(q) for the partial derivative Ox, f(q) of f with respect to X; at q € U, so that we have the
decomposition

Df =d1f(qg)om +d:f(q)om, VqeU.

If 02 f(q) is continuous at p and 0, f(p) is invertible, then there are open neighbourhoods Vi, W of the zero vectors
01 = Ox, and 0y = Oy, respectively, and a differentiable function 6: Vi X W — Q, where Q C U is an open neigh-
bourhood of p, such that if 6(x,y) = (01(x,y), 62(x,y)) then 61 (x,y) = x + X0, and if (x,y) € Q, then f(x,y) = Oifand
only if (x,y) = (x, 62(x — X0, 0)).

Xi0X, ——— Vi xW, 245 Q

\Lm \Lf
X, Dgx Sy

Equivalently, if g(x) = Ya(x — xo,0), then g is continuously differentiable, and if (x,y) € Q then f(x,y) = 0if
and only ify = g(x). That is, within C, the set f(x,y) = 0 can be described as the graph of g: Vi — X,. Moreover, the
derivative of g is given by

Dgy = =02 (x,8(x)) " 0 01 f(x, g(x))
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Proof. (Non-examinable:) Let3: Y — X, be the inverse of 0, f(p). By replacing f with 8 o f, we may assume that
f: X — X5 and that 0, f(p) = m,. Similarly, by replacing f by f(xo + x,yo + y) — f(x0, yo), we may assume that
p = 0x = f(Ox). Define G: U — X be given by

G(X,Y) = (x’ f(x,_Y)), X € Xl,y € Xs.

so that G(0x) = G(xp,y0) = Ox. Then, for any g = (x,y) € U decomposing Df, = 01 f(q) o m| + 02f(g) o m
according to the direct sum decomposition of X, we have

o Ix | O )
DG‘I‘(alﬂq)azf(q) Yaey

Thus G is differentiable, and continuously differentiable wherever f is. Moreover, since 9, f(p) = Ix, is invertible,
it follows that DG, is invertible. It follows from the Inverse Function Theorem that there is an open set Q C U
with Ox € Qsuchthat Gio: Q — V = G(Q) is a diffeomorphism from Q to an open set V which contains
Ox = G(0Ox). It follows that we may find open neighbourhoods V| and W; of Ox, and Oy, respectively such that
VixW; CV,andifweletf = (G‘Q)_l, then 8(V; X W1) C Qis an open subset of X containing Oy, so that by
replace Q with (V| X W) we may assume V is a product of the form V| X Wj.

Now if, for (s,1) € V| X W we set0(s, 1) = (01(s,1),0:(s,1)) € X| ® X, thenif (x,y) € Q, we have G(x,y) =
(x, f(x,y)), hence (x,y) = 6 o G(x,y)) = 0(x, f(x,y)). In particular, since G is surjective 0 (s, t) = s. Moreover,
f(x,y) = 0if and only if (x,y) = 62(x, Ox,).

It follows thatif welet N(f) = {(x,y) € U : f(x,y) = 0}and g: V| — X; be given by g(x) = 62(x, Ox,), then
N(HNQ=A{(x,8(x) : x e Vi}.

Thus the theorem is proved except for the expression for the derivative of g(x) = 6>(x, 0). But this follows by
invertible the matrix of DG, above, or by noting 0 = f(x, g(x)), which implies by the chain rule that

0=( 01/(x, g(x) | Baf(x,8(x)) )(117};)

and hence 01 f(x, g(x)) + 02 f(x, g(x)) o Dg, = 0, so that Dg, = -0, f(x, g(x))_lalf(x, g(x)). O

Remark 3.23. This result is called the “Implicit Function Theorem” because one can view it as saying that, if
we pick a basis for Y and consider the corresponding real-valued functions f; given by the components of f with
respect to this basis, then provided the linear map 9, f(xo, yo) is invertible, the system non-linear of equations
fi(x,y) = Ofori = 1,2,...,k, can be solved, in the sense that the equations implicitly make the y-variables
functions of the x-variables, at least locally near (xg, yp), as the existence of the function g demonstrates.

In this sense, the theorem gives a rigorous justification for the calculus technique of “implicit differentiation”
— compare that technique to the calculation of Dg at the end of the above proof.

Corollary 3.24. (Local normal form for a submersion): We can also formulate the Implicit Function theorem in terms
of local systems of coordinates: Pick a basis By of X| and By of Y, so that if By = 9, f(p)~'(By), then B, is a basis of
X5 and Bx = B U By is a basis of X. Then using 6 we obtain a system of local coordinates, (11, ... ,t,) say, for (Q, p),
where (x,y) € Q has coordinates (t1,...,t,) if O1(t1,...,t,) = xand 0y(t1,...,t,) = y. With respect to this system
of local coordinates, and the linear coordinates on Y given by By, it follows immediately from the definition of G that, if
n = dim(X) and k = dim(Y), then the mayp f takes the form (t1,...,t,) = (tp—k+1s .-, 1n).

Proof. This follows immediately from the discussion above. Note that in this formulation, the theorem shows
that the components of f can be extended to alocal system of coordinates for X near p provided f is continuously
differentiable and D), has full rank (i.e. there is a subspace X of X for which the restriction Df,x,: Xo — Yis
an isomorphism). O

Example 3.25. In this example, we will write 7 for a general vector in R* and write 7 = (x,y) where x € R?,
y € R%. Let f: R* — R? be given by

Fx1, x2,31,y2) = (2 = 3 + 32 + 23,3 + 22—y —yd),
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and consider the level set M = f‘l{(l, 2)} of f, so that
x%—x§+y%+2y§ =1 }
-2 [

M =1z =(x1,x,y1,y2) €R*:
{ Y x4 -y -y

The total derivative D f; has Jacobian matrix

2x1 —2x2  2y1 4y ) (3.2)

Df. = (DfixDfay) = ( 2x1 2x  -2y1 2y

Thus considering 2 X 2 submatrices, we see that D f hasrank 0 only at z = 04, and rank 1 if z lies on the coordinate
axes (i.e. all but one of x1, X2, y1, y2 equal to zero), or if x; = y, = 0. Everywhere else D f, has maximal rank. Now
if x € M we have 2)6% + y% = 3, hence M does not intersect the plane {z € R* : x; = y, = 0}. Similarly it is
easy to see that M does not intersect the coordinate axes, and hence D f has maximal rank on all of M. (In the
terminology of the next section, this means that M is a 2-dimensional submanifold of R*.)

We now consider how to parametrize M. Using Theorem 3.22, and noting that the final two columns form
an invertible matrix provided y;y, # 0, we see that in a neighbourhood of a point p = (a, b, ¢,d) € M for which
c.d # 0, the condition that f(x, x2, y1,y1) = (1,2),1i.e. implicitly defines a function g in a neighbourhood of (a, b)
such that

S, x2,1,52) =(1,2) &= (y1,y2) = 8(x1, x2),
that s, locally near p, the level set M is the graph of a function.
The theorem however does not produce the parameterizing function g = (g1, g2). However, it does allow

us to calculate the derivative Dg,: If z = (x, g(x)) we have Dg, = —sz_gl(x)Dfl,x, where, as in (3.2) we write
Df, = (Dfix|Df2,). Explicitly this becomes:

Dg. :( 0181 0181 )

—(48182)_1( —2282 —4g2 )( 21 —2xp )

0182 022 g1 2& 2x1 2x
12x 4x
_ -1 182 282
= (48182) (—8x1g1 0 )
:( 3x1/81  x2/81 )
-2x1/g2 0 ’

Indeed one can view the Implicit Function Theorem (or indeed the Inverse Function Theorem) as asserting the
unique solution to a system of differential equations. Of course in general we may not be able to readily solve
these equations explicitly, but this example is simple enough that we can:

To start, note that drg> = 0, so g is independent of x,, while g.01g2 = —2x; so that the only equation
governing g is 01> = 2x1/g>. Indeed we already noted that on M, Zx% + y% = 3, that s, Zx% + g% = 3, hence

g2(x1,x2) = /3 - 2x%, where the sign will be determined by the sign of d, the corresponding coefficient of p.

Note that we have 91(4/3 — 2x%) = =2x1/ /3 - Zx% as expected. Having determined g», it is not so difficult to
determine g1, using, for example, the first component of f:

g1(x1,x0) = i\/l —x% +x% -2.3 —Zx%) = i\/3x% +x§ -5,

where again, the sign is determined by that of the corresponding coefficient of p (which is ¢ in this case). Note
againthatd;g; = 3x;/g1 and 0,81 = x2/g1. Thus we have

(1,820 = (£33 + 3 -5, = \3-22)

Example 3.26. A more abstract application of the Implicit Function Theorem is a “smooth” version of the prob-
lem of extracting the roots of a polynomial equation. It is a famous result of Abel and Ruffini'® that for equations

>This predates Galois, who developed a complete theory in which the Abel-Ruffini theorem sits as a special case.
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of degree n = 5 and higher, one cannot express the roots of a polynomial equation p(t) = 3/, at* “in radicals” —
thatis, using only the ordinary algebraic operations along with taking k-th roots for k < n. One can still however,
consider how a root of p varies as we continuously vary the coefficients a = (ax) € C"*!. It seems intuitively clear
that a root will move continuously with the coefficients, and the Implicit Function Theorem allows us to make
this precise:

Suppose that ¢ € Cis a simple root of p(f) - so (t — ¢) divides p but (¢ — ¢)? does not. Equivalently p(c) = 0 but
p'(c) # 0. Let f: C"™2 — C be the function f(ag, ..., dn, 1) = 20 ait*, that s, f is the function obtained from
p by viewing it as a function of # and of all of its coefficients. Then d;f(a, ¢) = p’(c) # 0, so that if we decompose
C? = C"™1 @ C, the implicit function theorem shows that there is an open neighbourhood V of (a, ¢) in which
f(x,1) = 0if and only if t = g(x), where g(a) = c.

Since a polynomial is smooth (i.e. infinitely differentiable) we can conclude that g(x) is also smooth. Thus the
roots of a polynomial (at least when they are simple) are smooth functions of the coefficients, even if they cannot
be written in the form of radicals as the mathematicians of the 17th century had wished.

*Remark 3.27. In the setting of infinite dimensional complete normed vector spaces, the Inverse Function The-
orem can be used to prove a version of the Implicit Function Theorem. Such a result can be used to prove a version
of Picard’s Theorem on existence and uniqueness of solutions to differential equations. See [R] for more details.

3.5 Lagrange multipliers

Suppose first that X is a normed vector space and U is an open setin X with f: U — R a differentiable function.

Lemma 3.28. If f: U — R has a local minimum at a € U, so that for some r > 0 we have g(a) < g(x) for all
x € B(a,r), then Dg, = 0.

Proof. Suppose for the sake of contradiction that Dg, # 0. Then we may find v € X such that Dg,(v) > 0 and
[Vl = 1. Fort € Rlety(f) = a + t.v, then y‘l(U) is an open set in R containing 0, hence for some § > 0, the
function g o y is defined on (=46, 6). Now by definition we have

0 < g(x) — g(a) = Dgu(x — a) + |Ix — alln(x),

where n(x) — 0 = n(a) as x — a. Thus for allt € (-6, 0) we have

0 < g(y(1) — g(a) = t.[Dg.(v) £ n(a + t.v)].

But since ij(a + t.v) = Oast — 0,and Dg,(v) > 0, thereisad; < d such thatifz € (—d;,01) then Dg,(v) = n(a +
tv) > Dg,(v)/2. But then for all t € (—d7, 0) the inequality above cannot hold, giving a contradiction. O

We now wish to study the problem of minimizing g: U — R given constraints on x € U. Before formulating
the general result, consider the problem of trying to minimize a function g: R*> — R on a surface S = {x € R? :
f(x) = 0}. In the unconstrained setting, as we just saw, if a pointa € R3 is a local minimum for g we must have
Vg(a) = 0: This need not be the case in the constrained setting.

Example 3.29. Let f(x) = x% + x% + x% —1,andletS = {x € R} : f(x) = 0}. Suppose that we wish to mimimize

g(x) = x30nS. Clearly Dg, = (0,0, 1) never vanishes, but it is easy to check that p = (0, 0, —1) minimizes g on
S. Notice that, since Df, = 2(x1, x2, x3), so thatat p we have 2Dg,, + Df, = (0,0,2) + (0,0,-2) = 0.

This dependence is not a coincidence: In the proof of Lemma 3.28, when Dg,, # 0 we can find a direction to
move in where the linear approximation to g, given by Dg,, increases in value (and so decreases in the opposite
direction) and that the approximation has an error of magnitude oy (||x—a||) suffices to show that the failure of the
linearized problem to have a local minimum forces the same to be true of the original nonlinear problem. In the
situation of the constrained minimum in this example, D f,(x) = 0 can be seen as the linear approximation to the
non-linear constraint f(x) = Onear p. If Dg, and D f, are multiples of each other, then Dg), actually vanishes on
the locus given by the linearized constraint D f,,(x) = 0. This suggests the replacement for the condition Dg, = 0
in the unconstrained problem should be that Dg,, vanishes on the linearization at p of the constraint f(x) = 0,
thatis, we should have ker(Df),) C ker(Dg)).
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To make this observation into a theorem, we need to show that the linearised problem is a good enough ap-
proximation to the original non-linear constrained optimization problem for the linear condition we just obtained
to remain necessary in the original problem. But this is exactly what the Implicit Function Theorem does for us!

Theorem 3.30. Suppose that U is an open subset of a finite-dimensional normed vector space X and g: U — R is
continuously differentiable. Let f: U — R* be constraint function, and consider the optimization problem given by
seeking to minimize g(x) subjecttox € S = {x € U : f(x) = 0}.

If zis a local minimum for g on S, then if D fy, has rank k, there exist scalars Ay, A1, ..., Ak € Rsuch that

k
AoDg. + ) ADf;; =0,
i=1

where f(x) = Zle fi(x).e;, with {e; : 1 <i < k} the standard basis oka.

Proof. The hypothesis of the theorem ensures that we can apply the Implicit Function Theorem: D f; has rank k,
hence there is a subspace X, < X on which D, restricts to give an isomorphism from X, to R¥. If we pick any
complementary subspace X, then the Implicit Function Theorem shows that there is an open neighbourhood Q2
of zin which there is a system of local coordinates (71, . .., t,) for which f = (t,—g+1,- . ., fx). Thus restricting g to
f(x) = O0simply sets t,,_x+1 = ..., = 0, and hence from the previous Lemma we must have

Dg; = (018(2)|028(2)) = (0028(2)),

and hence Dg, lies in the span of {Df; : i > n — k + 1}, or equivalently the span of {Df; : 1 < i < k}, which s
equivalent to the existence of the linear dependence in the statement of the theorem. O

Remark 3.31. Since the hypothesis of the Theorem assumes that D f; has rank k, and the Jacobian matrix of D f;
has rows given by the derivatives of the components Df; , these are linearly independent, so that the scalar Ao
must be non-zero. It follows that one can rescale the A; to ensure Ag = 1, and some texts will state the result this
way. (In practice, in some situations the calculations are tidier setting 4g = 1 and in others it can be easier not to
distinguish Ay in this way.)

Example 3.32. Consider the problem of finding the extrema of the function g: R* — R given by
8(x1, x2, x3) = X1 + x2 + 33,
subject to the constraints that x = (xy, xp, x3) must satisfy (f;(x), f2(x)) = (2, 1) where
filx) = x% + x%, H(x) = x1 + x + x3.

That is, x lies on the cylinder of radius V2 centred along the x3-axis and on the plane perpendicular to (1,1, 1)
passing through %(1, I,1).LetC ={xeR3: Sfi(x) = 2, fo(x) = 1} denote this locus, a level-set of f: R3 - R?,
where f = (f1, f2).

Itis easy to check that C is bounded, and hence as any level-set is closed, it is compact. It follows g attains a
maximum and minimum on C. By the Lagrange multiplier theorem, at such an extremum ¢ = (c1, ¢, ¢3) there
must exist scalars Ay, A» € R such that

Dg. = 41Dfi .+ Dfo,

and hence
(1,1,3) = 21(2c1,2¢2,0) + A2(1, 1, 1).

Thus A, = 3, and hence 21;¢; = 24;¢3 = —2. It follows that ¢ = (=A7!, —=(1;)~!, ¢3). The constraint filc) =2
then implies 41 = *1 so that since f>(c¢) = 1 we see thatif we set c. = (x1,+1,1 F 2), the points c. are the
only possibilities for extrema of g on C, and since we know g attains a maximum and minimum value, we see that

-1 =g(cy) < glx) < glc-)=Tftorallx € C.
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Example 3.33. Let us prove the Cauchy-Schwarz inequality using Lagrange multipliers. Thus we wish to show
that, for any two vectors a, b € R" we have |a - b| < ||a||.||p||. This is trivially true if either a or b is zero, so we may
assume both are non-zero. But then we may rewrite the inequality as (a/||al]) - (b/||b]]) < 1. Since a/l|a|| and b/||D]|
are unit vectors, we are thus reduced to the following:

Problem: Maximize x - y for x,y € R” subject to the contraints that||x|| = [[y|| = 1.

Let us formulate this in the language of Theorem 3.30. Let g: R>" = X| @ X (the span of the first n and last
n standard basis vectors respectively) be given by g(x, y) = x - y (thus we use the same notational conventions as
in Theorem 3.22) and let f: R?* — R? be given by f(x.y) = (x - x,y - y). We wish to maximize g subject to the
condition that (x,y) € S = {(x,y) € R : f(x.y) = (1,1)}.

Now S is clearly compact (as it is closed and bounded) hence g attains a maximum value on S. Now for any
(x,y) € S wehave Dfi () = 2(x,0) and D f> (r,,) = 2(0,y), and hence rank(D f(y,y,)) = 2, so that§ isa2n — 2-
dimensional submanifold of R?*. Hence, by Theorem 3.30, if p = (xg, yo) is a local maximum for g on S, there
must exist scalars 41, A2 € R, not all zero, such that

Dg(xy.y0) = D fi(xo.y0) T 2D f2,0x0.,30)-
Now it is easy to see that Dg(y,.y,) = (Yo, X0), hence the previous equation becomes
(o, x0) = (241.x0, 222.y0),
so that, taking components in R” and R} we must have
yo = 241.x0, X0 = 242.0.
But then we must have yy = A;.x9 and xg = A2.yg, so that 411y = 1, and since ||xo|| = ||lyol| = 1, we must have

[41] = |42] = 1 and hence either xo = yg or xo = —yg. Since g(xg, xXo) = |[xoll = 1 and g(xg, —x¢) = —||xol| = —1, it
follows immediately that —1 < g(x,y) < 1 on S and we obtain the equalities g(x,y) = 1 if and only if x = *y.

33



4 Submanifolds of a normed vector space

4.1 Definition and basic properties

The goal of this section is to apply the inverse and implicit function theorems to geometry. The theorems allow
us to show the equivalence of two natural definitions of a smooth surface in R3, and, more generally, define the
notion of a submanifold of a normed vector space X.

Example 4.1. LetS = {x e R : x% + x% + x% = 1} is the standard unit sphere. It is smooth (in a sense that we
have yet to make precise) and we can describe the points which lie on itin (atleast) two ways. The first is implicit
in the definition — a point p = (x1.x2.x3) liesin S if the function f(x1, x2, x3) = x% + x% + x_% evaluates to 1 on p,
thatis, S is a level set of the function f.

The second way to describe points on S is via a parametrization: for example, themap ¢: [-1, 1] X [-7,71) —
R3 given by (z,0) — (cos(d). V1 — 12, sin(f). V1 — £2,1) has S as its image, thus we can use the parameters (7, §)
to study S. Note that our parametrizing map ¢ is not injective, though it is on much of its domain. In general
we will usually only be able to obtain parametrizations of a surface locally, that is, given a point p on our surface
S, we will show that there is a diffeomorphism from an open subset U of R? to an open subset V of our surface
containing p.

On the other hand, if we only wish to obtain parametrizations for open subsets of a surface, we can often use
the Implicit Function Theorem to turn the condition f(x1, X2, x3) = 0 into an equation for one of the variables
in terms of the others. For example, if H3 = {x € R3 : x3 > 0}, thenon H3 N S we may write S as the graph

of h(xy,x2) = /1 - x% - x%, thatis, in H3 we have x € S ifand only if § € graph(h) = {(x1, x2, h(x1, x2)) :
(x1,x2) € V},where V = {(x1,x) € R? : x7 + x5 < 1}.

Definition 4.2. Let M C X be a closed subset of an n-dimensional normed vector space X. We say that M is a k-
dimensional submanifold of X if, for every point p € M, thereis an open subset U of X containing p and a smooth'®
function f: U — Y, where Y is an (n — k)-dimensional normed vector space, suchthat M N U = £71(0), and at
each p € M N U the derivative D f,, has maximal rank, thatisrank(Df,) = n — k.

We say that M is C* if we can choose f € CH(U,Y) where k € N U {oo}. Ifk = oo we say M is a smooth
submanifold of R".

Informally, this definition says that, locally (i.e. near any given point of M) the submanifold is given as the
level-set of n — k smooth functions (the components of f) which are not “tangent to each other” — this last re-
quirement being captured by the rank condition.

The Implicit Function Theorem allows us to relate this definition to the second method of understanding
surfaces discussed above, namely, via parametrizations. In the next theorem, for k < n we view R¥ as a subspace
of R” spanned by {ey, ..., e}

Theorem 4.3. Let M be a k-dimensional submanifold of an n-dimensional normed vector space X, and let p € M. Then
there is a direct sum decomposition X = X| ® Xo where dim(X) = k, dim(X») = n —k, and open neighbourhoods V and
U\ X U; of p and Ox respectively, where fori = 1,2, U; is an open subset of X;, and a diffeomorphismy: Uy X Uy —» V
suchthat M NV = (U X {Ox,}). In particular, '»0|U|><0x2 : Uy = M NV gives a parametrization of M N V.

Proof. By definition, there is an open set V| containing p and afunction f: V — R" ¥ suchthatVinM = {x € V :
f(x) = 0,—}, and rank(D f,) = n — k for all x € V. But then Theorem 3.22 shows that there is a diffeomorphism
Y: U — V C Vi,where U an open neighbourhood of 0, and V| C V is an open neighbourhood of p, such thatin
the coordinate system (71, ..., #,) givenby #; = x; 0 (//_1, the function fis given by (f¢+1, . . . , ;) (thatis, forv € V,
we have f(v) = (t1(v), . .., 1,(v))). Moreover, the functions (71, . . ., fy) parameterise the submanifold M on the
opensubset M N Vof M: if (t,...,4,0,...,0) € R¥ N U, and we setp(ty,..., 1) = Y(ty,...,1,0,...,0) then
o(t,....,t) EMNVandifue MNVthenu = d(t1,... 1) fort; = x; oy L.

O

16 At least continuously differentiable, but many texts automatically assume infinitely differentiable.
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Remark 4.4. The Implicit Function Theorem shows that, at least locally, a submanifold M can be viewed as the
graph of a C! function. To put it another way, let us define a k-dimensional subgraphold'” of a normed vector space
X to be a subset M C X such that, for any pointa € M, there is an open neighbourhood U of a together with a
decomposition X = X; ® X, with dim(X;) = k, and a functiony € C'(U N (a + X1), Vo) suchthat M N U = T(¥),
where I'(¥)) = {(v,y¥(v)) : v € U N (a + V1)}is the graph of . In this terminology, the previous discussion
shows that that any k-submanifold of X is a k-subgraphold. In fact the converse is also true: indeed, as we show
in Lemma 4.7 below,if V. = Vi@V, and ¢ € Cl(Q, V) for some open subset Q) C V| of V|, thenI'(¢), the graph
of ¢, is always a submanifold of V.

Thus the two notions — that of submanifold and subgraphold are equivalent, and we can use either local de-
scription to study submanifolds. One advantage of the definition in terms of level-sets is that it does not require
introducing an auxiliary decomposition of R" into a direct sum.

*Remark 4.5. Our definition of a k-dimensional sub-manifold M is a subset of a normed vector space X which
is locally given as a level-set for a C'-function f taking values in an (1 — k)-dimensional vector space Y for which
Df, has rank n — k. Theorem 4.3 shows that, if M is a submanifold, then M is locally given as the image of a C'-
map ¥ from an open subset V of a k-dimensional normed vector space Z, where Dy has rank k. This is, a priori
strictly weaker, since the domain V is not identified with an open subset of a subspace X of X in such a way that
the image of i takes values in a complementary subspace.

Nevertheless, it turns out to be true that if M C X is locally given as the image of an injective C'-map from
a suitable open subset V of a k-dimensional normed vector space Z whose derivative has rank k at each point of
V, then M is a sub-manifold in the sense of Definition 4.3: More precisely, if V C R¥ is an open subset of R* and
¥ € CY(V,R") we say that i is an immersion if rank(Dy,) = k for all p € V. The immersion criterion states that
a subset M C R”" is a k-submanifold in the sense of Definition 4.2 if, for every a € M there is a neighbourhood
U, of a, and an immersion ¢ € C!'(B(0, r), R") from an open ball of radius 7 > 0 centred at 0y € R¥ such that
Y(0r) = aand M N U, = im(y). For more details on this see Appendix 5.4.

Example 4.6. Suppose that g: R?2 - Ris given by g(x1,x2) = x1x2. Then Dg(y, »,) = (x2,x1) and hence
rank(Dg(x, x,)) = 1 unless (x1,x2) = (0,0). Then for all ¢ # 0, the level-sets L, = g~ '(c) are smooth 1-
submanifolds of R2, but Ly = g 10) = {(x,0) : x € R}U{(0,y) : y € R}, which is not smooth at the origin
(0, 0), exactly the point where Dg fails to have maximal rank.

On the other hand, if V; and V) are normed vector spaces and iy € C YU, Vy)isa continuously differentiable
function on an open subset U of V| taking values in V5, then if we set

W) ={v.y(v):velUlcV=V,@&V,,
then the following Lemma shows that I'() is always a submanifold of V.

Lemma 4.7. Let X, X, be finite-dimensional normed vector spaces, and suppose that y € C'(Q, X») is a continuously
differentiable function on an open subset Q of X| taking values in Xp. Then the graph T'(y) = {(v,¥(v)) : v € Q}isa
submanifold of X = X1 & X».

Proof. Butif welet g: Q| X X — X be given by g(vi,v2) = v — ¢(vy), then clearly g € Cl(Q) X X2, X2)
and (v1,v2) € I'(¢) if and only if g(vi,v2) = 0. Moreover, ifa = a; + a» € X ® X3, then Dg(4; u,)(V1,V2) =
—D¢y,(v1) + v2. Thus for any v € X5 and any a € Q) X X, we have Dg,(0,v2) = v, and hence the derivative
Dg (a4, ,ay) is surjective for alla € Q; X X5. Thus I'(¢) is a k-submanifold of R”, where k = dim(X}). O

Example 4.8. The simplest case of the previous Lemma is when V; = R" and V, = R, so that C'(U, V») =
C'(U,R) is just the space of real-valued continuously differntiable functions on an open subset U of R". If f is
such a function, we can then view I'(f) = {(x, f(x) : x € U} as a subset of R**! = R" @ R. Writing a point in
R as (x,y) where x € R" and y € R, we see immediately that ['(f) = {(x,y) € U X R : g(x,y) = 0 where
g(x,y) = y — f(x). Since Dg(y, f(x)) has Jacobian matrix (=81 f(x), ..., =0,f(x), 1), clearly Dg(, r(x), always has
rank 1, and so I'(f) is an n-submanifold of R"*!

The term is completely non-standard, and therefore, to honest, deliberately chosen to be clunky.
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Example 4.9. Suppose thatn € R3 is a unit vector and
C={xeR: X +x3 -3 =0(nx) =d).

Then C is a level set of the function f: R? — R? where f has components f;(x) = x% + x% - xg and f>o(x) =
(n,x)y = nix1 + naxy + n3x3: indeed C = £~1({(0, d)}). Now

2 2 -2
Dfx _ X1 X2 X3 )

ni ns n3

hence Df has rank 2 on the complement of the line R.(n1, 12, —n3). Ilf d = 0 then clearly 0 € C and D fj has rank
1, so we will suppose thatd # 0. But then it is easy to check the line R.(n|, n, —n3) does not intersect the level
set C, and hence D f has rank 2 at every point of C, and so C is a 1-dimensional submanifold of R3.

Suppose we wish to parameterize the curve C. The Implicit Function Theorem in the form of Theorem 3.22
shows that, atleast locally we can write it as the graph of any one of our coordinates x1, x2, x3. In fact, by rotating
around the x3-axis, we may assume thatn = (ny, 0, n3), and hence we may write n = (cos(¢), 0, sin(¢)) for some
0 € R. Then C is given by the system of equations:

K= a3 - xd = (x3 - X)) + x),

cos(¢)xy + sin(p)xz = d.
Ifcos(¢) = 0, itis easyto see that Cisjustoneof thecircles C.g = {(x1, X2, +d) : x%+x§ = d?},so assume cos(¢p) #
0. Moreover, if cos(¢) = sin(¢) then C is clearly a parabola with parametrization s — (d; + (s/2d, ), s,d; —

(s/2d,)?), where d; = dJ/ V2. Otherwise, writing £ = d/ cos(¢), we have x; = { — tan(¢)x3, and hence our

equations become
x5 = (1 +tan(g))x3 — O)((1 — tan(@))x3 + ) = (1 — tan(p)?)x3 + 2€ tan().x3 — £

Since ¢ = d/ cos(¢) # 0, then the quadratic on the right is non-negative on Iy = R\(-2,2) when tan(¢) < 1 and
non-negative on Iy = [2,2] when tan(¢) > 1. and hence writing 7 = tan(¢) we obtain a parameterization:

C={(l—ts, £\ —12).s2 +2tl.s — 2, 5) : 5 € Iy)
= {1 —t.5, 21 =252 + 215 — 1,5) : 5 € Ldy).

Thus we obtain ellipses or hyperbolas for tan(¢) > 1 andtan(¢) < 1 respectively. The signs which occur, as before,
are determined, for example, by choosing a point p € C around which we wish to obtain alocal parameterization.

Of course the Implicit Function Theorem can also be applied starting with different local coordinates at a
point p € C: Indeed it might, given the nature of f, be more sensible to start with the cylindrical polar coor-
dinates p(r,0,z) = (rcos(6), rsin(), z): In these coordinates the level-set C becomes {p € R : 2 -72 =

0, r cos(8) cos(¢) + zsin(¢) = d}, where p = p(r, 0,2) = (r(p), 0(p), z(p)).
Note that the derivative of f = (f1, f>) with respect to these coordinates is

b a 2r 0 -2z
Jroa =\ cos@)cos(@) —rsin@)cos(@) sin(d) )"

and so has rank 2 provided r # 0 and 6 # nm (when cos(¢) # 0),

The level set fi(p) = 01is thus parameterized by (s1, 52) — (851 cos(s2), 1 sin(sz), s1) € R3, or equivalently'®
(s1,82) — p(s1, $2, 51), for (s1, 52) € R2. Since the case cos(¢) = 01is equally easy to handle in this setting, we
assume cos(¢) # 0, and again set £ = d/ cos(d). We then find that C can be parameterized by s € R via

14

s = p(r(s), 0(s), z(s)) = p(tan(¢) + cos(s)” 5 (tan(¢) + cos(s)))'

Thus recovering the polar form for the equations of a parabola, ellipse or hyperbola. One can also determine the
differential equation the function g(s) = (#(s), z(s)) must satisfy, as we did in Example 3.2, which can be solved
in this case by separation of variables.

181f z < 0 then this shifts s, by 7 from the normal convention of 7 > 0.
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4.2 Tangent spaces and normal vectors

We now wish to define the notion of tangent vectors and normal vectors at a point in a submanifold of a finite-
dimensional inner product space E.

Definition 4.10. Let S be a subset of anormed vector space X andletp € S. Apathon S centred at p is a function
y € CY((-r,r), X), where r > 0, such that the image of y liesin § and y(0) = p. We write P(S, p) for the set of
all pathson § centred at p. Let T: P(S, p) — X be the map given by T'(y) = y’(0). The image of T is called the
tangent space to S at p and is denoted 7',S .

If V is an inner product space, we can also define 7, t=meX:(mvV=0VYve T,S }, the normal space to
S at p. This space is also sometimes denoted N,S .

Remark 4.11. Note that while the normal space N, X is by definition a linear subspace of X, the tangent space
need not in general be a linear subspace (see Example 4.16). Indeed since T, C (T),S )" = N,S* with equality
if and only if 7,S is itself a linear subspace of X. Thus N,S* is the smallest subspace of X containing 7,S, that
is, N,S * is the linear span of 7),S . We will shortly see that 7,S = N,S* when § is a submanifold.

Remark 4.12. Let X be anormed vector spaceand R € S C X be subsets. Forany p € RclearlyP(R, p) € (S, p)
and hence T,R C T),S.

Slightly less trivially, if p € § and U is an open subset containing p, thenT,(UNS) = T),S. SinceSNU C §,
by the above we see that 7,(U N §) C T,S. For the reverse inclusion, note thatif v € T),§ then we may pick a
pathy € P(S, p) with T(y) = v. Then y is continuous, so ¥~ ! (U) is an open neighbourhood of 0 (since y(0) = p)
and so contains an open interval of the form (—s, 5). Let y5 = y|—s.5). Thenys € P(S N U, p), and, since it is the
restriction of y to an open set containing 0. T'(yy) = (y,)’(0) = ¥'(0) = v,and hencev € T,(U N §).

Thus the tangent space 7),S of § at p is only sensitive to the nature of S near p. This simple observation,
along with the Chain Rule, gives us the following Lemma, which although easy to prove, will be the key tool in
calculating with tangent spaces.

Lemma 4.13. Let X and Y be a normed vector spaces and let U be an open subset of X and let S be an arbitrary subset of
X. Ify e CYU,Y),andp € UNS, thenif R C Y is such that y(U N S) C R, and g = Y(p), the derivative of  at p
induces a map

Dy,: TpS — TyR

Proof. Letv € T,S. By Remark 4.12, we may assume thatv = T(y)fory € P(X N U, p). Buttheny oy €
PW(UNS),b) CP(R,q),sothat T() oy) € TyR. But by the Chain Rule,

T(Woy) = oy)(0)=Dy(y'(0)) = Dyra(v),
so that Dy, (v) € T,R as required. O

Corollary 4.14. Let X and Y be normed vector spaces, U an open subset of X, and S any subset of X. Suppose that
W € C\(U,Y)and p € U N S. Then we have the following:

1. If Dy, is an invertible linear map, then Dy, gives a bijection between T,S and TR, where g = y(p) and R =
y(luns).

2. Ify(X) = qthen T,X C ker(Dyr),).

Proof. Since Dy, is invertible, the Inverse Function Theorem shows that ¢ induces a diffeomorphism from a
neighbourhood U; of p to Q, and open subset of W containing ¢ = ¢(p). But then if §: Q — U] is the in-
verse of ¢, by Lemma 4.13 applied to ¢ and 6, we have Dy ,,: T, X — T,Y and D6,: T,Y — T,X, and Dy, and
D@, are inverse, the result follows.

For the second part, Lemma 4.13 shows that Dy ,(T,X) € T,{g}. But clearly P({q}, g) consists of the constant
maps y which take the value g, and hence have derivative 0. It follows that 7;;({g}) = {0}, and hence that 7,X C
ker(Dyrp). O
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Example 4.15. If M is a k-submanifold of X, so that for any a € M we can find an open neighbourhood U of a
such that U N M = f~1(0) for some f € C'(U, R"*) for which Df;hasrankn — kfor all x € U. Using Example
4.12 and Corollary 4.14 part (2), we see that

T,M = T,(U N M) = T,(f(0)) C ker(Df,).

If X is a subset of V and U is a neighbourhood of a € X suchthatXNU = £71(0) for some f € C'(U,R™), the
containment 7,X C ker(Df),) can, in general, be strict. However, when M is a submanifold of R" locally defined
by the vanishing of f, then we will shortly see that T,M = ker(Df),).

Example 4.16. Consider Example 4.6 again, that is, let g: R> — R the continuously differentiable function
given by g(x1,x2) = x1.xp, and, forc € Rlet L, = {(x1,x2) € R? : x.xp = c}. Then Dg, .0 = (a2,a1),
which has maximal rank (i.e. rank 1) provided a = (aj,ay) # 0. Thus for any a # 0, if g(a) = ¢ Corollary 4.14
shows that T,(L;) C ker(Dg,) = {(x1,x2) : axx1 + a;x, = 0}, while ata = 0 we only get the trivial bound
ToLo C ker(Dgo) = R*. Infact you can check that T, L. = ker Dg, foralla # 0, while ata = 0, ToLg = Lo, giving
an example where the tangent space of a level-set is not a linear subspace.

Example 4.17. Now case where M = {x e R" : x; = 0,V[/ > k} and p = 0,. Then M is defined by the vanishing
of f(x) = (Xk+1,...,X,). Then itis clear that D fy has kernel given by spang{ey, ..., ex}. On the other hand, if
v = (V,..., v, 0,...,0), then y(f) = t.vliesin M, and y’(0) = v, hence we see that v € ToM if and only if
Dfy(v) = 0.

The above example along with the Implicit Function Theorem shows the following:

Proposition 4.18. Let M be a k-dimensional submanifold of R" and let p € M. Then if U is an open subset of R" such
that MO\ U = f~1(0), where f: U — R" ¥ is continuously differentiable with D f, of maximal rank for all x € U. Then
we have

T,M = ker(Df,).

In particular, T, M is a k-dimensional vector subspace.

Proof. We have already shown the containment 7,M C ker(Df),) in Corollary 4.14, so it remains to establish
the reverse inclusion. In the case where f = (X1, ..., X,) this was shown in the previous Example, but the
Implicit Function Theorem shows us that, for any point p € M, we can find a diffeomorphism ¢: V — U from
an open neighhourhood V of 0, to an open neighbourhood U of p taking N N Vto M N U where N = {x € U :
(Xk415 - -+ » Xp) = 0,_¢}. The result then follows from Lemma 4.13. O

Using the notion of gradient vector fields, we can also describe the normal space T, M~ of a k-dimensional
submanifold:

Proposition 4.19. Suppose that M is a k-dimensional submanifold and p € M. If U is an open neighbourhood of p such
that M N\ U is given by f~'(0) where f: U — R" X is a continuously differentiable function, then if f = (f1, ..., fuit)
we have

Tp,M* = spang(Vfi(p), ...,V fur(p)}.

In particular T\, M* is a vector space of dimension n — k.

Proof. By Proposition 4.18, the tangent space T,M = ker(Df)) is a k-dimensional subspace of R". Let f =
(fis---» fui) andlet N = spang{Vfi(p),..., Vfi—k(p)}, an (n — k)-dimensional subspace. Now the rows of the
Jacobian matrix of D), are given by V£i(p)T, so that

n—k
Dfy(v) = Y (VF(p) - vei

i=1

It follows that v € T, M if and only if v € N*. Thus 7,M = N* and hence N = T),M™" as required (since, for any
subspace W of an inner product space V we have (W+)* = W). o

38



Example 4.20. LetS = {(x[, X2, x3) € R3 : xf + 2x§ - 7x§ = 1}. Thenif f(x) = x% + 2x§ - 7x§, the surface S isa
level-set of f. Since Vf(x) = (2x1,4x3, —14x3), the function f has maximal rank (i.e. rank 1) everywhere except
0, and since 0 ¢ S, it follows that S is a 2-dimensional submanifold of R3. The tangent and normal spaces to §
atapointa = (aj, a2, a3) is then

T.,S ={v=1,m,v3) € R3: 2a1.vi +4ar.vy — 14az.v3 = 0},
TpSL ={A.Qa;,4ar,—14a3) : 1 € R}

Example 4.21. Let O,(R) = {X € Mat,(R) : X.XT = I,} be the orthogonal group, the group of linear isometries
of R” (equipped with the||.||>-norm). We claim this is a smooth submanifold of Mat,(R) of dimension n(n —1)/2.

Now the definition of O,(R) shows that it is a level-set of the function g(X) = X.X T which has entries which
are degree two polynomials in the entries of X. Thus g(X) is clearly continuously differentiable, and moreover
Dqx(H) = X.HT + HXT  since

gX+H)=X+H.X+H"=¢X)+HX" +XH" + HH",

and ||[H.H" |leo < ||H|loo-/IHT |0 so that ||H|[ZH.HT — 0as H — 0 (since clearly H' — 0as H — 0).

Now (X.XT)T = X X7, so the image of ¢ lies in the linear subspace S (R") of symmetric matrices in Mat,(R),
which is a subspace of dimension n(n + 1)/2. Thus it will follows that O, (R) is a submanifold of dimension
n(n — 1)/2 if we can show that Dqy is a surjective linear map from Mat,(R) to S (R"). Butif C € S then (CX)! =
XT.Cc = X71.C, so that

qu(%(C.X)) = %(C.X.XT +X.cx)h = %(C.In +1,.0)=C,

so that Dgq is surjective as required.

The group 0, (R) is thus what is known as a Lie group. Its tangent space at the identity I, is denoted by 0,(R).
Explicitly this isker(Dgj,) = {H € Mat,(R) : H + H T = 0). It carries a kind of non-associative product, called a
Liebracket: 1f Hy, H, € 0,(R) thenyou can checkthat[H}, H,] = HiH,—HH; € 0,(R). The Lie algebra structure
gives a kind of “infinitesimal” or deriviative of the group structure on O,(R). This is studied in detail in courses
in Part C.

Remark 4.22. Now that we have the language of tangent spaces and submanifolds, we can reinterpret the theory
of Lagrange multipliers in more geometric terms: if U is an open subset of a normed vector space X and f €
C'(U,Y) is a constraint function and we seek to minimize g(x) on thelocus C = {x € U : f(x) = 0}.

Ifa € C and Vg, has a non-trivial component in 7,C, then the same argument as the one used in Lemma
3.28 shows that a cannot be alocal minimum (one must use a path y centred ata lying on S which has T'(y) equal
to the projection of Vg, onto T,,C, but with this extra detail the same strategy works). It follows that a necessary
condition for a € C to be a local minimum is that Vg, is normal to C at a. Provided that D f has maximal rank
onC,if f = Zle fiow; for {wy, ..., wi} some basis of Y, then Proposition 4.19 shows that this is equivalent to
Vg, € Span{Vfi(a) : 1 <i < k}, and so we recover the theorem on Lagrange multipliers.

4.3 *Abstract Manifolds

Suppose that M is a k-dimensional submanifold of R". If V is an open neighbourhood of a point p € M, then
there is an open subset of R” with V. = M N U. Shrinking V and U is necessary, we can find a diffeomorphism
W B(0,r) = U suchthaty(VN (R¥®0,_1)) = M N U. if wewritey ™' (x) = (t1,...,t,), thenif f: MNU - R
is any function, we may define f: U — Rby

f(x) = fot,...,.1,0,...,0)).

If x € M N U then f(x) = f(x), so that f extends f to a function on U an open subset of R”. We then say that f
isC! at x € M N U if fis. Using the chain rule, one can check that this definition is independent of the choice of
diffeomorphism . In effect, f is differentiable at x € M N U if itis differentiable as a function of the parameters
(t1, ..., tx). Thus the crucial fact is that we can equip M, at least locally, with “C I_coordinates”.
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Thereis anotion of an abstract differentiable k-dimensional manifold: Thisis a topological space M, equipped
with a collection of “charts” {¢;: U; — V; : i € I}, where the collection {V; : i € I} forms an open cover of M (that
is, M = | J;¢; Viand each V;is an open subset of M) the U; are open subsets of R¥, and the ¢; are homeomorphisms.
The charts allow us to say when a function f: M — R is continuously differentiable: if x € M, we say f is
differentiable at x € M if f o ; is differentiable at L//l._l(x), where i € [is such that x € V,. In order for this
definition to be consistent, the charts must satisfy a compatibility condition: if x € V; N V| lies in the image of
two charts i/; and ¢ ; we need f o y; to be differentiable at wi_l(x) ifand onlyif foy;isC Fat :,l/]_.l (x). But by the
chain rule, this follows if 1,0;1 oy;: UiNU; — U;N Ujis diffeomorphism, and this is exactly the compatibility
condition which is imposed. Abstract differentiable manifolds are studied in the Part C course ”Differentiable
Manifolds”.
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5 Appendix

5.1 Notation: 0o and O

Definition 5.1. Let X and Y be normed vector spaces. Let N(X, Y) be the vector space of functions f: D —
Y whose domain of definition D C X is a neighbourhood of Ox and let Ny(X, Y) be the subspace of N(X, Y)
consisting of those functions f € N(X,Y) which are continuous at Oy and satisfy f(Ox) = Oy. Note that if
f: Dy — Yand fo: Dy — Y, then their sum f] + f is only defined on D; N Dy, but this is still a neighbourhood
of Ox, so that N(X, Y) is indeed a vector space. In fact, the same observation shows that if c € N(X,R) and
feNX Y)thenc.f e N(X,Y),andif f € No(X,Y) soisc.f.

If g is a non-negative function in N(, R) then we will write Oy(g) for the subspace of N(X, Y) consisting of
those functions f: D — Y for which there exists a constant C > 0 and an open ball B(Ox, r) C D such that

lfoll < C.g(x),  Vx € B0y, ).

Note thatif g € No(X, R) it follows that f € Ny(X, W) also, thatisif g € Ny(X, R) the Ow(g) € No(X, ).

Similarly we write oy(g) for the subspace of N(X, Y) consisting of those functions f: D — Y for which, given
any € > 0, there is some ¢ > 0 such that for all x € B(0x, d) we have || f(x)|| < €.g(x). If g is non-vanishing in a
neighbourhood of Ox (except perhaps at Oy itself) then this is equivalent to the condition that

lim IFll _ 0
=0y g(x)

Notice that, again assuming g is non-vanishing on B(Ox, r)\{Ox} for some r > 0, if we set fi(x) = g(x)L.f(x) for
x # 0and f1(0x) = Oy, then by assumption f; defines an element of Ny(V, W), so that we may equivalently view
oy(g) = g No(V. W).

By a standard abuse of notation, we will write fi(x) = f2(x) + oy(g) to mean fi(x) — f2(x) € oy(g), and
similarly for fi(x) = f>(x) + O(g). Note that if the target space Y is clear from the context, we will omit the
subscript W and simply write o(g) or O(g).

Remark 5.2. Note that the functions in Oy(g) can, informally, be considered as those functions f(x) for which
f(x) = Oy as x — Oy “at the same rate” as g(x) — 0, while the functions in ow(g) tend to Oy “faster” than g
tends to 0.

The easiest case to consider here is if g is continuous and g(0) > 0. Then, by continuity, 0 < g(0)/2 < g(x) <
3g(0)/2 on some small ball B(Ox, r) say, and hence f € Oy(g) precisely if it is bounded near Ox, while f € oy(g)
precisely when f(x) — Oy as x — Ox.
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5.2 *Multilinear maps and higher derivatives

In this section we describe how one can understand the higher derivatives of a function f: U — W without
partial derivatives. The main point is to obtain a better understanding of the space in which DX f takes values
when k > 1. Example 2.37 shows how the space L(V, L(V,R)) is equivalent to the space Bil(V, R) of bilinear
forms on V, thatis functions B: V X V — R which are linear in each factor.

There is a similar way to describe the vector space of functions in which the higher derivatives DX f for k > 2
take values. The key point here is quite general:

Lemma 5.3. Let X, Y and Z be sets, and write F (X, Y) for the set of all functions from X to Y. Then there is a bijection
0: FX,F(Y,2)) > F(X X Y,Z) givenby 0(f)(x,y) = f(x)(y), forallx € X,y € Y.

Proof. Thisis trivial to check—theinversemapé: F(XXY,Z) — F(X, F(Y,Z)is givenby £(g)(x) = [y — g(x,y)],
forallxe X,y e Y. a

Write VK = V x ... x V for the Cartesian product of V with itself k times, and let M*(V, W) be the space of
k-multilinear functions on V taking values in W:

MV, W) = {f: VF > W: f(v1,...,w)islinearin each v;, 1 <i <k}

Example 5.4. Ifk = 1 then M!(V, W) is just the space of linear maps £(V, W). The space M?(V,R) is just the
space Bil(V, R) of bilinear forms on V. The determinant function, viewed as a function on the column vectors of
an 7 X n matrix, is an element of M"*(R", R).

Lemma 5.5. Let V and W be finite dimensional normed vector spaces. For each k > 1 there is a natural isomorphism
O : LV, MYV, W)) — MKV, W), and henceif f: U — W is a function on an open subset U of V which is k-times
differentiable, we may view DX f as a function from U to MF(V, W).

Proof. TakingX = V,Y = V&land Z = Win Lemma 5.3, you can check that the map 6 in the proof of the Lemma
restricts to give the required isomorphism 6. The final part of the Lemma then follows by induction on k. O

Thus we see that the higher derivatives DX f can be viewed as functions on U taking values in M*(V, W),
the space of k-multilinear functions on V taking values in W. Arguing essentially as we do in Example 2.37, it is
possible to check that, if {wy, ..., w,,}isabasis of W,and we write f = 3", fiw;, sothatthe f; are the components
of f,and {ey,...,e,}is as before the basis of V, then

Dkﬁ(ejp s ’ejk) = adﬁa

where @ = (ji, Ji-15- -5 J1)-

Proposition 5.6. Let V, W be normed vector spaces, let U be an open subset of V, and let f: U — W. Then [ €
CK(V, W) if and only if the higher total derivative

Df*: U - MKV, W)

exists and is continuous. Moreover f is smooth if and only if all of the higher total derivatives D f* exist.

5.3 *Symmetries of higher derivatives

The multivariable calculus result on the symmetry of the mixed partial derivatives is just the statement that the
Hessian matrix of D? f is symmetric which implies that D?f;, is a symmetric bilinear form, thus the symmetry of
mixed partial derivatives can be reinterpreted in a coordinate-free way, namely that D? fa(vi, ) = D? Ja(n2,v1)
for all v, v, € V. An advantage of this formulation is that the famous “symmetry of mixed partial derivatives”
obtains a natural invariant formulation, and moreover the symmetry holds as soon as the “total” second deriva-
tive exists, which is a weaker hypothesis than the classical one (which requires all second partial derivatives to
exist and be continuous'?).

We first need the following a simple Lemma. It is the analogue of the fact that, if @: V — R s a linear
functional, and @ = o(||x||) then @ = 0, as one readily sees by considering the operator norm of a.

This is, unsurprisingly, reminiscent of the relationship between the total derivative and continuity of the partial derivatives.
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Lemma 5.7. Supposethat3: V X V — Ris a bilinear map and suppose that B(v, w) = o((||v|| + Iwl))?). Then 3 = 0.

Proof. Since s bilinear, it suffices to show that S(vy,vy) = O for any vy, vy € V with ||[v(|| = [[v2|| = 1. Thus we
fix unit vectors vy, v, € V. Butnow, for s € R,
B(svy, sv2) s?Bvi,va) 1
5 = 7 = 7B, v).
(lsvall + [lsv2ll) (2s) 4

while (|lsvi]| + [Isv2]])?> = 45> — 0as s — 0. Thus if B(v1,vy) is o(|IvilI? + |[vall*) we must have B(vi,v;) = O as
required. O

The previous Lemma is the key to proving that D? f, is a symmetric bilinear form. (In examining the proof of
the next result, it may be worth noting that the linear analogue of the previous Lemma is one way to see that the
derivative D f, is unique).

Proposition 5.8. Let U be an open subset of a normed vector space V. If f: U — R is twice differentiable ata € U,
then viewing sz as a bilinear form on V we have sza(vl ,Vp) = sza(vz, V1).

Proof. Note that, in order for D f to be defined, we must have f differentiable in a neighbourhood of @, and D f
is continuous at a since it is differentiable at a.
Fix r > O such that B = B(a,r) C U such that Df is defined for all x € B(a,r). Consider the function
A: BX B — Rgivenby
A(h, k)= fla+h+k)— fla+h)— fla+k)+ f(a).

Note that A has the virtue of being symmetric, thatis A(h, k) = A(k, h), but, unlike D?f(h, k) itis not bilinear in &
and k. The idea of the proofis to compare the two when (%, k) € V@V is very small. Thus, fixing A for the moment,
consider

Ji(k) = A(h, k) — D* f,(h, k)

Now, noting J1(0) = 0, and writing i,,(D?f,) for the linear functional k — D?f,(h, k), we can apply the Mean
Value Inequality 2.24 to J to obtain

I GO < Nkl sup 1D farnsk = D furik = in(D* fa)lloo (5.1)

0<<1

Now as Df is differentiable at a, we may write
Dfassk = Dfa + in(D? fo) + lltkller (tk),
D fushsik = Dfa + ineie(D fo) + Il + thller (h + k).
where €;(x) — 0as x — 0. Hence we see that
Dfuinsik = Dfast = in(D” fo) = |Ih + tkller (h + tk) — ||tk |€) (1k).

so that, in particular, if welet €;(h, k) = sup{lle;(s.h+1.k)|| : 0 < s, < 1}, then ey (h, k) = e(k, h) and e2(h, k) — 0
as (h,k) —» Oand
ID fasnstk = Dfasae — in(D> Nl < (1Rl + |IKID-€2(h, k).

Thus returning to the inequality (5.1), we see that
171l = ACk, k) = D () < 1IkI(l] + 11k €2(R, K).

But carrying out the same analysis for Jo(k) = A(k, h) — D2f(k, h) we see that ||A(k, h) — sz(k, I < ARl +
[|k]]).€2(k, i), and hence if we let
B(h, k) = D fu(h, k) = D* fu(k, h),

we see that 5 is a bilinear form which, by the symmetry of A(h, k), satisfies:
1BCh. kIl < D? fu(h, k) — A(h, k)| + |AGk, h) — D* futk, ]| < (lAll + Ikl €(h, k). (5.2)
But now Lemma 5.2 shows that 8 = 0 and hence D?f,, is symmetric as required. O

Remark 5.9. Usinginduction, itis straight-forward to use the previous Theorem to see that, whenever they exist,
the higher derivatives D* f, as symmetric k-multilinear forms.
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5.4 *Theimmersion criterion for a submanifold

For completeness, we include here a proof of the equivalence of the definition of a submanifold given in Remark
4.5 with that given in Definition 4.2. In fact we prove something slightly stronger, giving a condition for the image
of an injective immersion to yield a submanifold.

Proposition 5.10. Let V be a n-dimensional normed vector space, and let Oy denote the origin in R¥. Suppose that
M C V issuch that, for some a € M, there exists

e an open neighbourhood U, of a;
e an injective function y € C Y(B(O, R), V) whose derivative Dy, is injective for every x € B(O, R);
o anr € (0, R) such that y(B(Og,1),0;) = (U N M, a).

Then M N U, is a k-dimensional submanifold of V, and hence if the above conditions hold for alla € M then M is a
submanifold of V.

Proof. 1f suffices to show that ¥(B(0, r)) is a k-submanifold of V. Suppose p € ¥(B(O, r)). Then since ¥ is injec-
tive, there is a unique ¢ € B(0x, r) such that y/(q) = p. Let V| = im(Dy,), and pick a complementary subspace
Voof ViinV,sothatV = V| @ V,. Letip: V, — V denote the inclusion map. Let ¢ € CH(B(O, r) X Va, V) be
given by ¢(x, v) = ¥(x) + i2(v). Since i> is a linear map, Dg4.0) = D¢, + iz, and hence Dy, o) is an isomorphism.
The inverse function theorem then shows that there is an open neighbourhood U, of ¢(¢,0) = p and an open
neighbourhood Q X Q) € B(0,r) X V, of (¢, 0) such that ¢ restricts to a diffeomorphism from (Q X €3, (¢, 0))
to (U, p). Butnow if 8 € CI(UP, R¥ x V) is the inverse of ¢j0,xq,, and we write § = 6; @ 6, as the sum of its
components in R¥ and V, respectively, so that 6, € C! (Up, Va),itiseasytosee M N U, = 051 (0), and that that
D6, ,, = mp, where mp: V — V) is the projection map with kernel V. It follows immediately that D6 , has rank
dim(V3) = n — k, and hence, since p was arbitrary, that (B(0g, r)) is a k-submanifold as required. O
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5.5 *Normed vector spaces: duals and quotients
5.5.1 Bounded linear functionals

In Theorem 2.24, we assumed the differentiable function f: U — Y was a map between inner product spaces.
In fact the proof only requires that Y is an inner products space: the goal of the theorem is to bound the length
of avectory € Y (where in the theoremy = f(z2) — f(z1)). The functional §,: ¥ — R given by 6,(x) = (y, x),
i.e. taking the inner product with y, allows us to map our problem in ¥ to the real line in such a way that ¢, never
increases the length of a vector (thatis |6,(z)| < ||z]| is length preserving for vectors parallel to y, thus any bound
we can calculate such as 6(v) < d(z) immediately implies that ||[v|| < ||z]|.

Thus to use the same strategy of proof for an arbitrary normed vector space Y, one would need, for any vector
z € Y, alinear functional : ¥ — R with the property that ||17]lcc = 1 and 7(z) = ||z||. In fact, as we now show,
one can prove that such functionals always exist for any normed vector space. Indeed if you have a functional
n: Z — R defined on a subspace Z of Y, then we say that a functional §: ¥ — R is a norm-preserving extension
of if 6(z) = n(z) forallz € Z and ||0ll = [|7lleo- If we take Z = R.z and 5 the linear functional defined by
1(z) = ||zll, then if § is a norm preserving extension of 77 it has the properties we required above. The next Lemma
shows that norm-preserving extensions always exist when Y is finite-dimensional*®

Lemma 5.11. Suppose that X is a finite-dimensional normed vector space and Z is a subspace of X. If nz: Z — Risa
linear functional on Z, then there is a functional 6 : X — R which satisfies 5(z) = 1(2) for all z € Z. In other words 1 can
be extended to a linear functional on X without increasing the operator norm.

Proof. We use induction onn = dim(X). If dim(V) = 1, then its only subspaces are {0} and itself, and in each case
the resultis trivial. If dim(V) = n > 1 and Z < X is a subspace, then if Z = X there is nothing to prove, while if
Z < X, we may find a hyperplane H with Z < H < V, and by induction, there is a norm-preserving extension of
¢ to H, hence replacing Z with H if necessary, we may assume Z is codimension 1 in X.

Rescaling 7 if necessary, we may assume that ||7|l = 1. Picku € X\Z, so that X = Span{Z,u} = Z ® R.u.
Any d: X — R which restricts to 17 on Z is then determined by its value on u, say 6(#) = A, and the condition that
ll6]lec = 11is

6z +tu) =n)+tA <|lz+tull, YieR,zeZ

This is automatic if t = 0, while if # # 0, we may divide through by it to see that our condition is equivalent to
n(z) + A| < ||z + ul|forallz € Z.

Rearranging, this becomes A € I, for every z € Z, where I, = [—||z + ul| — n(2), ||z + u|| — n(z)]. Thus we need
the intersection of the closed intervals I, over all 7 € Z to be non-empty. But this follows precisely when, for any
21,22 € Z, the lower end-point of I, is always at most the upper limit of /;,, thatis, if and only if for allz1,zp € Z
we have

—llz1 + ull = n(z1) < llza + ull = n(z2)

Butthisisjustd(za—2z1) < |lz1+ul|+||z2+ul|, and since phasnorm 1 we have [n(z2—z1)| < llz2—z1ll < l|lza+ul|+||z1 +ul|
as required. O

5.5.2 Quotients and normed vector spaces

If (V,]|.|l) is a normed vector space, then any linear subspace F clearly inherits the structure of a normed vector
space: the norm ||.|| restricts to a norm on F. A somewhat more delicate question is whether the quotient vector
space V/F inherits a norm. The first question is to decide what the notion of a norm on V/F should be? A natural
suggestion is to consider how close the affine subspace x + U comes to the origin in V. This leads to the definition
of the function

x+ F e inf{||lx+v|:veF}.

20The result (if you believe in the axiom of choice) holds for arbitrary normed vector spaces, and is called the Hahn-Banach theorem. It
is important because it is a basic tool allowing one to build bounded linear functional having desirable properties.
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Notice that while we might expect there to be a “closest point” on x + F to the origin?, it is not necessary to
determine whether or not thatisindeed the case in order to check this gives anorm on V/ F, provided the subspace
Fis aclosed subsetof V.

Lemma 5.12. Let X be a normed vector space and let F be a closed subspace, that is, a linear subspace which is also a
closed subset of X. The the quotient vector space X/ F inherits a norm:

[lx + F|| ;= inf{||x + ul| : u € F}.
Moreover, the quotient map q: X — X/ F is bounded, with ||g|lc < 1.

Proof. For any x € X we have ||x + F|| = inf,cF ||x — u|| = 0if and only if x is a limit point of F, thus since F is
closed [|x + F|| > O for all x with equality if and only if x + F' = 0 + F. Now suppose that 4 € R. If 4 = 0 then
[[4.x + F|| = |A].]|x + F|| = 0, whileif 2 # O,

lA.x + F|| = inf ||A.x + ul| = inf |AL.]lx + A7 ul| = |4 inf ||x + w1]] = |AL]1x + F]|
ueF uceF u eF

For the triangle inequality, suppose x + F,y + F' € V/F. By the approximation property, for any € > 0, we may
finduy,up € Fsuchthat||x+ F|| < ||x+u|| < |lx+ F|| + €, and |[y + F|| < |[ly + u2|| < |[y + F|| + €. But then since
u1 + up € F, by definition we have

I(x+y) + Fll < [I(x + ) + (uy + w)l| = [I(x + u1) + (v + up)|
<l +urll+lly + w2l < dlx + Fll + € + (ly + Fll + €
=[x+ Fll +lly + Fll + 2€,

and since this holds for any € > 0, it follows that ||(x + y) + F|| < ||x + F|| + |[y + F]|, as required. Since [|g(x)|| =
infep ||x + ul| < ||lx + O] = ||x]| we have ||g||cc < 1, which completes the proof. O

The quotient construction for normed vector spaces in fact gives another approach to Theorem 1.17, as we now
show: The key point is that, proving the statement by induction on dimension, it follows by the same argument
used to prove Corollary 1.18 that subspaces of a finite-dimensional vector space are necessarily closed, hence any
quotient is again a normed vector space.

Proposition 5.13. Let V and W be normed vector spaces and suppose that dim(V) < oo. Then any linearmap a: V —
W is automatically bounded, that is B(V, W) = L(V, W).

Proof. We use induction dim(V)). In the case dim(V) = 1, pick a vector e € V of norm 1. Then for any v € V, we
have v = %||v||.e and hence ||a(v)|| = |[a(e)l.|[V|], so that||@|lc = |la(e)], and @ is bounded as required.

Nextnote that, for any given finite-dimensional vector space V, the statement of the proposition follows from
the case W = R, i.e. where @ € V*is a linear functional. Indeed if dim(V) = n then dim(a(V)) = m < n, hence
we can pick a basis {wi, w2, ..., w,} of a(V),and if, forv € Vwe definea;: V — Rby a(v) = 37| i(v).w;, then

the functions «@; are linear. and « is continuous if each ¢; is. Indeed

lle)Il < Z (W] lIwill < (Z ”a'i”oo-HWiH) [Ivll.

i=1 i=1

where the second inequality follows from the definition of the operator norm.

Now suppose that n = dim(V) > 1, and that, by induction, we know any linear map whose domain is a
normed vector space of dimension less than # must be bounded. Let U < V be a subspace of V of dimension
k < n. Picking a basis {uy, ..., ux} of U defines a linear isomorphism ¢: R¥ — U whereif x = (x1,...,x;) € RF
then ¢(x) = Zé‘:l x;u;. By our inductive hypothesis, ¢ is a topological isomorphism, and hence since R* (viewed
as a normed vector space using the ||.|[ norm) is complete, so is** U. It follows that U must therefore be closed
inV.

2This is always true if F is finite-dimensional, but is in fact not necessarily the case when F is infinite-dimensional.
22Note that while completeness is not invariant under homeomorphism, continuous linear maps are Lipschitz continuous, and Lips-
chitz continuous functions preserve Cauchy sequences.
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Butnow the fact thatanylinear functional @ € V* is continuous follows from the 1-dimensional case together
with Lemma 5.12: Indeed if @ is zero, it is trivially continuous, and if @ # 0 then H = ker(@)is (n— 1)-dimensional
subspace of V, and hence as noted above H is closed. But then by Lemma 5.12, the norm on V induces one on
V/H and the quotient map g: V — V/H has operator norm ||¢g|lcc < 1. But the functional @ can be written as
the composition @ = & o g, where @: V/H — R is the injective linear map induced by @ on V/H. But since
dim(V/H) = 1 we know @ is bounded, and hence by the submultiplicativity of the operator norm, « is bounded
as required. O

Remark 5.14. This proposition shows that the topology 7~ induced by any norm on a finite dimensional vector
space is independent of the choice of norm. In fact, with a bit more thought it follows that this topology is deter-
mined by the linear functionals on V: itis the topology generated by the condition that every linear functional on
V is continuous.
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