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Index of Notation

B(a, r) the open ball of radius f centred at a.

B̄(a, r) the closed ball of radius r centred at a.

B(X,Y) the space of bounded linear maps β : X → Y between normed vector spaces X and Y .

BX the closed ball B̄(0X , 1) of radius 1 centred at 0X in a normed vector space X.

Ck(U,Y) for k anon-negative integer this is the space of continuous functions f : U → Y definedonanopen
subset U of a normed vector space X taking values in a normed vector space Y which are k times
continuously differentiable.

C∞(U,Y) the space of infinitely differentiable functions on an open subset U of a normed vector space X
taking values in a normed vector space Y .

L(V,W) the space of linear maps α : V → W between vector spaces V and W .

Matm,n(R) the space of n × m matrices with entries inR.

Matn(R) the space of n × n matrices with entries inR.

0X the zero vector in a vector space X. If V = Rn wewrite 0n in place of 0Rn , and if the vector space in
question is clear from the context we suppress the subscript and write 0 rather than 0X .

OY (‖x‖) the spaceof functions f definedonaneighbourhoodof0X in anormedvector spaceX takingvalues
inanormedvector spaceY with theproperty that there exist constantsC, r > 0 such that ‖ f (x)‖

‖x‖ ≤ C
for all x ∈ B(0X , r).

oY (‖x‖) the spaceof functions f definedonaneighbourhoodof0X in anormedvector spaceX takingvalues
in a normed vector space Y with the property that limx→0

‖ f (x)‖
‖x‖ = 0.

(U, a) a pointed set, i.e. U is a set and a ∈ U is an element of U .

Course Outline

• Definition of a derivative of a function fromRn toRm; examples; elementary properties; partial derivatives;
the chain rule; the gradient of a function from Rn to R; Jacobian. Continuous partial derivatives imply
differentiability. Mean Value Theorems. [3 lectures]

• The Inverse Function Theorem and the Implicit Function Theorem (proofs are non-examinable). [2 lec-
tures]

• The definition of a submanifold of Rn. Its tangent and normal space at a point, examples, including two-
dimensional surfaces inR3. [2 lectures]

• Lagrangemultipliers. [1 lecture]
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1 Review from A1: Linearmaps and continuity

Everything in sections §1.1 and §1.2 apart from Definition 1.10 is covered in the Metric Spaces part of the A.1 core course.
The only significant new result is proved in section §1.3: Theorem 1.17 shows that a linear map between normed vector
spaces whose domain is finite-dimensional is automatically continuous.

1.1 Normed vector spaces

Before discussing the notion of differentiability for functions of many (real) variables, we begin by reviewing the
relationship between the conditions of continuity and linearity for functions, in the natural context where both
notions are defined, namely that of normed vector spaces.

Definition 1.1. Anormedvector space (X, ‖.‖) is apair consistingof a real1 vector spaceX anda function ‖.‖ : X →
Rwhich satisfies, for all v,w ∈ X and λ ∈ R:

1. ‖v‖ ≥ 0 with equality if and only if v = 0. (Positivity.)

2. ‖λ.v‖ = |λ|.‖v‖. (Homogeneity.)

3. ‖v + w‖ ≤ ‖v‖ + ‖w‖. (Triangle inequality.)

We write 0X for the zero vector in X (or simply 0 if there is no possibility for confusion). Taking λ = 0 in (2) we
see that ‖0X‖ = 0 and thus by (2) and (3) wemust have

0 = ‖0X‖ ≤ ‖v‖ + ‖ − v‖ = 2‖v‖.

Hence (2) and (3) in fact imply the inequality in (1), however the implication ‖v‖ = 0 =⇒ v = 0 does not follow
from (2) and (3). A normed vector space is automatically a metric space, where the distance between v1, v2 ∈ V
is defined to be ‖v1 − v2‖.

Remark 1.2. Wewill normally write ‖.‖ for the norm on an arbitrary vector space, as it will be clear from context
which vector space is in question. When there might be ambiguity2, such as when we consider more than one
norm on the same vector space, we will decorate the normwith a subscript, e.g. ‖.‖X or ‖.‖1.

We will largely follow the notational conventions of the Metric Spaces and Complex Analysis course, and
write, for example, for a ∈ X and r ≥ 0

B(a, r) = {x ∈ X : ‖x − a‖ < r}, B̄(a, r) = {x ∈ X : ‖x − a‖ ≤ r},

for the open and closed balls respectively about a of radius r. Note that in a normed vector space, unlike in a
general metric space, if r > 0 then the closed ball B̄(a, r) is always the closure B(a, r) of B(a, r). WhenV = Rn we
will write 0n in place of 0Rn .

Wewill alsowriteBX for the closed ball B̄(0X , 1) and S X = {v ∈ X : ‖v‖ = 1} for its boundary, the unit sphere
centred at 0X .

Recall that if X is a normed vector space and a ∈ X we say that a subsetU ⊆ X is a neighbourhood of a if there
is some r > 0 such that the open ball B(a, r) of radius r centred at a is contained in U . We say U is open if it is a
neighbourhood of each of its points, that is, for every x ∈ U there is some rx > 0 such that Bxrx ⊆ U .

Example 1.3. If X is one-dimensional, it is easy to understand all possible norms on X. Indeed if we pick e1 ∈
X\{0}, then for any v ∈ X there is a unique λ ∈ R such that v = λ.e1. Now if f : X → R≥0 is homogeneous, so that
f (t.v) = |t|. f (v) for all t ∈ R, then f (v) = |λ|. f (e1). Since it is easy to check that the absolute-value function t 7→ |t|
onR is a norm, it follows from the formula f (v) = |λ| f (e1) that f is a normon X provided f is not identically zero.
Since any norm on X necessarily satisfies the homogeneity condition, it follows that any norm ‖.‖ on X has the
form ‖v‖ = c.|λ| for c > 0 a positive real number (where, as above, v = λ.e1).

1In fact one justneeds afieldwitha sensiblenotionof “absolute value”– for example the complexnumbers equippedwith themodulus
function.

2If you find an ambiguity I havemissed, please let me know.

3



If dim(X) > 1 – indeed even for dim(X) = 2 – one cannot give such an explicit classification of all possible
norms3, butwewill shortly see that, for finite dimensional vector spaces, all norms are equivalent in a sensewhich
immediately implies they all yield the same notion of convergence, continuity, and uniform continuity.

Example 1.4. Let X = Rn. Then there are many norms which are natural to consider. Perhaps the three most
commonly used ones are the following: For v = (v1, . . . , vn) ∈ Rn, we set

‖v‖∞ = max
1≤i≤n

|xi|,

‖v‖1 =
n∑

i=1

|xi|

‖v‖2 =
 n∑

i=1

x2
i

1/2

Where it is important to emphasize which normwe are using onRn, wewill write ℓn
† for the normed vector space

(Rn, ‖.‖†) (where † ∈ {1, 2,∞}).

Example 1.5. The normed vector space ℓn
2 is an example of an inner product space, meaning that the norm comes

fromapositive definite symmetric bilinear form (or inner product): if x, y ∈ Rn, then thepairing 〈x, y〉 = ∑n
i=1 xiyi

(the standard “dot product”) is such a form and ‖x‖ = 〈x, x〉1/2. Inner product spaces have both a notion of
distance and angle.

If X and Y are are finite-dimensional inner product spaces, and we write 〈v1, v2〉X denote the inner product
on X and 〈w1,w2〉Y the inner product on Y , then, as in A0 Linear Algebra, for any T ∈ L(X,Y), there is a unique
T ∗ ∈ L(Y, X) such that

〈T (v),w〉Y = 〈v,T ∗(w)〉X , ∀v ∈ X,w ∈ Y. (†)

Indeed if one picks orthonormal bases BX and BY for X and Y respectively, then applying (†) to the elements
of BX and BY shows that if T hasmatrix Awith respect to these bases then T ∗must havematrix At. On the other
hand it is easy to see using bilinearity (“multiplying out”) that if T ∗ satisfies (†) for v ∈ BX and w ∈ BY then it
satisfies (†) for all v ∈ X and w ∈ Y , thus T ∗ is just the linear map corresponding to the matrix At and the bases
BX , BY . Notice that this also shows tr(T ) = tr(T ∗) since the trace of a matrix is equal to that of its transpose.

When X and Y are inner product spaces, we canmakeL := L(X,Y)) into an inner product spaces by setting

〈S 1, S 2〉L = trX(S ∗1S 2) = trY (S ∗2S 1), ∀S 1, S 2 ∈ L(X,Y)

where the second equality holds because (S ∗1S 2)∗ = S ∗2(S ∗1)∗ = S ∗2S 1 and since, as noted above, for any T ∈
L(X,Y) we have tr(T ∗) = tr(T ), this is a symmetric bilinear form.

If we pick orthonormal bases BX = {b1, . . . , bn} and BY = {c1, . . . cm} of X and Y respectively, then if A =
(ai j) = BY [S ]BX is the matrix of S with respect to these bases, we have ai j = 〈ci, S (b j)〉Y , and hence

〈S , S 〉L = tr(AtA) =
∑

1≤k≤n
1≤ j≤m

at
k ja jk =

∑
1≤k≤n
1≤ j≤m

a2
jk

hence 〈S ,T 〉L is positive definite – indeed it follows thatLhas anorthonormal basis consistingof the linearmaps
corresponding to theelemenarymatrices {Ei j}1≤i, j≤n. TheassociatednormonL(X,Y) is called theHilbert-Schmidt
norm, ‖S ‖HS = 〈S , S 〉1/2L .

3Giving a norm ‖.‖ on Rn is equivalent to giving the set B‖.‖ = {v ∈ V : ‖v‖ ≤ 1} of vectors in its closed unit ball. Such a set B‖.‖ must
be closed and bounded (both with respect to the Euclidean metric), convex, and preserved by the map x 7→ −x, but otherwise can be
arbitrary.
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1.2 Bounded linearmaps

Definition 1.6. If X and Y are vector spaces, wewriteL(X,Y) for the vector space of all linearmaps from X to Y .
If X = Y thenwewrite IX for the identitymap from X to itself. (In the case where X = Rn wewill usually write In

rather than IRn .)
If we pick bases BX = {e1, . . . , en} of X and BY = { f1, . . . , fm} of Y respectively, then we can identifyL(X,Y)

with Matm,n(R) the space of n-by-m matrices where if α ∈ L(X,Y) the α 7→ A = (ai j) with α(e j) =
∑m

i=1 ai j fi. If
dim(X) = dim(Y) = n, then wewrite Matn(R) instead of Matn,n(R).

Definition 1.7. A linear map T : X → Y is said to be bounded if there is some constantC > 0 such that

‖T (x)‖ ≤ C.‖x‖, ∀x ∈ X.

We will write B(X,Y) for the set of bounded linear maps from X to Y . Note that, for x , 0, this condition is
equivalent to ‖T ( x

‖x‖ )‖≤ C, thus T is bounded if and only if ‖T (x)‖ is bounded on B̄(0X , 1).

Exercise 1.8. In Problem Sheet 1, you are asked to show that a linear map T ∈ L(X,Y) is bounded if and only if
it takes bounded subsets of X to bounded subsets of Y .

Bounded linearmaps are clearly continuous, indeed Lipschitz continuous: ifC is an upper bound forT : X →
Y on B̄(0X , 1) then if x1, x2 ∈ X then ‖T (x1) − T (x2)‖ = ‖T (x1 − x2)‖ ≤ C.‖x1 − x2‖, so that T is Lipschitz con-
tinuous with Lipschitz constant C. The following Lemma refines this observation slightly, using the notational
conventions described in §5.1 of the Appendix.

Lemma 1.9. Let X and Y be normed vector spaces. Then ifC0(X,Y) denotes the space of continuous functions from X to
Y we have

B(X,Y) = OY (‖v‖) ∩ L(X,Y) = C0(X,Y) ∩ L(X,Y) = N0(X,Y) ∩ L(X,Y)

In particular,B(X,Y) is a vector space.

Proof. If T : X → Y is bounded then it is clear from the definition that it lies inOY (‖.‖), andwe have already seen
above that it must be continuous. Since continuity implies continuity at 0X , to complete the proof it suffices to
show that if T is continuous at 0X , then it is bounded. But if T is continuous at 0X , then there is a δ > 0 such
that ‖T (v)‖ < 1 for all v ∈ B(0X , δ). But then for any v ∈ X with ‖v‖ ≤ 1, we have (1/2δ).v ∈ B(0X , δ) so that
‖T ((δ/2).v)‖ ≤ 1, and hence for all v ∈ V with ‖v‖ ≤ 1 we have ‖T (v)‖ ≤ 2/δ, that is, T is bounded. □

Definition 1.10. The space of bounded linear mapsB(X,Y) is a normed vector space, with the norm, known as
the operator norm given by T 7→ ‖T‖∞, where ‖T‖∞ is defined as above. Using standard facts about suprema, you
can check that this norm is submultiplicative, in the sense that if X,Y and Z are normed vector spaces, S : X → Y
and, as above T : Y → Z, then ‖T ◦ S ‖∞ ≤ ‖T‖∞.‖S ‖∞.

Remark 1.11. In Metric Spaces, you studied the space B(X) of real-valued bounded functions on an arbitrary set
X and, for a metric space X, the space of bounded, real-valued, continuous functions Cb(X). In that setting, a
function is said to be bounded if its image is a bounded set. The image of a non-zero linear map α : X → Y
between normed vector spaces is never bounded, thus the usages are not, at first sight, consistent.

This apparent inconsistency is not, however, impossible to resolve4: Since it is compatible with scaling, a
linear map α is completely determined by its values on BX = B̄(0X , 1), indeed if v , 0 then u = v/‖v‖ ∈ BX and
α(v) = ‖v‖α(u). Thus we get an injective map r : B(X,Y) → C(BX ,Y), fromB(X,Y) to the space of continuous
functions onBX taking values inY . Here r(α) is just the restriction ofα to the closed ballBX . By definition, it gives
an isometric embedding of B(X,Y), equipped with the operator norm, into Cb(BX ,Y), where the latter space is
equipped with the usual supremum norm: ‖ f ‖∞ = sup{‖ f (x)‖ : x ∈ BX}.

Definition 1.12. IfX andY are normed vector spaces, we say thatα ∈ B(X,Y) is a topological isomorphism if it has
a bounded linear inverse. More precisely, α ∈ B(X,Y) is a topologial isomorphism if there is a β ∈ B(Y, X) such
that α ◦ β = IY and β ◦ α = IX . By Lemma 1.9, this is equivalent to the condition that α has a continuous linear
inverse. When such an isomorphism exists, we say that X and Y are topologically isomorphic.

4It, of course, is perfectly acceptable to just remember the apparent inconsistency in usage.
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Note that because a linear map is continuous if and only if it is uniformly continuous, and indeed Lipschitz
continuous, if X and Y are normed vector spaces and X is a complete, then if Y is topologically isomorphic to X,
it must also be complete, since uniformly continuousmaps preserve Cauchy sequences.

Definition 1.13. IfX is a vector spacewith twonorms ‖.‖a and ‖.‖b, then ‖.‖a and ‖.‖b are equivalent if the identity
map is a topological isomorphism from (X, ‖.‖a) to (X, ‖.‖b).

To make this explicit, let ι : (X, ‖.‖a) → (X, ‖.‖b) be the identity map viewed as a map between two different
normed vector spaces (X, ‖.‖a) and (X, ‖.‖b). The fact that ι is bounded is equivalent to the existence of a constant
C1 > 0 such that, for all v ∈ X we have ‖v‖b = ‖ι(v)‖b ≤ C1.‖v‖a. On the other hand, the fact that ι−1 is bounded
is equivalent to the existence of a constant C2 > 0 such that ‖v‖a = ‖ι−1(v)‖a ≤ C2.‖v‖b. Setting c = C−1

1 and
C = C2, this is equivalent to the existence of constants c,C > 0 such that

c.‖v‖b ≤ ‖v‖a ≤ C.‖v‖b ∀v ∈ X. (1.1)

If ‖.‖a and ‖.‖b are equivalent, then they yield the same notions of continuity, convergence, and uniform con-
tinuity and a function f is o(‖x‖a) if and only if it is o(‖x‖b).

Example 1.14. Consider the norms ‖.‖1 and ‖.‖2 onRn defined above. We claim that they are equivalent. Indeed
if x = (x1, . . . , xn), then clearly

‖x‖22 =
n∑

i=1

|xi|2 ≤
n∑

i=1

|xi|2 + 2
∑
i< j

|xi|.|x j| =
( n∑

i=1

|xi|
)2
= ‖x‖21.

so that ‖x‖2 ≤ ‖x‖1. On the other hand, applying Cauchy-Schwarz to the vectors u1 = (1, 1 . . . , 1) and u2 =

(|x1|, . . . , |xn|), we see that

‖x‖1 =
n∑

i=1

|xi| =
n∑

i=1

1.|xi| ≤ n1/2.‖x‖2,

Remark 1.15. Let X = C([0, 1]) be the space of continuous functions on the interval [0, 1] and let Y = C1
0([0, 1])

be the space of continuously differentiable functions on the same interval (with one-sided derivatives at the end-
points) which vanish at the origin. View both X and Y as normed vector spaces using the supremumnorm. Then
we have a linear map T : X → Y , where if f ∈ X,

T ( f )(x) =
∫ x

0
f (t)dt.

The fundamental theoremof calculus shows thatT ( f ) is indeed inY = C1
0([0, 1]) if f ∈ C([0, 1]), and the triangle

equality for integrals shows that ‖T ( f )‖ ≤
∫ 1

0 | f (t)|dt ≤ ‖ f ‖∞, so that T ∈ B(X,Y). While T is invertible with
inverse D : Y → X, where D(g) = g′ for all g ∈ Y , it is easy to see that D is unbounded. Thus while T is a linear
isomorphism, it is not a topological isomorphism.

This difference between integration and differentiation is closely related to the ideas discussed in Picard’s
Theorem in Differential Equations 1.

1.3 Finite dimensional normed vector spaces

Lemma 1.16. Let X be a normed vector space and let T : ℓn
1 → X be a linear map, (where ℓn

1 = (Rn, ‖.‖1)). Then T is
automatically bounded, and moreover, if T is bijective, then it is a topological isomorphism.

Proof. Let {e1, . . . , en} be the standard basis of Rn, and set M1 = max{‖T (ei)‖ : 1 ≤ i ≤ n}. Now any x ∈ Rn can
be written as x =

∑n
i=1 λiei, and hence

‖T (x)‖ = ‖
n∑

i=1

λiT (ei)‖ ≤
n∑

i=1

|λi|.‖T (ei)‖ ≤ M1.‖x‖1,

and so T is bounded.
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Now suppose thatT is bijective. Its set-theoretic inverse is automatically linear, and to show it is continuous,
i.e. bounded, we must show there is some M2 > 0 such that ‖T−1(v)‖1 ≤ M2‖v‖, for all v ∈ X, or equivalently
(setting x = T−1(v) andC = M−1

2 ) someC > 0 such that

C.‖x‖1 ≤ ‖T (x)‖ ⇐⇒ C ≤
∥∥∥∥∥∥T

(
x
‖x‖1

)∥∥∥∥∥∥ .
Now if S 1 = {x ∈ Rn : ‖x‖1 = 1} (the “sphere” of unit radius in the ‖.‖1-norm) then, by Bolzano-Weierstrass, S 1
is compact, and x 7→ ‖T (x)‖ is continuous, its image is closed and bounded in R. Now since ‖T (x)‖ > 0 for all
x ∈ S 1 (since ‖.‖ is a norm) m = min{‖T (x)‖ : x ∈ S 1} > 0, and hence wemay takeC = m. □

Theorem 1.17. Let X and Y be normed vector spaces. If X is finite-dimensional thenL(X,Y) = B(X,Y), that is, every
linear map from X to Y is automatically continuous. In particular, any two norms on X are equivalent.

Proof. Let n = dim(X) and suppose T : X → Y is a linear map. Picking a basis B = {v1, . . . , vn} of X induces
an bijective linear map ϕB : Rn → X given by ϕB(λ1, . . . , λn)t =

∑n
i=1 λivi. Then by the previous Lemma we see

that ϕB is a topological isomorphism, and also that the composition T ◦ ϕB : Rn → Y is continuous. But then
T = (T ◦ ϕB) ◦ ϕ−1

B is a composition of continuous functions and hence is continuous as required.
For the final sentence, let ‖.‖a and ‖.‖b be two norms on X, By the first part of the Lemma, the identity map,

viewed as a map from (X, ‖.‖a) to (X, ‖.‖b) is continuous, as is its inverse, which is the identity map viewed as a
map from (X, ‖.‖b) to (X, ‖.‖a), which precisely says that ‖.‖a and ‖.‖b are equivalent. □

Corollary 1.18. Let X be a normed vector space and let F be a finite dimensional subspace. Then F is a closed subset of
X.

Proof. If dim(F) = k, then Theorem 1.17 show that a linear isomorphism ϕ : Rk → F is automatically continuous
(viewingRk as a normed vector space with the ‖.‖1-norm). Since a continuous linear map is automatically Lips-
chitz continuous, andRk is complete, so is F. As a complete subspace of ametric space it must be closed (see the
proof of Lemma 6.2.1 in [?] – a closed subset of a completemetric space is complete, but a complete subspace of a
metric space is always closed whether or not the the ambient space is complete). □

Remark 1.19. The upshot of the previous discussion is that, for the purposes of this course, we do not lose any
generality by assuming our normed vector spaces are of the form Rn equipped with the ‖.‖2 norm associated
to the standard dot product (and thus the spaces of linear maps between them can also be viewed as an inner
product space using the Hilbert-Schmidt norm, or as a normed vector space using the operator norm). However,
the results of this section shows that we are free to use whichever norm is convenient (e.g. in the proof of the
previous corollary, the ‖.‖1 norm is the simplest to consider) and that, even if we state results for (Rn, ‖.‖2), they
hold for any finite-dimensional normed vector space.

Indeed part of our goal in this course is to show the advantages of being able to choose good “local” coordi-
nates when studying differentiable functions, by analogywith theway inwhichwe study linearmaps by finding
a basis with respect to which they are as simple as possible (e.g. diagonalisable) we will take care however to
point out when the concepts we study require a choice of basis for our vector space or not.
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2 The derivative in higher dimensions

Suppose that U is an open subset of Rn and f : U → Rm is an Rm-valued function. We would like to extend the
one-variable notion of the differentiability to functions of this kind, which have both higher-dimensional input
and output. First however, it is important to note that we must equip Rn and Rm with metrics in order for the
notion of a limit tomake sense, and if such ametric obeys some natural compatibilities with vector addition and
scalarmultiplication, it is inducedby anorm. Thus amore invariant (or “coordinate free”)way to phrase our goal,
is the following: Given (finite-dimensional) normed vector spaces X and Y and an open subset U of X, what is a
sensible definition of the derivative of a function f : U → Y?

To extend the notion of differentiability to the casewhere n > 1, it is useful to recall some of the natural inter-
pretations of the (one-variable) derivative: In dynamics, the derivative arises from the notion of instantaneous
speed or velocity, while in geometry, the derivative at a point a gives the slope of the tangent line to the graph of
f at the point (a, f (a)).

2.1 The one-dimensional case

Let us first consider the case of a function f : X → Y , where dim(X) = dim(Y) = 1. Recall that, for a function
g : R→ R, the derivative of g at a point a ∈ R is defined to be

Dg(a) = g′(a) := lim
x→a

g(x) − g(a)
x − a

= lim
h→0

g(a + h) − g(a)
h

(2.1)

But now if we are given a function f : X → Y between two 1-dimensional different vector spaces, the if x , a
are vectors in X, the difference f (x) − f (a) is a vector in Y , while x − a is a vector in X, so it seems meaningless
to consider their quotient. The obvious response to this problem is to pick coordinates so that we can identify
both X and Y with R, and then apply the standard definition. Thus let us pick a basis vector e1 ∈ X and a basis
vector e2 ∈ Y , and let us identify X with R via t 7→ i1(t) = a + te1, and similarly we identify Y with R via
s 7→ i2(s) = f (a) + se2, that is, we centre our coordinates at a and f (a) respectively.

Using these identifications, we obtain a scalar function Fe1,e2 : R→ R, which is given by the equation

f (a) + Fe1,e2(t).e2 = f (a + te1).

One can view this equation as the requirement that, in the diagram:

0X ∈ X
f // Y 3 0Y

0 ∈ R

i1

OO

Fe1 ,e2

// R 3 0

i2

OO

if one goes from the bottom left to top right by either of the possible compositions, one gets the same answer, that
is f ◦ i1 = i2 ◦Fe1,e2 . Note that Fe1,e2(0) = 0, and, as a function fromR to itself we can ask if Fe1,e2 is differentiable
at t = 0, that is, as Fe1,e2(0) = 0, if

lim
t→0

Fe1,e2(t)
t

exists. If it does, we denote it by De1,e2 f (a) = F′e1,e2
(0).

IfDe1,e2 f (a)wasactually independent of the choice of bases {e1}, {e2}, then itwould give anatural defintionof
the derivative of f at a. However, if we choose different basis vectors e′1 = λ.e1 and e′2 = µ.e2, then the associated
scalar function Fe′1,e

′
2
is given by Fe′1,e

′
2
(t) = µ−1.Fe1,e2(λ.t), and hence F′e′1,e′2

(0) = (λ/µ).F′e1,e2
(0). In other words

De′1,e
′
2

f (a) = (λ/µ)De1,e2 f (a).

Remark 2.1. One conclusionwemight draw from the calculations above is that this is not the correct definition.
With a bitmore thought, however, it turns out that the correct conclusion to take from them is that the derivative
D f (a) is not in fact a scalar! It is instead an object to which we can associate a scalar once we choose bases of X
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andY respectively. Moreover, if we know this scalar for one choice of bases {e1}, {e2}, we can determine the scalar
associated to any other choice of bases provided we can express those bases in terms of the bases {e1}, {e2}.

If this sounds esoteric, it is worth noticing that in fact we already knew this from physics: Recall that if a
particle moves in space so that its position x(t) is a function of the time t, then the derivative dx

dt (t) is the velocity
of the particle at time t. But velocity is not a dimensionless scalar, it has (S.I.) units ms−1, and the factor λ/µwe
found above matches those units: the choice of e1 provided our “units”, or scale, for the domain of f (which in
the case of x(t) is time, which is measured in seconds) and the choice of e2 provides “units” for the codomain of
f , which for x(t) is space, and distance is measured in metres. Viewing a change of the choice of bases from {e1}
and {e2} to {e′1} and {e′2} as a change of units, for example, changing the unit of time to hours, so that h = 3600s,
and the unit of distance to kilometres, so that km = 1000m, then if the velocity is v(t) = dx

d (t) inms−1, it becomes
3.6 = 3600/1000 times v(t) in km.h−1, which is precisely the factor (λ/µ) which we just observed above.

The previous remark hopefully confirms that D f (a) has to be something other than a scalar, but perhaps it
does not quite tell us howwhat kind of object we should expect D f (a) to be. We can gain some insight into this
simplybyconsideringmorecarefullywhereweare forced to takecoordinates (rather than justpickingcoordinates
wherever we can). Noticing that in a vector space we can of course divide by any nonzero scalar, we see that it
makes sense to ask if the limit

lim
t→0

f (a + te1) − f (a)
t

exists – that is, the standard formula for the derivative becomes syntactically coherent as soon aswe chose a basis
{e1} of X, so we did not need to pick a basis for Y . For e1 ∈ X non-zero, wemay therefore define

De1 f (a) := lim
t→0

f (a + t.e1) − f (a)
t

(2.2)

wherever this limit exits. Note that De1 fa is now an element of Y , rather than a scalar. However, as

f (a + te1) − f (a)
t

=
Fe1,e2(t)

t
.e2,

it follows easily that that De1 f (a) = De1,e2 f (a).e2. Thus simply by replacing De1,e2 f (a) by the corresponding
multipleof e2 weremove thedependenceon the choiceof abasis isY . Nowconsider (2.2)when e1 ∈ X is arbitrary:

(i) If we take e1 = 0X in (2.2), then f (a + t.0X) = f (a) and hence the limit on the right-hand side exists, and
is equal to 0Y .

(ii) It follows that if the limit in (2.2) exists for some non-zero vector in X, say a vector e0 with ‖e0‖ = 1. Then
(2.2) defines, for any v ∈ X, a vector Dv f (a) in Y where if v = λ.e0 then Dv f (a) = λ.De0 f (a). Since
dim(X) = 1, this shows that v 7→ Dv f (a) is a linear map from X to Y .

Thus we have finally have a natural description of what D f (a) is: it is a linear map from X to Y sending v ∈ X to
Dv f (a) ∈ Y .

Remark 2.2. Of course, in addition to velocity and speed, the classic interpretation of the derivative of a function
f at a point a is as the “slope of the tangent line” to the graph of f at (a, f (a)). Indeed the tangent line is just the
graph of the function f (t) = f (a) + f ′(a)(t − a). Here again we can see that viewing the derivative, or slope, as a
scalar is adequate if one is considering functions fromR to itself, but as soon aswe consider functions f : X → Y
between twoarbitraryone-dimensional vector spaces,wesee that the tangent linemustbe thegraphof a function
of the form t 7→ f (a) + α(t − a), where α ∈ L(X,Y) is linear. Thus we are also led to consider D f (a) as a linear
function from X to Y by the “slope” interpretation of the derivative.

Notice thatwhenX = Y , the scalarmultiplicationactionofRonX gives anatural isomorphismR→ L(X, X).
Thus when X = Y = R the linear map really is just the scalar which gives its slope.

Remark 2.3. The considerations above for the one-dimensional case also really only used the fact that dim(X) =
1– thedimensionofY wasnot important. Thuswehave in factobtainedadefinitionof thederivative for functions
from an open subset of a one-dimensional vector space to a vector space of arbitrary dimension.
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Definition 2.4. (The 1-dimensional case.) Let X andY be normed vector spaces and suppose that dim(X) = 1. Let
U ⊆ X be an open set and suppose f : U → Y is a function. If a ∈ U then we define the derivative of f at a to be
the linear map D fa ∈ L(X,Y) given by

D fa(v) = lim
t→0

f (a + t.v) − f (a)
t

,

where this limit exists. As noted above, the limit is compatible with scalar multplication, so that D fa(λ.v) =
λ.D fa(v) for any λ ∈ R and v ∈ X, and as X is 1-dimensional, this implies D fa is a linear map. Indeed this also
shows that if we know D fa(v) exists for a single non-zero vector v0 ∈ X, then it exists for any v ∈ X.

2.2 The general case

Our consideration of the one-dimensional case gives some indication of what we should seek in the higher di-
mensional context: If X andY are arbitrary finite-dimensional vector spaces, and f : U → Y is a function defined
on an open subset U of X, then for a ∈ U , given our examination of the one-dimensional case, it is natural to
demand that the derivative5 D fa of f at a is an element ofL(X,Y).

Moreover, our definition in the one-dimensional case also yields a sensible notion in higher dimensions:

Definition 2.5. Let f : U → Y be as above and suppose a ∈ U and v ∈ X. The directional derivative of f at a ∈ U
in the direction v is defined to be

∂v f (a) = lim
t→0

f (a + t.v) − f (a)
t

,

where this limit exists. Assuming it exists, it is an easy exercise to check that, for any s ∈ R, we have ∂s.v f (a) =
s.∂v f (a). That is, the directional derivative is homogeneous in v. For this reason, when taking a directional deriva-
tive we normally assume the direction vector v has unit length, i.e. ‖v‖ = 1. Note also that, if dim(X) = 1, then
we have D fa(v) = ∂v f (a).

The above definition and its relation to the derivative in the one-dimensional case suggests that either of
followingmight be reasonable:
Provisional Definitions: If f : U → Y is a function defined on an open subset U of a normed vector space X
taking values in a normed vector space Y , then:

1. Proposal 1: f is differentiable at a if all the directional derivatives at a exist, andwe define its derivative6 at
a to be the function P1 fa(v) = ∂v f (a).

2. Proposal 2: f is differentiable at a if there is a linear map T ∈ L(X,Y) such that for all v ∈ X, we have
T (v) = ∂v f (a). This linear map T , if it exists, is certainly unique, and will be denoted P2 fa. Clearly, when
it exists P2 fa = P1 fa.

The following examples show that these proposals are genuinely different:

Example 2.6.

(i) Let f : R2 → R in Figure 1 given by

f1(x1, x2) =
{

x1x2(x1 + x2)/(x2
1 + x2

2), (x1, x2) , (0, 0),
0, (x1, x2) = (0, 0)

Consider the directional derivative of f1 in the direction v = (v1,2 ).

∂v f (0) = lim
t→0

f1(tx1, tx2)
t

= lim
t→0

t3v1v2(v1 + v2)
t(t2v2

1 + t2v2
2)
=

v1.v2(v1 + v2)
v2

1 + v2
2

= f (v)

Thus all the directional derivatives exist, and so using Proposal 1, f1 is differentiable at 02 with P1 f02 = f1,
that is, f1 is its own derivative at 02! On the other hand, since f1 is clearly not a linear function, f1 is not
differentiable in the sense of Proposal 2.

5Wewrite D fa rather than D f (a) because D fa ∈ L(X,Y) so it is a function itself, and D fa(v) is more compact to read than D f (a)(v).
6The use of the letter “P” is to indicate “provisional”.
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Figure 1: Graph of f (x1, x2) = x1x2(x1 + x2)/(x2
1 + x2

2). All its directional derivatives exist at 02 but it is not
differentiable there.

(ii) LetΩ be the open subset {(x1, x2) ∈ R2 : 0 < x1, 0 < x2 < x2
1} and let f2 = 1Ω be the indicator function of

Ω, so that f2(x1, x2) = 1 if (x1, x2) ∈ Ωand f2(x1, x2) = 0otherwise. Tocalculate thedirectionalderivatives
of f2 at 02, suppose that v = (v1, v2) ∈ S R2 . Clearly, since f2(t.(v1, v2)) = 0 whenever v1.v2 ≤ 0, ∂v f2(02) =
0 unless v1.v2 > 0. But if v1.v2 > 0, then if |t| < |v2|/v2

1, t.(v1, v2) < Ω, hence limt→0 f2(t.(v1, v2))/t =
limt→0 0/t = 0. Hence all of the directional derivative ∂v f2(0) exists and equal 02. It follows that f2 is
differentiable in the sense of both proposals, with it derivative P2 f02 being the zero linear map.

The function f1 above shows the difficulty with Proposal 1: this notion of differentiability will only be useful
if we first develop a theory of homogeneous functions, as D fa will only be homogeneous, i.e. be compatible with
scalar multiplication, rather than linear. If you note that a homogeneous function is determined by its values on
the unit sphere S X , and that any continuous function f : S X → Y from the unit sphere on X to a normed vector
space Y extends to a homogeneous function from X to Y provided f (−x) = − f (x) for all x ∈ S X , it is clear that
the space of continuous homogeneous functions from X to Y is a much more complicated one that the space of
linear maps from X to Y , so any such theory will be much harder than linear algebra. Indeed the function f1 in
Example 2.6 is differentiable at 02 according to suggestion 1, but by the provisional definition P1 the derivative is
D f1,02(v) = f1(v), so that passing to D f1 does not provide a simpler object to study.

On theotherhand, the function f2 shows that simplydemanding that thedirectional derivatives yield a linear
functionmay not be the correct condition: If we recall the idea that the derivative at a point a should provide the
tangent plane to the function at a, then the plane T = {(x1, x2, 0) : x1, x2 ∈ R} does not seem like a reasonable
candidate for the tangent plane to the graph of f2 at 02.

Moreover, f2 is not even continuous at the origin. Indeed if we consider the curve c(t) = (t, t3) for t ∈ R, then
since for t ∈ (0, 1) we have 0 < t3 < t2, we see that limt↓0 f2(c(t)) = 1, while limt↓0 f2(t.v) = 0 for all v ∈ R2, v ,
02. This example suggests oneway inwhich our considerations so farmight be deficient: In one dimension there
are only two ways to approach a point (from the left or the right), however, even in two dimensions, there are
infinitely many different curves through which one can approach a point, andmoreover manymore than simply
by travelling along a straight line – focusing on directional derivatives therefore does an injustice to the geometry
of linear spaces of dimension greater than 1.

This issue can be resolved easily however, in that it was already addressed in the Metric Spaces material of
A0: if f : X → R is a real-valued function on a metric space, then for f (x) to tend to a limit α as x → a ∈ X, the
values of f must be close to α for all x sufficiently close to a. There is simply no need to specify a curve on which
x lies as it tends to a. In order to be able to use this idea however, we need to rewrite the expression we have for
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a directional derivative in a way which only uses the norm functions. Let us do this first in the one-dimensional
case: the condition that D fa(v) is given by the directional derivative as

lim
t→0

f (a + tv) − f (a) − D fa(tv)
t

= 0Y ⇐⇒ lim
t→0

1
|t| ‖ f (a + t.v) − f (a) − D fa(t.v)‖ = 0 ∀v ∈ X, v , 0.

Notice that this formulation does not utilise the norm on X. This is however a relic of the Prelims definition
we started with: by the homogeneity of directional derivatives, we may assume ‖v‖ = 1, and then if we let x =
a + t.v ∈ X, then ‖x − a‖ = |t|, and the above condition becomes

lim
x→a

‖ f (x) − f (a) − D fa(x − a)‖
‖x − a‖ → 0 (2.3)

But itmakes sense to ask for the same limit to hold for any f : U → Y definedonanopen subsetU ⊆ X taking
values in Y , where X and Y are normed vector spaces, and this (finally!) gives us the definition of the derivative
in higher dimensional that we will use:

Definition 2.7. Let X and Y be finite-dimensional normed vector spaces and let U ⊆ X be an open subset of X.
If f : U → Y is a function and a ∈ U , we say that f is differentiable at a if there is a linear map T ∈ L(X,Y) such
that if the function ϵ : U → Y given by ϵ(a) = 0 and, for x ∈ U\{a} by the equation

f (x) = f (a) + T (x − a) + ‖x − a‖.ϵ(x),

then ϵ is continuous at a, that is limx→a ϵ(x) = 0Y = ϵ(a). If such amap T exists, it is unique and we denote it by
D fa.7

Remark 2.8. This definition takes some time to absorb!

1. Note that for x , a,

ϵ(x) =
f (x) − f (a) − T (x − a)

‖x − a‖
so that the continuity of ϵ at a is precisely the condition of Equation (2.3).

2. The function f2 fromExample 2.6 is notdifferentiable ata = 02 in the above sense. Indeedbecause all of the
directional derivatives of f2 exist and equal 0, the only candidate for D f2,a is the zero linearmap. But since
02 lies in the closure ofΩ, wehave | f2(x)− f2(02)| = 1 for x arbitrarily close to02, and so | f (x)− f (02)|/‖x‖ is
unboundednear02, hence thezero linearmap fails to satisfy the requirementofDefinition2.7. Inparticular,
it is important to note that Definition 2.7 requires more than the existence of all directional derivatives.

3. As the previous point notes, the linear map D fa is unique if it exists, because its values are given by the
directional derivatives, which are certainly unique (again, assuming they exist). One can also prove the
uniqueness of the linear map D fa directly, and the problem set asks you to do this.

4. One canwrite the condition required of the linearmap D fa using the little o notation, that is, as f (a+ h) =
f (a) + D fa(h) + o(‖h‖), where h = x − a.

5. IfU is an open subset ofRn and f : U → Rm, then if f = ( f1, . . . , fm), then, as promised in the discussion of
thedefinitionofdifferentiability, f is differentiable ata ∈ U if andonly if each fi is, andD fa =

∑m
i=1 D fi,a.ei,

that is, if v ∈ Rn, we have D fa(v) =
∑m

i=1 D fi,a(v).ei. This can be checked directly, and is in essence a very
special case of the multi-variable version of the Chain Rule, which wewill prove shortly.

6. It is straight-forward to check that equivalent norms yield the same condition for a function to be differen-
tiable, since they give the same notion of convergence. Since all norms on finite-dimensional vector space
are equivalent, it follows that the definition of the derivative is independent of the choice of norms on X
and Y when both X and Y are finite-dimensional.

[*Non-examinable: Since norms on an infinite-dimensional space need not be equivalent however, in the infinite-
dimensional setting, the notion of differentiability may depend on the norm. Moreover, in the infinite-dimensional
setting, the total derivative D fa is required to be a bounded linear map, a condition which, by Corollary 1.17, is
automatic in the finite-dimensional setting.]

7The total derivative in this sense is sometimes called the Fréchet derivative.
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7. If f : U → Y is differentiable on U , then it defines a function D f : U → L(X,Y). Viewed as a function
“taking values in (linear) functions” it appears to be a more complicated object than the original function
f . However,L(X,Y) is just a dim(X). dim(Y)-dimensional normed vector space – using the operator norm
‖.‖∞ – and if we pick a basis of X and Y then we can identify it with Matm,n(R). Thus, at least in principle,
D f is nomore complicated an object than f . We discuss this in more detail in Section 2.8.

As in the one-variable case, if f is differentiable at a point a, then it is continuous there:

Lemma 2.9. Let X and Y be normed vector spaces and let U be an open subset of X. If f : U → Y is a function which is
differentiable at a ∈ U , then there are constantsC, r > 0 such that for all x ∈ B(a, r),

‖ f (x) − f (a)‖ ≤ C.‖x − a‖.

In particular, f is continuous at a.

Proof. Replacing f (x)with the function f (x−a)− f (a)wemay assume that a = 0X and f (a) = 0Y . The statement
of the Lemma is then simply that if f is differentiable at 0X then f ∈ OY (‖x‖). But f (x) = D f0X (x) + oY (‖x‖), and
sinceD f0X is a bounded linearmap it lies inOY (‖x‖), whileoY (‖x‖) is a subspaceofOY (‖x‖), hence f (x) ∈ OY (‖x‖)
as required. □

Definition2.10. IfX andY arenormedvector spaces andU is anopen subset ofX, thenwewriteC0(U,Y) for the
vector space of continuous functions onU taking values in Y . The previous Lemma thus shows that if f : U → Y
is differentiable on all of U then f ∈ C0(U,Y).

Example 2.11. Constant functions c : X → Y are clearly differentiable, with derivative 0, since if c is constant
c(x) = c(a). If T : X → Y is linear, that is T ∈ L(X,Y), then, for any a ∈ X we have D fa = T , since

T (x) = T (a) + T (x − a),

(and thus the error term ϵ(x).‖x‖ is identically zero). Thus if f = T is linear, D f : X → L(X,Y) is the constant
function x 7→ T , for all x ∈ U .

IfU is an open subset of X and f , g : U → Y are differentiable at a point a ∈ U then it is easy to see that f + g
is also, and D( f + g)a = D fa + Dga. In particular, if f (x) = T (x) + b, where T ∈ L(X,Y) and b ∈ Y , then f is
differentiable with D fa = T for all a ∈ U .

Example 2.12. If ‖.‖ is a normonRn, wemay view it as a function ‖.‖ : Rn → R. This function isnotdifferentiable
at the origin: Indeed suppose that T is a linear map. Then ϵ(h) = ‖h‖−1(‖h‖ − T (h)) = 1 − T (h/‖h‖), and since
T (h/‖h‖) is independent of ‖h‖, if ϵ(h) → 0 as ‖h‖ → 0 we must have T (h/‖h‖) = 1. But since T (−h/‖ − h‖) =
−T (h/‖h‖) this is impossible.

The question ofwhether a norm is differentiable at other points inRn may depend on the norm– consider for
example the norms ‖.‖1, ‖.‖2 and ‖.‖∞.

2.3 Partial derivatives and the total derivative

We now relate the notion of the total derivative to the notion of partial derivatives which were introduced in
Prelimsmultivariable calculus:

In fact we work in slightly greater generality, as it clarifies the idea and reduces the notational clutter.

Definition 2.13. Suppose that X and Y are normed vector spaces andU ⊆ X is an open subsetwith f : U → Y a
function defined on U . If we are further given a subspace Z of X, then we can consider the function fa,Z : Z → Y
given by fa,Z(x) = f (a + z), and we set ∂Z f (a) = D fa,Z(0Z), so that ∂Z f (a) satisfies

‖ f (a + z) − f (a) − ∂Z f (a)(z)‖
‖z‖ → 0, as z→ 0, (z ∈ Z).

It is immediate from the definitions that, if the total derivative D f (a) exists, then D f (a)|Z = ∂Z f (a). Similarly,
the values of the partial derivative ∂Z f (a) ∈ L(Z,Y), like the total derivative, are given by the corresponding
directional derivatives of f , so it is unique if it exists.
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If we have a decomposition of X into a direct sum X = X1 ⊕ X2, then the partial derivatives ∂X1 f (a) and
∂X2( f )(a) determine D f (a): if π1 : X → X1 and π2 : X → X2 denote the projection maps from X to X1 and X2
respectively, and ι1 : X1 → X, ι2 : X2 → X denote the inclusionmaps, then

IX = ι1 ◦ π1 + ι2 ◦ π2,

where IX denotes the identity map from X to itself. Thus, noting that D f (a)|X j = D f (a) ◦ ι j ( j ∈ {1, 2}), we have

D f (a) = D f (a) ◦ IX = D f (a) ◦ (ι1π1 + ι2π2) = (D f (a)ι1) ◦ π1 + (D f (a)ι2) ◦ π2

= D f (a)|X1 ◦ π1 + D f (a)|X2 ◦ π2

and hence
D f (a) = ∂X1 f (a) ◦ π1 + ∂X2 f (a) ◦ π2 (2.4)

Remark 2.14. Obviously, in the same way, if we have any direct sum decomposition X = X1 ⊕ X2 ⊕ . . . ⊕ Xk of
X, the partial derivatives ∂X j f (a) determine D f (a), where if π j : X → X j denotes the projection map to the j-th
summand X j,

D f (a) =
k∑

j=1

∂X j f (a) ◦ π j. (2.5)

Motivated by matrix notation, we will sometimes write D fa =
(
∂X1 f (a) | ∂X2 f (a)

)
to express the decompo-

sition of D f (a) according to the direct sum decompositionL(X,Y) = L(X1,Y) ⊕ L(X2,Y).d

2.3.1 Partial derivatives inmultivariable calculus

In multivariable calculus, the term “partial derivative” usually refers to the directional derivatives of a function
in the directions given by a choice of basis of X. This is essentially a special case of the above setting, as we now
explain: Let BX = {v1, v2, . . . , vn} be a basis of X, and let X j = R.v j denote the line spanned by v j (1 ≤ j ≤ n). We
thus obtain a direct sum decomposition X = X1 ⊕ . . . Xn of X into n lines, i.e., 1-dimensional subspaces.

Applying (2.5) to this decomposition, we see that D f (a) =
∑n

j=1 ∂X j f (a)◦π j. But if B∗X = {x1, . . . , xn}, so that
if u ∈ X, we have u =

∑n
j=1 x j(u).v j, and hence π j(u) = x j(u).v j. Thus

∂X j f (a)π j(u) = ∂X j f (a)(x j(u)v j) = x j(u).∂Xi f (a)(v j) = x j(u)D fa(v j) = x j(u)∂v j f (a).

Thus the directional derivative ∂v j f (a) completely determines ∂X j f (a) ∈ L(X j,Y).

Definition 2.15. If we are given a basis B = {v1, . . . , vn} of X, then wewill write

∂ j f (a) =
∂ f
∂x j

(a) := ∂v j f (a) = lim
t→0

f (a + tv j) − f (a)
t

∈ Y

The fractional notation ∂ f
∂x j

is commonplace, but becomes cumbersome when considering higher-order partial
derivatives. Wewill normally prefer to write ∂ j f .

Using this notation, the expression for the total derivative becomes

D f (a) =
n∑

j=1

x j.∂ j f (a) =
n∑

j=1

x j.
∂ f
∂x j

(a). (2.6)

Wemay refine this further if we pick a basis BY = {w1, . . . ,wm} of Y : Using BY wemaywrite f (x) =
∑m

i=1 fi(x).wi

where fi : U → R, and hence we have D f (a) =
∑m

i=1 D fi(a).wi. Applying (2.6) to each D fi and summing we
obtain

D f (a) =
m∑

i=1

 n∑
j=1

∂ j fi(a).x j

 wi =

m∑
i=1

 n∑
j=1

∂ fi
∂x j

(a).x j

 wi (2.7)
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Notice that this last equation shows that thematrix of D f (a)with respect to the bases BX of X and BY of Y is
just

BY [D fa]BX =


∂1 f1(a) . . . ∂n f1(a)

...
. . .

...

∂1 fm(a) . . . ∂n fm(a)


Thus, if we know the derivative exists, then we can compute its matrix with respect to a choice of bases of X and
Y by computing the directional derivatives of the components of f along the directions given by the basis in X.

Definition 2.16. As in multi-variable calculus, the above matrix
(
∂ j fi(a)

)
is called the Jacobian matrix of the

partial derivatives of f at a. Note that the determinant det(D fa) = det(∂ j fi(a)), is also often called the Jacobian.
Wewill refer to it as the Jacobian determinant. It is often denoted J f (a).

Remark 2.17. In a similar way, if X = X1 ⊕ X2, the partial derivative ∂X j f (a) are given by block submatrices
of the Jacobian matrix, and if you like, you can think of them as essentially just a notational shorthand for such
submatrices. Indeed as we already noted above, if D fa exists then ∂X j f (a) is just the restriction of D fa to X1. But
if our basis BX = {v1, . . . , vn} is adapted to this direct sum decomposition, so that for some k, 1 ≤ k ≤ n, the
subsets B1 = {v1, . . . , vk} and B2 = {vk+1, . . . , vn} are bases of X1 and X2 respectively, then

BY [D fa]BX =
(

BY [∂X1 f (a)]B1 BY [∂X2 f (a)]B2

)
Example 2.18. If U is an open subset of C and f : U → C is holomorphic, then, identifying C with R2 via
z 7→ (<(z),=(z)), we may view f as a function fromR2 to itself, which, for clarity, we write as F. Since complex
multiplication isR-linear, F is differentiable in the real sense: explicitly, if f ′(z) = a+ ib then the total derivative
of F at z is theR-linear map given bymultiplication by f ′(z), and hence its matrix is

DFz=(x,y) =

(
a −b
b a

)
The Cauchy-Riemann equations follow immediately from this – they express the fact that the linear map given
by the derivative is complex-linear rather than just real-linear, and so is given by multiplication by a complex
number.

Remark 2.19. Example 2.6 shows that the existence of all the partial derivatives for the function f2 : R2 → R
at the origin 0 is not sufficient to ensure that f2 is continuous at that point. Since Lemma 2.9 shows that the
existence of the total derivative at a point implies continuity at that point, this gives anotherway of seeing that f2
is not differentiable at the origin. The function f1 : R2 → R in the same Example is continuous at the origin, but
nevertheless, even though all of its directional derivatives exist at the origin, it is not differentiable there. (The
first problem sheet asks you to check this).

We will see shortly, however, that if the partial derivatives exist and are continuous, then this is sufficient to
show that the total derivative exists.

2.4 The Chain Rule

One of the fundamental properties of the differentiablity is that it is preserved under composition, just like conti-
nuity. The single variable version of this result is both a basic computational tool, and also the key to one version
of the Fundamental Theorem of Calculus. We now establish its higher-dimensional analogue.

Theorem 2.20. Let X,Y and Z be normed vector spaces, let f : U1 → Y be a function defined on an open subset U1 of
X, and let g : U2 → Z be a function defined on an open subset U2 of Y . Suppose that a ∈ U1 and f (a) = b ∈ U2, then if
f is differentiable at a and g is differentiable at b, their composition h = g ◦ f : f −1(U2) → Z is differentiable at a and
its derivative is given by

Dha = Dg f (a) ◦ D fa.
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Proof. Note that since f is differentiable at a, it is continuous there, and hence f −1(U2) is a neighbourhood of a,
hence it makes sense to ask if h is differentiable at a. By translating if necessary, wemay assume that a = 0X and
f (a) = b = 0Y . To avoid cluttered notation, we will write 0 for the zero vector in all vector spaces in the rest of
this proof.

Since f is differentiable at 0 we see that f (x) = D f0(x) + ϵ1(x) where ϵ1(x) ∈ oY (‖x‖). Similarly since g is
differentiable at f (0) = 0, we have g(y) = Dg0(y) + ϵ2(y), where ϵ2(y) ∈ oZ(‖y‖). It follows that

g ◦ f (x) = Dg0(D f0(x)) + Dg0(ϵ1(x)) + ϵ2( f (x)).

Thus to complete the proof, we must show that Dg0(ϵ1(x)) + ϵ2( f (x)) ∈ oZ(‖x‖), which certainly follows if each
summand lies in oZ(‖x‖). But since the linear map Dg0 is bounded and ϵ1(x) ∈ oY (‖x‖),

‖Dg0(ϵ1(x))‖
‖x‖ ≤ ‖Dg0‖.

‖ϵ1(x)‖
‖x‖ → 0, as x→ 0.

henceDg0(ϵ1(x)) ∈ oZ(‖x‖). For the second term, recall thatwemaywrite ϵ2(y) = ‖y‖.η(y)whereη(y)→ 0 = η(0)
as y→ 0. Then

‖ϵ2( f (x))‖
‖x‖ =

‖ f (x)‖
‖x‖ .‖η( f (x))‖

But now since f is differentiable at 0, we have f ∈ O(‖x‖), hence the ratio ‖ f (x)‖/‖x‖ is bounded as x→ 0, hence
it suffices to show that η( f (x)) → 0 as x → 0. But by definition η(y) → 0 as y → 0, thus we need only check
f (x)→ 0 = f (0) as x→ 0, but this again follows from f ∈ O(‖x‖) (see Lemma 2.9) and so we are done.

□

Remark 2.21. It is worth noticing that this is almost word-for-word the proof in the single-variable case. The
onlydifference lies in the fact that inhigherdimensionswecanonlybound the ratioofnorms ‖ f (x)− f (a)‖/‖x−a‖,
whereas in the single-variable case, the ratio ( f (x) − f (a))/(x − a) of course converges to f ′(a).

2.5 TheMean Value Inequality

For functions of a single variable, theMean Value Theorem asserts that, if f : U → R is differentiable on an open
subsetU ofR and [a, b] ⊂ U , then ( f (b)− f (a))/(b− a), the slope of the chord between (a, f (a)) and (b, f (b)), is
equal to f ′(c) for some c ∈ (a, b). In higher dimensions, as we have noted before, we can only divide by scalars,
andso toobtaina statementwhichat least is syntactically correct,wecan rewrite this as f (b)− f (a) = f ′(c).(b−a).
There is however a more fundamental issue here: Namely the condition that c lies “between a and b”, that is,
c ∈ (a, b), is not a meaningful one in higher dimensions: two points in an open subset U ofRn do not bound any
region in U . One consequence of this is that the most naive attempt to generalize the Mean Value Theorem to
arbitrary dimensions is simply false:

Example 2.22. Let f : R1 → R2 be given by f (t) = (cos(2πt), sin(2πt)). Then the derivative of f is f ′(t) =
2π(− sin(2πt), cos(2πt)), which is non-zero for all t. But if we take a = 0 and b = 1 then f (b) − f (a) = 0, while
for any t0 ∈ [0, 1] we have (2π − 0) f ′(t0) = 4π2(− sin(2πt), cos(2πt)) , 0.

Example 2.22 also suggestswhat the reason for the failure of thenaive attempt at a generalisationof theMean
Value Theorem: Notice that f ′(t) = 2π(− sin(2πt), cos(2πt)), and so by the Fundamental Theorem of Calculus8

we have

f (1) − f (0) =
∫ 1

0
f ′(t)dt = 2π

( ∫ 1

0
− sin(2πt)dt,

∫ 1

0
cos(2πt)dt

)
= (0, 0).

Thus it is still true that f (1)− f (0) is the average value of f ′(t) over the interval [0, 1], it is just that this average
value is not the value of f ′(t) for any t ∈ [0, 1]. This suggests that it should be possible to bound ‖ f (b) − f (a)‖
relative to |b − a| by bounding ‖D ft‖∞, that is, we will prove aMean Value Inequality rather than an equality.

8One can define the integral of a function f : [0, 1] → X where X is a finite-dimensional normed vector space by picking a basis and
integrating componentwise. The resulting integral does not depend on the choice of basis made.
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Definition 2.23. If X is a normed vector space and a, b ∈ X wewrite γa,b : [0, 1]→ X for the line-segment path
γa,b(t) = (1 − t)a + tb, and write [γa,b] for its image, that is [γa,b] = {γa,b(t) : t ∈ [0, 1]}.

Recall that a subsetC of X is convex if, for any a, b ∈ C we have [γa,b] ⊆ C.

Theorem2.24. (Mean Value Inequality.) Let X and Y be finite-dimensional normed vector spaces and letU ⊂ X be an
open subset. Suppose that f : U → Y is differentiable, and z1, z2 ∈ U are such that the image of γz1,z2 lies entirely in U .
Then there is some c ∈ [γz1,z2] such that

‖ f (z2) − f (z1)‖ ≤ ‖D fc(z2 − z1)‖.

In particular, if U is convex and ‖D fx‖∞ ≤ K for all x ∈ U then ‖ f (x) − f (y)‖ ≤ K.‖x − y‖ for all x, y ∈ U , that is, f is
Lipchitz continuous with constant K.

Proof. We give a proof only in the case where X is an inner product space. If f (z1) = f (z2), we may choose c
arbitrarily, so wemay assume f (z1) , f (z2). Let e = ‖ f (z2) − f (z1)‖−1.( f (z2) − f (z1)). Define

g(x) = 〈e, f (x) − f (z1)〉,

so that g(z1) = 0 and g(z2) = ‖ f (z2) − f (z1)‖. Now if we let G(t) = g(γz1,z2(t)), we see that G : [0, 1] → R is a
real-valued function on [0, 1], satisfyingG(1) −G(0) = ‖ f (z1) − f (z1)‖. Applying theMean Value Theorem for a
single variable shows that there is some ξ ∈ (0, 1) such that

‖ f (z2) − f (z1)‖ = G(1) −G(0) = G′(ξ) = Dgγz1 ,z2 (ξ)(γ′z1,z2
(ξ))

But Dgz(v) = 〈e,D fz(v)〉, and γ′z1,z2
(t) = (z2 − z1), hence if we let c = γz1,z2(ξ), the right-hand side of the previous

equality is just 〈e,D fc(z2 − z2)〉, and so by the Cauchy-Schwarz inequality we see

‖ f (z2) − f (z1)‖ ≤ ‖e‖.‖D fc(z2 − z1)‖ = ‖D fc(z2 − z1)‖,

as required.
For the final part, since ‖D fc(z2 − z1)‖ ≤ ‖D fc‖∞.‖z2 − z1‖, if U is convex and ‖D fx‖∞ ≤ K for all x ∈ U , we

may apply the first part of the Theorem to any x, y ∈ U and the above inequalities to see that f is Lipschitz with
constant K on U . □

Remark 2.25. The reason the above proof needs to assume X is an inner product space is so that we can identify
(X∗, ‖.‖∞) as a normed vector space with (X, ‖.‖) via themap v 7→ [x 7→ 〈x, v〉]. If X is an arbitrary normed vector
space, given v = f (z2)− f (z1), one needs to find δ ∈ X∗ such that δ( f (z2)− f (z1)) = ‖ f (z2)− f (z1)‖ and ‖δ‖∞ = 1.
Clearly, if e is as in the proof above, wewant δ(e) = 1, but then one needs to show that this functional onR.e can
be extended to all of X without increasing its operator norm. This is possible, and the required result is proved in
Appendix 5.5.

Any easy application of this result is the following:

Proposition 2.26. Suppose that U is a connected open subset of Rn and f : U → Rm. Then if D fx = 0 for all x ∈ U
the function f is constant.

Proof. Since U is open and connected in Rn, it is path connected, and in fact any two points can be joined by
piecewise-linear path. But if γa,b is a line-segment path whose image lies in U then Proposition 2.24 and the
hypothesis D f = 0 on U shows that f (b) = f (a). It follows immediately that f must be constant on U as
required. □

2.6 Continuity of partial derivatives and the existence of the total derivative

The next result shows that however that the existence and continuity of the partial derivatives give a sufficient
condition for the total derivative to exist.

First note that, if X = X1 ⊕ X2 and π1 : X → X1 and π2 : X → X2 denote the corresponding projections, then

‖x‖d := ‖π1(x)‖ + ‖π2(x)‖,
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is a norm on X. Indeed the triangle inequality follows from the linearity of the projection maps and the triangle
inequality for ‖.‖, the original norm on X, and the positivity follows in the same way. Now since for any x ∈ X
we have x = π1(x) + π2(x), the triangle inequality shows that ‖x‖ ≤ ‖x‖d. On the other hand, we have ‖x‖d =
‖π1(x)‖ + ‖π2(x)‖ ≤ (‖π1‖∞ + ‖π2‖∞).‖x‖, so that ‖.‖ and ‖.‖d are equivalent norms on X. (Of course, all norms
on a finite dimensional vector space are equivalent, but this discussion gives more precise information on the
relationship between the two norms.)

The above discussion shows that, if we are given a decomposition of X into a direct sum X = X1 ⊕ X2, then,
replacing the norm ‖.‖ on X by the equivalent norm ‖.‖d, we may assume that if x = (x1, x2) where xi ∈ Xi, then
‖x‖ = ‖x1‖ + ‖x2‖.

Example 2.27. If X is an inner product space, then if X1 is a subspace, it has a natural complement given by
X2 = X⊥1 = {v ∈ X : 〈v, x〉 = 0, ∀x ∈ X1}. If π1, π2 denote the projectionmaps to X1 and X2 respectively, then

‖x‖2 = 〈x, x〉 = 〈π1(x) + π2(x), π1(x) + π2(x)〉
= 〈π1(x), π1(x)〉 + 〈π2(x), π2(x)〉 = ‖π1(x)‖2 + ‖π2(x)‖2,

hence in this case (c.f. Example 1.14), ‖π1(x)‖ + ‖π2(x)‖ ≤
√

2‖x‖.

Theorem 2.28. Let X and Y be finite-dimensional normed vector spaces and suppose that f : U → Y is a function
defined on an open subset of X. Suppose that X = X1 ⊕ X2, and that the partial derivatives ∂X1 f (x), ∂X2 f (x) both exist
for all x ∈ U . Then if for some a ∈ U both ∂X1 f (x) and ∂X2 f (x) are contiuous at a, then the total derivative of f exists,
where necessarily D fa = (∂X1 f (a) | ∂X2 f (a)) and hence D fa is also continuous at a.

Proof. Let π1, π2 be the projections to X1 and X2 respectively. As the statement of the theoremnotes, if D fa exists,
it must be given by ∂X1 f (0) ◦ π1 + ∂X2 f (0) ◦ π2, hence replacing f (x) by

f1(x) = f (a + x) − f (a) − ∂X1 f (a) ◦ π1 − ∂X2 f (a) ◦ π2,

we need only consider the case where a = 0X , f (0X) = 0Y and ∂X1 f (0) = 0 and ∂X2 f (0) = 0. Moreover, since the
theorem is local, wemay replace U by a sufficiently small ball centred at 0X , and hence wemay assume that U is
convex.

Given these assumption, to prove the theorem, we must show that f (x) ∈ oY (‖x‖). Now since ∂X1 f (0) = 0
it follows that f (x1, 0) ∈ oY (‖x1‖), so that, if ϵ > 0 is given, there is some δ1 > 0 such that if ‖x1‖ < δ, then
‖ f (x1, 0)‖ < ϵ.‖x1‖.

Moreover, the partial derivative ∂X2 f (x) is continuous at x = 0, and ∂X2 f (0) = 0, hence there is a δ2 > 0 such
that, for ‖x‖ < δ2 wehave ‖∂X2 f (x)‖∞ < ϵ. Thus applying Theorem2.24, ‖ f (x1, x2)− f (x1, 0)‖ ≤ ϵ.‖x2‖, provided
‖x‖ = ‖x1‖ + ‖x2‖ < δ2 (since then ‖(x1, t.x2)‖ = ‖x1‖ + t.‖x2‖ < δ2 for all t ∈ [0, 1]).

It follows that if δ = min{δ1, δ2} and ‖x‖ < δ, then

‖ f (x1, x2)‖ = ‖ f (x1, 0) + ( f (x1, x2) − f (x1, 0)‖ ≤ ‖ f (x1, 0)‖ + ‖ f (x1, x2) − f (x1, 0)‖
≤ ϵ‖x1‖ + ϵ.‖x2‖ = ϵ.‖x‖

so that ‖ f (x1, x2)‖ = oY (‖x‖) as required. □

Corollary 2.29. If f : U → Y is as in the previous theorem, and BX = {v1, . . . , vn} and BY = {w1, . . . ,wm} are bases
of X and Y respectively, then if the partial derivatives ∂ j fi(x) exist on U and are continuous at a ∈ U , the total derivative
D fa exists and is given by the matrix (∂ j fi(a)) and therefore it is also continuous.

Proof. Use induction on dim(X) = |BX | and the previous Theorem. Inmore detail, for n = 1 the result is trivial. If
dim(X) > 1, thenwriteX = X1⊕X2, whereX1 = Span{v1, . . . , vn−1} andX2 = R.vn. Then sincedim(X1) = n−1 <
dim(X), by induction we know that ∂X1 f (a) exists and is continuous at a (recall that thematrix of ∂X1 f (a) is just
the submatrix of D fa given by the first n − 1 columns of the Jacobian matrix for D fa), and since ∂X2 f (a) is given
by the final column vector ∂n fi(x) it is also continuous at a. Wemay thus apply the previous theorem to conclude
that D fa exists and has matrix given by the Jacobianmatrix of partial derivatives (∂ j fi(a)) as required. □
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Remark 2.30. Note that in fact the proof of Corollary 2.29 doesn’t in fact need the full strength of the hypothesis
of the theorem –we assumed the existence and continuity of all of the partial derivatives of f at a, but it sufficed
to know the continuity for all but one of them to conclude that f is real-differentiable at a (as onemight suspect
considering the case n = 1 of course!) In practice however, this weaker hypothesis is rarely useful.

Definition 2.31. If X and Y are finite dimensional normed vector spaces and U is an open subset of X then if
f : U → Y , we say that f is continuously differentiable if9 D f : U → L(X,Y) is continuous. This is equivalent to
requiring the continuity of all of the partial derivatives ∂ j fi, where f = ( f1, . . . , fm) and 1 ≤ j ≤ n, 1 ≤ i ≤ m. We
will writeC1(U,Y) for the vector space of continuously differentiable functions on U taking values in Y .

*Remark 2.32. If f : U → Y and a ∈ U , we say that f is strongly differentiable at a if there is a linear map
T ∈ L(X,Y) such that, for any ϵ > 0 there is a δ > 0

‖ f (x) − f (y) − T (x − y)‖ ≤ ϵ‖x − y‖, ∀x, y ∈ B(a, δ).

Equivalently, limx,y→a ‖ f (x) − f (y) − T (x − y)‖/‖x − y‖ = 0. The linear map T is then the strong total derivative of
f at a. Taking y = a one sees immediately that if the strong total derivative exists, then f is differentiable and the
total derivative is equal to T . On the other hand, a functionwhich is differentiable at a point need not be strongly
differentiable there.

Modifying the proof of Theorem 2.29 by applying the same technique used for ∂X2 f to ∂X1 f as well, one can
show that if X and Y are finite-dimensional and the partial derivatives of f : U → Y exist in a neighbourhood of
a ∈ U and are continuous at a, then f is strongly differentiable at a.

2.7 Real-valued functions on an inner product space

Let E be a normed finite-dimensional vector space. (If you prefer you can take E to be Rn, the reason we do not
do that here is to try andmake clearer what structures are being used where).

If U ⊆ E is an open subset and f : E → R is differentiable on U , then its derivative D f takes values in
E∗ = L(E,R). If the norm on E comes from an inner product (v,w) 7→ v · w however, we can use it to identify E
and E∗ via the map δ : E → E∗, where δ(a)(v) = a · v for all a, v ∈ E.

Definition 2.33. If f : U → R is differentiable on U then we define∇ f : U → E to be the gradient vector field of
f , where∇ f (a) = δ−1(D fa). Thus∇ f (a) is characterized by the property that

D fa(v) = ∇ f (a) · v, ∀v ∈ E.

Example 2.34. If we take E = Rn, with the standard dot product, then we may view D fa as a row vector, with
entries ∂i f (a). The vector field∇ f (a) is then just the corresponding column vector.

∇ f (a) points in the direction of greatest change for f . More precisely, if v ∈ E is a direction vector with norm
1, the directional derivative at a of f in the direction v is

∂v f (a) = D fa(v) = ∇ f (a) · v.

By the Cauchy-Schwarz inequality, |∇ f (a) · v| ≤ ‖∇ f (a)‖.‖v‖ = ‖∇ f (a)‖, with equality if and only if v and∇ f (a)
are in the same direction. Thus themagnitude of the directional derivative of f at a ismaximizedwhen v is in the
direction of∇ f (a).

Another important observation about the gradient vector field is that it is a normal vector to the level sets of
f , that is, in a suitable sense, it is perpendicular to the level sets of f : If γ : (−1, 1) → Rn is a curve such that
f (γ(t)) = c for some constant c ∈ R, and p = γ(0), the gradient ∇ fp is perpendicular to γ′(0), the “velocity
vector” of γ at p, because, for all t ∈ (−1, 1) we have g(t) = f (γ(t)) = c, hence by Theorem 2.20:

0 =
dg
dt t=0

= D fγ(0)(γ′(0)) = ∇ f (p).γ′(0) = 0.

Wewill explore this in more detail when we discuss tangent spaces.
9Since, asX isfinite-dimensional,L(X,Y) = B(X,Y) is anormedvector space, itmakes sense toask ifD f : U → L(X,Y) is continuous.
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2.8 *Higher order derivatives

We briefly wish to discuss the notion of higher derivatives for functions f : U → Y , where as before, the domain
of f is an open subset U of a normed vector space X and its codomain is a normed vector space Y . There are two
ways of thinking about these, the first of which takes bases and works concretely with partial derivatives, while
the second works with the total derivative in a coordinate-free manner.

Given bases {v1, . . . , vn} ofX and {w1, . . . ,wm} ofY , we obtain the components fi of f as f (x) =
∑m

i=1 f j(x).w j,
and then the directional derivatives in the direction of the v js give the partial derivatives ∂ j fi. But these are just
real-valued functions on U , and hence we can consider all of their partial derivatives ∂ j1∂ j2 fi, where j1, j2 ∈
{1, . . . , n} and i ∈ {1, . . . ,m}. If these all exist and are continuous, we say that f is twice continuously differen-
tiable. Indeed we can proceed inductively and define:

Definition 2.35. If f : U → Y is as above and f =
∑m

i=1 fi.wi so that the fi are the components of f , we define
that higher partial derivatives of f inductively as follows: If k = 1 these are just the partial derivatives ∂ j fi,
(1 ≤ j ≤ n, 1 ≤ i ≤ m). For k > 1, we suppose that by induction we have defined the partial derivatives of order
k − 1, and write them as ∂β fi where β = ( j1, j2, . . . , jk−1) ∈ {1, 2, . . . , n}k−1. The k-th partial derivatives of f are
indexed by pairs (α, i) where α ∈ {1, 2, . . . , n}k and i ∈ {1, 2, . . . ,m}, where if α = ( j1, j2, . . . , jn) then setting
β = ( j2, . . . , jn) ∈ {1, 2, . . . , n}k−1 we define

∂α fi := ∂ j1(∂β fi)

= ∂ j1∂ j2 . . . ∂ jk fi.

We say that f is k-times continuously differentiable, and write f ∈ Ck(U,Y) , if the partial derivatives ∂α fi
exist and are continuous for allα ∈ {1, . . . , n}k and i ∈ {1, . . . ,m}. We say that f is smooth or infinitely differentiable
if thepartial derivatives of all orders k ≥ 1 exist, andwriteC∞(U,Y) for the spaceof smooth functions onU taking
values in Y .

Remark 2.36. One unsatisfactory aspect of this approach to the higher derivatives is that we do not get any
sense for how to think about the second derivative D(D( f )) of f . In the case of the first derivative, the total
derivative gives us the description of D fa as the “best linear approximation” to f near a. In the same way, we
gain a more conceptual understanding of the higher derivatives by considering the higher total derivative D(D f )
ofD f . Theorem2.29 shows that f ∈ C1(U,Y) if andonly if the total derivative exists and is continuous. The latter
condition makes sense because the total derivative D f is a function from U toL(X,Y), andL(X,Y) is a normed
vector space when equipped with the operator norm ‖.‖∞. By the same token, our definition of the derivative
makes sense, and we can ask if D f : U → L(X,Y) is (continuously) differentiable! This leads to an alternative
definition ofC2(U,Y), namely

C2(U,Y) =
{
f : U → Y : D(D f ) : U → L(X,L(X,Y)) exists and is continuous

}
.

To seehowthis relates toourdefinitionusingpartial derivatives, notice that our choice of bases forX andY allows
us to identifyL(X,Y) withMatm,n(R), the space of m × n matrices10. The space Matm,n(R) can then be identified
with Rmn, and the components of D f with respect to this identification are the (first) partial derivatives of f .11

Theorem 2.29 thus shows that D f is continuously differentiable if and only if all the second partial derivatives
exist and are continuous. In this way you can show by induction that the condition the k-th total derivative of f
exists and is continuous is equivalent to the condition that all the k-thpartial derivatives exist andare continuous.

We still, however, have not given a satisfactory answer to the question of how one should think of the second
derivative. with the total derivative approachwe see that D2 fa ∈ L(X,L(X,Y)), that is D2 fa is a linearmap from
X to the space of linear maps from X to Y . Which is a mouthful.

The standardway to deal with this issue is to notice thatL(X,L(X,Y)) can be less painfully thought of as the
space of bilinear maps from X × X to Y! The details of this identification are in the Appendices, and we content
ourselves here to trying to understand, explicitly, how one sees this for real-valued functions on an open subset
of a normed vector space X.

10If we associate a matrix to the linear map given by left-multiplication on column vectors, L(Rn,Rm) is identified with the space of
matrices with m rows and n columns.

11Here we are identifying the directional derivatives ∂Ei j (D f ) with the partial derivative associated to the subspaceR.Ei j.
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Example 2.37. Let X be an n-dimensional normed vector space, and let B = {e1, . . . , en} be a basis for X. Write
B∗ = {x1, x2, . . . , xn} ⊂ X∗ for the corresponding dual basis.

Suppose that U is an open subset of X and f : U → R is twice differentiable on U . The derivative of f is a
functionD f : U → L(X,R) = X∗. Its componentswith respect to thebasisB∗ ofX∗ are just thepartialderivatives
∂i f of f , since if D fa =

∑n
j=1 c j(a).x j, where c j(a) ∈ R, then

c j(a) = D fa(e j) = ∂e j f (a) = ∂ j f (a).

and so D f =
∑n

j=1(∂ j f )x j. But now, aswe already noted, the derivative D is a linearmap, hence to calculate D2 f
in terms of the second partial derivatives, we simply apply the same reasoning to each component ∂i f : U → R
of D f : Indeed since the derivative is linear, we have

D(D f ) = D

 n∑
i=1

∂i f .xi

 = n∑
i=1

D(∂i f )xi =

n∑
i=1

 n∑
j=1

∂ j(∂i f ).x j

 xi =
∑

1≤i, j≤n

(∂ ji f ).(x jxi).

In the second equality we use the fact that if w ∈ X∗ and g : U → R, then D(g.w) = (Dg).w, which follows, for
example, by the chain rule applied to the composition of gwith themap t 7→ t.w (for t ∈ R). Thuswe see that the
basis forL2(X,R) = L(X,L(X,R)) induced by our choice of basis {v1, . . . , vn} of V is the set {x jxi : 1 ≤ i, j ≤ n},
of pairwise products of the dual basis vectors.

It is useful to explicitlydescribe x j.xi as anelementofL2(X,R): if v1 ∈ X then (x j.xi)(v1) shouldbeanelement
of X∗, and wemay obtain one simply by applying x j to v1 to obtain x j(v1).xi. Explicitly, it is the functional which
assigns to a vector v2 ∈ X the scalar x j(v1)xi(v2).

But it is equally reasonable, however, to think of x j.xi as a real-valued function of a pair of vectors (v1, v2) ∈
X × X, namely the function (v1, v2) 7→ x j(v1).xi(v2). From this point of view it is easy to check that {x j.xi : 1 ≤
i, j ≤ n} is a basis of the spaceM2(X,R) of bilinear maps from X × X to R, and hence, since it is just a linear
combination of the x jx′i s we may view D2 fa as a bilinear form on X × X taking values in R. To see this more
concretely, if we let H = (∂ ji f ) be the Hessianmatrix of D2 f , and noting that if u ∈ X then u =

∑n
i=1 xi(u).ei, we

see that for any v,w ∈ X

D2 fa(v)(w) =
∑

1≤i, j≤n

(∂ ji f ).[(x jxi)(v)](w)
n∑

i, j=1

x j(v)(∂ ji f ).xi(w) = x(v)t.H.x(w)

where we write x(v) for the column vector (x1(v), x2(v), . . . , xn(v))t. Thus we see that the second derivative is
just the symmetric bilinear form given by the Hessian (where the symmetry is a consequence of the symmetry of
mixed partial derivatives – Appendix 5.2 gives more details on this which are however non-examinable).
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3 The Inverse and Implicit Function Theorems

In this chapter we will discuss the theorems which lie at the heart of all the main results of this course.

Lemma 3.1. LetΩ ⊂ L(X,Y) be the set of invertible linear maps from X to Y . The we have

1. The setΩ is open.

2. The inverse map ι : Ω→ Ω given by ι(α) = α−1 is continuous.

Proof. The first problem sheet asks you to establish this carefully. If X and Y have different dimensions, thenΩ is
empty and there is nothing to prove. If they have the same dimension, then there is an isomorphism γ : Y → X
and it induces a linear map γ∗ : L(X,Y) → L(X, X) given by α 7→ γ ◦ α. Its inverse is (γ−1)∗ and since in the
finite-dimensional setting all linear maps are continuous, it follows that γ∗ is a topological isomorphism, so we
may assume that X = Y . But thenΩ forms a group under composition, which acts on itself by leftmultiplication.
Since ‖α1◦α2‖∞ ≤ ‖α1‖∞.‖α2‖∞, this action is by homeomorphisms, hence it follows that to show thatΩ is open,
it is enough to check that it is a neighbourhood of IX . In fact we have B(IX , 1) ⊆ Ω.

To see this, note that any element of B(IX , 1) can be written as IX − H where ‖H‖∞ < 1. Now let sn(H) =∑n
k=0 Hk. Then sn(H)(IX − H) = IX − Hn+1, and since ‖Hn+1‖∞ ≤ ‖H‖n+1

∞ → 0, it follows that, if we can show
sn(H) converges, then its limit s(H) is (IX − H)−1, and so in particular IX − H ∈ Ω as claimed.

ButL(X, X) is complete (since it is finite dimensional) hence it suffices to show that (sn(H))n≥0 is a Cauchy
sequence. But if ‖H‖∞ = r < 1 then for m < n we have

‖sn(H) − sm(H)‖∞ = ‖
n−1∑
k=m

Hk‖∞ ≤
n∑

k=m+1

‖Hk‖∞ ≤
rm+1

1 − r
,

and so since rm/(1 − r)→ 0 as m→ ∞we see that (sn(H))n≥0 is Cauchy as required.
Finally, to see that the inversion map ι is continuous onΩ, the left action ofΩ on itself can again be used to

show that it suffices to check that ι is continuous at IX . But ι(IX) = IX , hence

‖ι(IX) − ι(IX − H)‖ = lim
n→∞
‖s0(H) − sn(H)‖∞,

but we saw above that ‖s0(H) − sn(H)‖ ≤ ‖H‖∞/(1 − ‖H‖∞)→ 0 as ‖H‖∞ → 0, hence ι is continuous at IX . □

3.1 The Inverse Function Theorem

Theorem 3.2. Suppose that X and Y are finite-dimensional normed vector spaces,U ⊆ X an open subset, and f : U →
Y is a differentiable function. If a ∈ U is such that D fa is invertible and D f is continuous at a, then there is an open
neighbourhood U1 ⊆ U of a such that f|U1 is a homeomorphism from U1 to V1 = f (U1) an open neighbourhood of
b = f (a). Moreover if g : V1 → U1 denotes the inverse of f , then g is differentiable with

Dgy = (D fg(y))−1, ∀y ∈ V1.

Thus by the Lemma 3.1, Dg is continuous at y whenever D f is continuous at x = g(y). In particular, Dg is continuous at
f (a).

Strategy of proof : Since linearmaps are their ownderivatives, one can replace f with (D fa)−1◦ f andhence assume
f : X → X and D fa = IX . Moreover, we can further replace f by f (x+ a)− f (a) and hence assume a = f (a) = 0.

We then write f (x) = x + φ(x), so that φ(x) measures the difference between f and the identity map. The
intuition is then that a function which is a “small perturbation” of the identity should remain invertible. The
insight is then that a “small perturbation” should be rigorously interpreted as a contraction mapping! Using the
Mean Value Inequality and the continuity of D f at 0X , one can show that, in B(0X , r) for small enough r, φ is
Lipschitz with a Lipschitz constant less than 1. This ensures f is injective on B(0X , r) and, by an application of
the contraction mapping theorem, that f (B(0X , r)) is a neighbourhood of 0X = f (0X). It then follows that there
is an open set V1 containing 0X such that f|V1 is a homoeomorphism and moreover both f and its inverse g are
Lipschitz continuous. It is then easy to check that the inverse function g is differentiable.

22



Remark 3.3. A few comments about the theorem:

• Checking the condition that D fa is invertible is straight-forward: It is equivalent to the non-vanishing of
the determinant J f (a) = det(D fa) of the Jacobianmatrix of D fa.

• Let U ⊆ X and V ⊆ Y be open subsets of normed vector spaces X and Y respectively. We say that a
continuously differentiable function f : U → Y is a diffeomorphism fromU toV if it is injective with image
f (U) = V , and its inverse g : V → U is continuously differentiable. The inverse function theorem can then
be stated as follows: Let f : D → Y be a continuously differentiable function on an open subset D ⊆ X
taking values in a normed vector space Y . If D fa is invertible, then there is an open neighbourhood U ⊆ D
of a on which f restricts to a diffeomorphism between U and its image f (U) ⊆ Y .

[Warning: some references may only require f and g to be differentiable, while others may require that f
and g are infinitely differentiable. To avoid ambiguity, one can also sayC1-diffeomorphism.]

• The formula for the derivative of g is forced on us by the chain rule – if g is differentiable, the chain rule
applied to the composite IY = f ◦ g, shows that IY = DIY = D f (g(y)) ◦Dg(y) and so Dg(y) = D f (g(y))−1.

• It is not sufficient, even if just wanted f to have a continuous inverse, for the function f to be differentiable
with f ′(a) invertible: Consider the example f : R → R, where f (x) = x + 2x2 sin(1/x), which is extended
by continuity to x = 0, so f (0) = 0. Then computing directly from the definition, we find f ′(0) = 1 (which
is invertible), but f is not injective in any neighborhood of 0.

[*For those who read Remark 2.32, the function f is differentiable but not strongly differentiable at x = 0.]

• The hypotheses of the theorem are also not necessary for f to have a continuous inverse – the function
f : R → R given by f (x) = x3 is continuous and has a continuous inverse x 7→ x1/3, however f ′(0) = 0 so
the inverse function theorem does not apply (and indeed the inverse function is not differentiable at 0).

• If f : U → Rn is continuously differentiable with D fx invertible for all x ∈ U , then although f (U) is open
in Rn (as we shall see below) f need not give a diffeomorphism between U and f (U). Indeed f need not
be injective. This happens already in two dimensions: Suppose that U = R2\{0} and f : U → R2 is given
by f (x1, x2) = (x2

1 − x2
2, 2x1x2). Then f (U) = U , and we have

D f(x1,x2) =

(
2x1 −2x2
2x2 2x1

)
.

Since det(D f(x1,x2)) = 4(x2
1 + x2

2) we see that D f(x1,x2) is invertible on all of R2\{0}. But clearly f (x1, x2) =
f (−x1,−x2), so that f is not injective onU . If however we assume in addition that f : U → Rn is injective,
then it is indeed a diffeomorphism from U to f (U) – see below.

3.2 *Proof of the Inverse Function Theorem

As noted above, by replacing f with D f −1
a ( f (x + a) − f (a)) we may assume that Y = X and D fa = IX , and that

a = f (a) = 0X .
Theheart of theproof is the followingProposition,whichestablishes a rigorousversionof the idea that a small

perturbation of the identity map should still be invertible, that is IX + φ should be invertible is φ is sufficiently
small” compared to IX . In the case of the space of linearmapsL(X, X), our proof of Lemma3.1 shows that B(IX , 1)
consists of invertible elements, so in this case a “small perturbation” can be taken to mean a linear map map
of operator norm strictly less than 1. But a linear map α has ‖α‖∞ < 1 exactly when it is a contraction (that
is, a Lipschitz map with a Lipschitz factor less than 1), and thus a natural candidate for a “small perturbation”
is a contraction map i.e. a Lipschitz map with Lipschitz constant less than 1. (Note this is consistent with the
requirement in the linear case at least!)

The next Proposition shows that using this notion of a small perturbation for functions defined on a closed
ball, the contractionmapping theoremdoes indeed provide the tools to show that such a perturbation has a con-
tinuous (in fact Lipschitz continuous) inverse, at least if we shrink the domain of f to a ball of smaller radius.
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Proposition 3.4. Let X be a finite-dimensional normed vector space. Suppose that for some r > 0,C ∈ (0, 1) we are
given a function φ : B̄(0X , r)→ X satisfying φ(0X) = 0X and

‖φ(x) − φ(y)‖ ≤ C.‖x − y‖ ∀x, y ∈ B̄(0, r).

Then if f : B̄(0X , r) → X is given by f (x) = x + φ(x), and y ∈ B̄(0, 1 −C).r), there is a unique x ∈ B̄(0, r) such that
f (x) = y. Moreover, the function g : B̄(0, (1 −C).r) → B̄(0, r) defined by f (g(y)) = y is Lipschitz continuous with
Lipschitz constant (1 −C)−1.

Proof. Given y ∈ B̄((, 0)(1 −C).r, let φy(x) = y − φ(x). Then we have

‖φy(x)‖ = ‖y − φ(x)‖ ≤ ‖y‖ + ‖φ(x)‖ ≤ (1 −C).r +C.r = r,

so that φy maps B̄(0, r) to itself. Since B̄(0, r) ⊂ X is closed and X is complete, B̄(0, r) itself is complete and
non-empty (since 0X ∈ B̄(0, r)). Moreover,

‖φy(x) − φy(x′)‖ = ‖φ(x′) − φ(x)‖ ≤ C.‖x − x′‖, ∀x, x′ ∈ B̄(0, r),

thus φy is a contraction on B̄(0, r). The Contraction Mapping Theorem thus implies that there is a unique point
xy with φy(xy) = xy, that is, f (xy) = xy + φ(xy) = y. Let g : B̄(0, r/2)→ B̄(0, r) be given by g(y) = xy.

To see that g is continuous, let y1, y2 ∈ B̄(0, r). Then if x1 = g(y1), x2 = g(y2) we have

‖ f (x1) − f (x2‖ = ‖(x1 − x2) + (φ(x1) − φ(x2)‖ ≥ ‖x1 − x2‖ − ‖φ(x1) − φ(x2)‖
≥ ‖x1 − x2‖ −C.‖x1 − x2‖ = (1 −C).‖x1 − x2‖,

thus ‖y1 − y2‖ ≤ (1 −C)−1.‖g(y1) − g(y2)‖ and hence g is Lipschitz continuous on B̄(0, (1 −C).r). □

The proof the Inverse Function Theorem for differentiable functions follows from this Proposition and two addi-
tional facts:

i) If D f0X = IX and D fx is continuous at 0X , then f is a “small” perturbation of IX in B̄(0X , r) for sufficiently
small r > 0, so that we can apply the above Proposition.

ii) The inverse function g given by the Proposition is differentiable at y = f (x) provided f is differentiable at
x.

The first of these is an easy consequence of theMean Value Inequality. Indeedwe can even choosewhich value of
C we prefer, for example wemay takeC = 1/2.

Lemma 3.5. Suppose that X is a finite-dimensional normed vector space, U ⊂ X is an open neighbourhood of 0X , and
let f : U → X be a differentiable function onU . If D f is continuous at 0X and D f0X = IX , then if φ : U → X is given by
φ(x) = f (x) − x, there is an r > 0 such that for all x, y ∈ B̄(0X , r) ⊂ U ,

‖φ(x) − φ(y)‖ ≤ 1
2
.‖x − y‖.

Proof. By definition, since f is differentiable at x ∈ U , so is φ. Indeed for all x ∈ U we have Dφx = D fx − In.
In particular, Dφ0X = 0L(X,X). Since Dφ is continuous at a, there is an r1 > 0 such that ‖Dφx‖∞ ≤ 1/2 for all
x ∈ B(0X , r1). But then by the Mean Value Inequality (Theorem 2.24), we have ‖φ(x) − φ(y)‖ ≤ 1

2‖x − y‖ for all
x, y ∈ B(0, r1) hence on B̄(0, r) for any r ∈ (0, r1). □

The final part of the proof, checking where the inverse function is differentiable, is also straight-forward:

Lemma 3.6. Suppose that X is a finite-dimensional normed vector space, U is an open subset of X, and f : U → X
a injective function whose image f (U) contains an open subset V . If g : V → U is the inverse of the restriction of f to
f −1(V) and g is continuous at b = f (a) ∈ V , where D fa is invertible, then g is differentiable at b and Dgb = (D fa)−1.
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Proof. By replacing f by x 7→ D f −1
a ( f (a + x) − f (a)) wemay assume that a = f (a) = 0X , and D f0X = IX , so that

f (x) = x + ϵ(x)‖x‖ (3.1)

where ϵ(x) is continuous at x = 0X and ϵ(0X) = 0X . In order to show that g = f −1 is differentiable at 0X with
derivative equal to I−1

X = IX , wemust show that g(y) = y + oX(‖y‖).
But now g(y) = x and f (x) = y, hence in terms of g, Equation (3.1) becomes g(y) = y − ‖g(y)‖ϵ(g(y)), and so

wemust show that ‖g(y)‖.ϵ(g(y)) ∈ oX(‖y‖), that is, wemust show

‖g(y)‖
‖y‖ .ϵ(g(y))→ 0 as ‖y‖ → 0.

But ϵ and g are continuous at 0X and ϵ(0X) = g(0X) = 0X , and hence ϵ(g(y)) → ϵ(g(0X)) = 0X as y → 0X .
Thus it suffices to show that ‖g(y)‖/‖y‖ is bounded for ‖y‖ small. But by the continuity of ϵ(g(y)), there is a δ > 0
such that if ‖y‖ < δ then ‖ϵ(g(y))‖ < 1/2. Thus if ‖y‖ < δ, since y = g(y) + ϵ(g(y).‖g(y)‖, we have ‖y‖ ≥
‖g(y)‖ − (1/2).‖g(y)‖ = (1/2).‖g(y)‖, and hence ‖g(y)‖/‖y‖ ≤ 2 as required. □

Remark 3.7. It is worth comparing the proof of the Inverse Function Theorem above to the proof of the single-
variable theorem. In that case, the differentiable inverse function theorem is also deduced from a continuous
inverse function theorem. This is oftenmisleadingly12 presented as follows: Each y ∈ V has y = g(x) for a unique
x ∈ U , or equivalently f (x) = y, hence

lim
y→y0

g(y) − g(y0)
y − y0

= lim
y→y0

g( f (x)) − g( f (x0)
f (x) − f (x0)

= lim
y→y0

x − x0

f (x) − f (x0)
= lim

x→x0

x − x0

f (x) − f (x0)
= 1/ f ′(x0)

The algebraicmanipulation is of course straight-forward, however the real content in the deduction is the justifi-
cation for the second-last equality, that is, showing that one can switch from taking limy→y0 to taking limx→x0 . It
is here that the continuity of the inverse function is essential, since if g = f −1 is continuous at y0 then and hence
if y→ y0 then g(y)→ g(y0), that is x→ x0, and thus the change of limit is indeed legitimate.

Remark 3.8. The continuous inverse function theorem in the single-variable case has a rather different proof
to the many-variable case. This is because it is usually stated for functions on a closed interval, f : [a, b] → R.
In this case, if f is injective, you can show it must be strictly increasing or decreasing, and replacing f with (− f )
if necessary we can assume it is increasing. It is then easy to see that the inverse, f −1 : f ([a, b]) → [a, b] is
also increasing, and by the Intermediate Value Theorem, f ([a, b]) is the interval [ f (a), f (b)]. But an increasing
function can only have “jump” discontinuities, i.e., the one-sided limits f (x0)+ = limx→x+0

f (x) and f (x0)− =
limx→x−0

f (x) both exist, and f (x0)− ≤ f (x) ≤ f (x0)+, but the inequalities may all be strict. Since the image
of f −1 is, by assumption, the interval [a,b], there can be no such discontinuities in the case of f −1, and so it is
continuous.

Thus, rather bizarrely, the continuity of the inverse in the one-dimensional theorem proved in Prelims is de-
duced from a criterion for continuity for increasing functions on an interval – namely that it is necessary and
sufficient for its image to be an interval. In higher dimensions there is no reasonable notion of an increasing or
decreasing function, so this argument does not generalise.

Remark 3.9. If, instead of assuming that f : U → Rn is differentiable on U with D f continuous at a = 0, we
assume only that it is strongly differentiable at a (see Remark 2.32), then one canmodify the proof of Lemma 2.9
to show that Proposition 3.4 still holds on B̄(0, r) for small enough r. Similarly, Lemma 3.6 can be adapted to
show that the inverse g is (strongly) differentiable at y if f is (strongly) differentiable at x = g(y).

**Remark3.10. One can in fact somewhatweaken thehypotheses of the Inverse FunctionTheorem inanumber
of ways: if U is an open subset ofRn and f : U → Rn has D fx invertible for all x ∈ U , then f is locally invertible
with differentiable inverse: More explicitly, for any a ∈ U there are open sets U1,V1 with a ∈ U1 ⊆ U and
f (a) ∈ U2 such that f restricts to a bijection from U1 to U2 and if g = f −1

|U1
: U2 → U1, then g is differentiable

with derivative D f −1
g(y) for all y ∈ U2. Indeed by the chain rule, it follows that invertibility of D fx for all x ∈ U is

equivalent to the local invertibility of f .
12In that it hides the key point in a subscript.
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More importantly, especially for applications in the study of partial differential equations, the inverse func-
tion theorem holds for continuously differentiable functions on open subsets of any complete normed vector
space, whether or not it is finite dimensional. In this context, the derivative must be a continuous linear map
(that is, a bounded linear map – see Section 1). Thus the condition that the derivative at a point be invertible has
to demand instead that the inverse linearmap exists and is bounded, but then thewhole theorem (and its proof)
go through just as above. In fact, it is the case (thoughwe do not quite have the tools to show it) that in a complete
normed vector space (the ones in which the inverse function theorem holds) if a linear map is invertible (i.e. has
a linear inverse) then its inverse is automatically continuous.

3.3 Applications of the Inverse Function Theorem

Definition 3.11. Let (X, d) and (Y, ρ) be metric spaces. A continuous function g : X → Y is said to be an open
mapping if, for any open set U ⊂ X, its image g(U) is open in Y . Notice that a continuous bijection is a homeo-
morphism precisely if it is an openmapping.

Corollary 3.12. Let U ⊂ Rn be an open set, and f : U → Rn be a continuously differentiable function such that D fx is
invertible for every x ∈ U . Then f is an open mapping.

Proof. LetV be an open subset ofRn contained in E. Wewant to show that f (V) is open. Pick b ∈ f (V). We need
to show that f (V) contains some open ball centered at b. Now b = f (a) for some a ∈ O, and the inverse function
theorem applies to f|V : V → Rn and a ∈ V . Hence there are open sets V1,V2 with a ∈ V1 ⊂ V and f (a) = b ∈ V2
such that f is a bijection between V1 and V2. But then there is a δ > 0 such that B(b, δ) ⊂ V2 = f (V1) ⊂ f (V),
and we are done. □

Remark 3.13. In fact the proof of this theorem used only the first part of the inverse function theorem – the fact
that the inverse of f on U is continuously differentiable was not needed.

Another consequence of the inverse function theorem is the following:

Corollary 3.14. Let E ⊂ Rn be an open subset and let f : E → Rn be continuously differentiable, such that f is injective
and D fx is invertible for all x ∈ E. Then f is a diffeomorphism between E and f (E).

Proof. Byassumption, given y ∈ f (E) there is aunique x ∈ E with f (x) = y, so thatwecandefineh : f (E)→ E by
setting h(y) to be this point x. But then g is continuously differentiable by the inverse function theorem, since at
any point y ∈ f (E), i f x = g(y) there are open setsU,V containing x and y respectively, such that f|U : U → V is a
diffeomorphism. But then g|V is continuously differentiable, and so g is continuously differentiable at y ∈ V . □

3.4 Systems of local coordinates and the Implicit Function Theorem.

The goal of our study of differentiable functions is to try to extend to such functions, in as much as this makes
sense, results from linear algebra. To try and make this analogy between results in the linear and non-linear
setting a littlemore concrete, consider the notion of coordinates on a vector space: IfX is an n-dimensional vector
space, then picking a basis BX = {v1, . . . , vn} of X gives us coordinates for the vectors in V : for any vector v ∈ X
we assign to it the coordinates (c1, . . . , cn) ∈ Rn where v =

∑n
i=1 civi. Equivalently, the basis defines an invertible

linear map θ : X → Rn given by sending BX to the standard basis of Rn. Thus giving such a map is equivalent
to giving a (linear) coordinate systems on X. In the setting of differentiable functions, diffeomorphisms play the
same role: if U is an open subset of X and f : U → Rn is a diffeomorphism onto its image f (U) ⊆ Rn, then we
can use the components of f to parameterise the points in U .

This gives one way of thinking of the Inverse Function Theorem, namely, it ensures that if U is open in X
and f : U → Rn is continuously differentiable, then if D fp is invertible, at least near p, f is a diffeomorphism.
In other words, if the derivative D fp gives (linear) coordinates on X, then, the components of f provide a (non-
linear) parameterization of neighbourhood of p.

Example 3.15. Suppose thatX is2-dimensionalwithbasis {v1, v2}. The functiong : R2 → X givenbyg : (r, s) 7→
r cos(s).v1 + r sin(s).v2 has Jacobian determinant Jg = r, thus if we let V = (0,∞) × (0, 2π), then g : V → U ,
where U = X\{t.v1 : t ≥ 0}, and Jg , 0 on all of V , so the inverse function theorem ensures that g has an inverse
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f : U → V = (0,∞) × (0, 2π). Since g( f (v)) = v, the function f simply assigns to v ∈ V its “polar coordinates”
(r, θ).

Note that U , the domain of f , is not all of X. If we wanted to enlarge the domain of definition of f , we would
need to extend g to some Ũ ⊇ U to make it bijective, but it we try and do this, two problems present them-
selves: Firstly, if (r, s) has s close to 2π and s′ close to 0, then g(r, s) and g(r, s′) will both be close to rv1, indeed
lims→2π g(r, s) = lims′→0 g(r, s′) = rv1. This forces the inverse of g to have a discontinuity at rv1 – the limits
limt↓0 g(rv1 + tv2) = (r, 0) while limt↑0 g(rv1 + tv2) = (r, 2π). Worse still, for 0X to lie in the image of g, we must
add to U an element of (0, s), say (0, s0) but for any s1 ∈ Rwe have limr→0 g(r, s1) = 0X , so that any choice of s0
will for f to be discontinuous at 0X . This latter problem is a consequence of the fact that, although g is defined on
all of R2, its derivative is only nonsingular when r , 0. The former problem is an example of the local nature of
the inverse function theorem – a continuously differentiable inverse is only guaranteed to exist sufficiently close
to the point you apply it to. This is often less problematic – for example with polar coordinates, although any
choice will have a discontinuity along any path which encircles the origin, we can control where this appears:
for example we can chose U′ = (0,∞) × (α, α + 2π) for the domain of g so that f is discontinuous on the ray
t(cos(α)v1 + sin(α)v2).

Definition 3.16. A pointed set is a pair (X, a) consisting of a set X and an element a of X. If (X, a) and (Y, b) are
pointed sets, then we will write f : (X, a) → (Y, b) to indicate that f is a function from X to Y which maps a to
b, that is, f (a) = b.for a function f : X → Y which satisfies f (a) = b, and refer to it as a map (or function) of
pointed sets.

Remark 3.17. Many algebraic objects are naturally pointed – a vector space X has a zero vector, any group has
an identity element etc.

Definition 3.18. Suppose that X is a normed vector space and p ∈ X. A system of local coordinates at p is a dif-
feomorphismψ : (U, p)→ (Ω, 0n) from a connected13 open neighbourhoodU of the origin p in X to a connected
open neighbourhoodΩ of 0n ∈ Rn. The standard coordinates (x1, . . . , xn) ofRn at 0n then give a system of coor-
dinates (t1, . . . , tn) at p, where, for y ∈ U , we set ti(y) = xi ◦ ψ(y), for i ∈ {1, . . . , n}.

If f : U → Rk is any function, then by the chain rule, f ◦ ψ−1 is continuously differentiable when f is, and
similarly, if a function g : Ω→ Rk is continuously differentiable, then so is g ◦ψ, since, asψ is a diffeomorphism,
bothψ andψ−1 are continuously differentiable. Thus themapψ∗ : C1(Ω,Rk)→ C1(U,Rk) given byψ∗( f ) = f ◦ψ
is an isomorphismof vector spaces,with inverse (ψ−1)∗where (ψ−1)∗(g) = g◦ψ−1. More prosaically, this just says
that if we wish to check if a function f : U → Rk is continuously differentiable, we just need to check that it is
continuously differentiablewhenviewedas a function of the coordinates (t1, . . . , tn) givenby thediffeomorphism
ψ.

In this sectionwewill use the Inverse Function Theorem to show that, for functions f ∈ C1(U,Rk), structural
information about the linear map D fp at a point p ∈ U can often be extended to give information about the
behaviour of f near p.

Our main example of this is the Implicit Function Theorem. The linear algebra toy model for this theorem is
the description of a surjective linearmapα : X → Y . If {v1, . . . , vl} is a basis for ker(α), thenwemay extend it to a
basis {v1, . . . , vk+l} of X. The images the additional vectors yield a basis of Y , and in the coordinates these provide
for X andY themapα takes the formα(t1, . . . , tk+l) = (tk+1, . . . , tk+l). Similarly, the basis {v1, . . . , vl} provide a set
of coordinates ψ : ker(α)→ Rl for ker(α).

From a computational point of view however, there is still the question of how one constructs the basis
{v1, . . . , vl} of ker(α). In practice if α : X → Y is a surjective linear map, it is likely to be given via its matrix
with respect to some bases BX , BY of X and Y respectively which have no particular compatibility with α.14. In
such cases, it may be easier to find a subspace X2 ⊆ X such that α|X2 : X2 → Y is actually bijective. Then, if we
pick any complementary subspace X1, wemay decompose α accordingly as α = (α1 + α2), where αi = α ◦ πi for
i = 1, 2 and the maps πi are the natural projection operators with images X1 and X2 respectively. For example,

13the assumption thatΩ is connected is not necessary, but it is easy to ensure – if V is an arbitrary open neighborhood of 0X then ifC
is the connected component of V containing 0X , it is again an open neighbourhood of 0X which is, of course, connected.

14In the context of experimental scienceor economics, for example, thebasesBX andBY are likely tobe constructed in away that reflects
those qualities we canmost readily measure.
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if we have chosen bases BX and BY for X and Y and A = BY [α]BX ∈ Matk,n(R) is the matrix of αwith respect to
these bases, then in low rank cases it is often not hard to find a k × k submatrix of A which has full rank. This
partitioning of the columns of A into two sets of size k and n − k then yield a correspond to a decomposition of
X into a direct sum X1 ⊕ X2. The following Lemma then shows that one can obtain a concrete description of the
kernel of α using this decomposition. (This is really the description one obtains from the reduced row eschelon
form of a matrix as in Prelims Linear algebra.)

Lemma 3.19. Let α : X → Y be a surjective linear map and suppose B = B1 t B2 is a basis of X such that if Xi =

Span(Bi), for i = 1, 2, then α|X2 : X2 → Y is an isomorphism. Then there is a linear map θ : X1 → X2 such that
ker(α) = {(x, θ(x)) : x ∈ X1}.

Moreover, if BY = α(B2) is a basis of Y , and is we set Bθ1 = {(b, θ(b)) : b ∈ B1}, then Bθ1 is a basis of ker(α) and if
Bθ = Bθ1 ∪ B2, then Bθ is a basis of X and the matrix BY [α]Bθ with respect to these bases is in the canonical form (0|Ik).

Proof. Let π1, π2 be the projection maps from X to X1 and X2 respectively (so ker(π1) = X2 and ker(π2) = X1). If
γ : Y → X2 is the inverse of α|X2 , wemay use it to identify Y with X2, that is, we replace αwith β = γ ◦ α, so that
wemay view α as a linear map from X to X2 where if βi = πi ◦ β then β = β1 + β2 and β2(x) = π2 ◦ γ ◦ α = π2(x).

Now let T : X → X be given by T (x) = π1(x) + β(x) = x + β1(x), so that in terms of the decomposition

X = X1 ⊕X2 wehave T =
(
π1 0
β1 π2

)
. Then T has inverse T−1(x) = x− β1(x). It follows that β(x) = 0 if and only

if π2(x) = β1(x), so that ker(α) = {(x, β1(x)) : x ∈ X1} as required. The final sentence then follows immediately
from the above. □

We now state the Implicit Function Theorem: Its formulation is almost identical to the linear algebra result
given above: we take a differentiable function f : U → Y in place of the linearmap α, but then, for a point p ∈ U
where the hypothesis of the previous Lemma are satisfied by the derivative D fp of our function at p, just as in
the case of the Inverse Function Theorem,we obtain a “local” consequence for the function f , that is, a statement
about the nature of our function in a neighbourhood of the point in question.

Definition 3.20. If X and Y are normed vector spaces and f ∈ C1(U,Y), and p ∈ U is such that D fp : X → Y
is surjective, the set Umax = {x ∈ U : D fx is surjective} is an open neighbourhood of p and we say that the
restriction of f to Umax is a submersion.

Exercise 3.21. Check that you see why Umax is open – compare with Lemma 3.1.

Theorem 3.22. (The Implicit Function Theorem.) Suppose that X and Y are normed vector spaces and we are given a
direct sum decomposition X = X1 ⊕ X2, with π1, π2 the corresponding projections to X1 and X2 respectively. Let U be
an open subset of X, and let f : U → Y be a differentiable function. If p = (x0, y0) ∈ U is such that f (x0, y0) = 0
and, for i = 1, 2, we write ∂i f (q) for the partial derivative ∂Xi f (q) of f with respect to Xi at q ∈ U , so that we have the
decomposition

D f = ∂1 f (q) ◦ π1 + ∂2 f (q) ◦ π2, ∀q ∈ U.

If ∂2 f (q) is continuous at p and ∂2 f (p) is invertible, then there are open neighbourhoods V1,W1 of the zero vectors
01 = 0X1 and 02 = 0X2 respectively, and a differentiable function θ : V1 × W1 → Ω, whereΩ ⊆ U is an open neigh-
bourhood of p, such that if θ(x, y) = (θ1(x, y), θ2(x, y)) then θ1(x, y) = x + x0, and if (x, y) ∈ Ω, then f (x, y) = 0 if and
only if (x, y) = (x, θ2(x − x0, 0)).

X1 ⊕ X2 V1 ×W1 Ω

X1 Y

π1

θ

f

Dgx

Equivalently, if g(x) = ψ2(x − x0, 0), then g is continuously differentiable, and if (x, y) ∈ Ω then f (x, y) = 0 if
and only if y = g(x). That is, withinΩ, the set f (x, y) = 0 can be described as the graph of g : V1 → X2. Moreover, the
derivative of g is given by

Dgx = −∂2 f (x, g(x))−1 ◦ ∂1 f (x, g(x))
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Proof. (Non-examinable:) Let β : Y → X2 be the inverse of ∂2 f (p). By replacing f with β ◦ f , wemay assume that
f : X → X2 and that ∂2 f (p) = π2. Similarly, by replacing f by f (x0 + x, y0 + y) − f (x0, y0), we may assume that
p = 0X = f (0X). DefineG : U → X be given by

G(x, y) = (x, f (x, y)), x ∈ X1, y ∈ X2.

so that G(0X) = G(x0, y0) = 0X . Then, for any q = (x, y) ∈ U decomposing D fq = ∂1 f (q) ◦ π1 + ∂2 f (q) ◦ π2
according to the direct sum decomposition of X, we have

DGq =

(
IX1 0

∂1 f (q) ∂2 f (q)

)
∀q ∈ U

ThusG is differentiable, and continuouslydifferentiablewherever f is. Moreover, since∂2 f (p) = IX2 is invertible,
it follows that DGp is invertible. It follows from the Inverse Function Theorem that there is an open setΩ ⊆ U
with 0X ∈ Ω such that G|Ω : Ω → V = G(Ω) is a diffeomorphism from Ω to an open set V which contains
0X = G(0X). It follows that we may find open neighbourhoods V1 and W1 of 0X1 and 0X2 respectively such that
V1 × W1 ⊆ V , and if we let θ = (G|Ω)−1, then θ(V1 × W1) ⊆ Ω is an open subset of X containing 0X , so that by
replaceΩwith θ(V1 ×W1) wemay assume V is a product of the form V1 ×W1.

Now if, for (s, t) ∈ V1 ×W1 we set θ(s, t) = (θ1(s, t), θ2(s, t)) ∈ X1 ⊕ X2, then if (x, y) ∈ Ω, we haveG(x, y) =
(x, f (x, y)), hence (x, y) = θ ◦ G(x, y)) = θ(x, f (x, y)). In particular, since G is surjective θ1(s, t) = s. Moreover,
f (x, y) = 0 if and only if (x, y) = θ2(x, 0X2).

It follows that if we let N( f ) = {(x, y) ∈ U : f (x, y) = 0} and g : V1 → X2 be given by g(x) = θ2(x, 0X2), then
N( f ) ∩Ω = {(x, g(x)) : x ∈ V1}.

Thus the theorem is proved except for the expression for the derivative of g(x) = θ2(x, 0). But this follows by
invertible the matrix of DGq above, or by noting 0 = f (x, g(x)), which implies by the chain rule that

0 =
(
∂1 f (x, g(x)) ∂2 f (x, g(x))

) ( IX1

Dgx

)
.

and hence ∂1 f (x, g(x)) + ∂2 f (x, g(x)) ◦ Dgx = 0, so that Dgx = −∂2 f (x, g(x))−1∂1 f (x, g(x)). □

Remark 3.23. This result is called the “Implicit Function Theorem” because one can view it as saying that, if
we pick a basis for Y and consider the corresponding real-valued functions fi given by the components of f with
respect to this basis, then provided the linear map ∂2 f (x0, y0) is invertible, the system non-linear of equations
fi(x, y) = 0 for i = 1, 2, . . . , k, can be solved, in the sense that the equations implicitly make the y-variables
functions of the x-variables, at least locally near (x0, y0), as the existence of the function g demonstrates.

In this sense, the theoremgives a rigorous justification for the calculus technique of “implicit differentiation”
– compare that technique to the calculation of Dg at the end of the above proof.

Corollary 3.24. (Local normal form for a submersion): We can also formulate the Implicit Function theorem in terms
of local systems of coordinates: Pick a basis B1 of X1 and BY of Y , so that if B2 = ∂2 f (p)−1(BY ), then B2 is a basis of
X2 and BX = B1 t B2 is a basis of X. Then using θ we obtain a system of local coordinates, (t1, . . . , tn) say, for (Ω, p),
where (x, y) ∈ Ω has coordinates (t1, . . . , tn) if θ1(t1, . . . , tn) = x and θ2(t1, . . . , tn) = y. With respect to this system
of local coordinates, and the linear coordinates on Y given by BY , it follows immediately from the definition of G that, if
n = dim(X) and k = dim(Y), then the map f takes the form (t1, . . . , tn) 7→ (tn−k+1, . . . , tn).

Proof. This follows immediately from the discussion above. Note that in this formulation, the theorem shows
that the components of f can be extended to a local systemof coordinates for X near p provided f is continuously
differentiable and D fp has full rank (i.e. there is a subspace X2 of X for which the restriction D fp|X2 : X2 → Y is
an isomorphism). □

Example 3.25. In this example, we will write z for a general vector in R4 and write z = (x, y) where x ∈ R2,
y ∈ R2. Let f : R4 → R2 be given by

f (x1, x2, y1, y2) = (x2
1 − x2

2 + y2
1 + 2y2

2, x
2
1 + x2

2 − y2
1 − y2

2),

29



and consider the level set M = f −1{(1, 2)} of f , so that

M =
{

z = (x1, x2, y1, y2) ∈ R4 :
x2

1 − x2
2 + y2

1 + 2y2
2 = 1

x2
1 + x2

2 − y2
1 − y2

2 = 2

}
.

The total derivative D fz has Jacobianmatrix

D fz = (D f1,x|D f2,y) =
(

2x1 −2x2 2y1 4y2
2x1 2x2 −2y1 −2y2

)
, (3.2)

Thus considering 2×2 submatrices, we see thatD f has rank 0 only at z = 04, and rank 1 if z lies on the coordinate
axes (i.e. all but one of x1, x2, y1, y2 equal to zero), or if x1 = y2 = 0. Everywhere else D fz hasmaximal rank. Now
if x ∈ M we have 2x2

1 + y2
2 = 3, hence M does not intersect the plane {z ∈ R4 : x1 = y2 = 0}. Similarly it is

easy to see that M does not intersect the coordinate axes, and hence D f has maximal rank on all of M. (In the
terminology of the next section, this means that M is a 2-dimensional submanifold ofR4.)

We now consider how to parametrize M. Using Theorem 3.22, and noting that the final two columns form
an invertible matrix provided y1y2 , 0, we see that in a neighbourhood of a point p = (a, b, c, d) ∈ M for which
c.d , 0, the condition that f (x1, x2, y1, y1) = (1, 2), i.e. implicitly defines a function g in a neighbourhoodof (a, b)
such that

f (x1, x2, y1, y2) = (1, 2) ⇐⇒ (y1, y2) = g(x1, x2),

that is, locally near p, the level set M is the graph of a function.
The theorem however does not produce the parameterizing function g = (g1, g2). However, it does allow

us to calculate the derivative Dgx: If z = (x, g(x)) we have Dgx = −D f −1
2,g(x)D f1,x, where, as in (3.2) we write

D fz = (D f1,x|D f2,y). Explicitly this becomes:

Dgx =

(
∂1g1 ∂2g1
∂1g2 ∂2g2

)
= −(4g1g2)−1

(
−2g2 −4g2
2g1 2g1

)
.

(
2x1 −2x2
2x1 2x2

)
= (4g1g2)−1

(
12x1g2 4x2g2
−8x1g1 0

)
.

=

(
3x1/g1 x2/g1
−2x1/g2 0

)
.

Indeed one can view the Implicit Function Theorem (or indeed the Inverse Function Theorem) as asserting the
unique solution to a system of differential equations. Of course in general we may not be able to readily solve
these equations explicitly, but this example is simple enough that we can:

To start, note that ∂2g2 = 0, so g2 is independent of x2, while g2.∂1g2 = −2x1 so that the only equation
governing g2 is ∂1g2 = 2x1/g2. Indeed we already noted that on M, 2x2

1 + y2
2 = 3, that is, 2x2

1 + g2
2 = 3, hence

g2(x1, x2) = ±
√

3 − 2x2
1, where the sign will be determined by the sign of d, the corresponding coefficient of p.

Note that we have ∂1(
√

3 − 2x2
1) = −2x1/

√
3 − 2x2

1 as expected. Having determined g2, it is not so difficult to
determine g1, using, for example, the first component of f :

g1(x1, x2) = ±
√

1 − x2
1 + x2

2 − 2.(3 − 2x2
1) = ±

√
3x2

1 + x2
2 − 5,

where again, the sign is determined by that of the corresponding coefficient of p (which is c in this case). Note
again that ∂1g1 = 3x1/g1 and ∂2g1 = x2/g1. Thus we have

(g1(x), g2(x)) =
(
±

√
3x2

1 + x2
2 − 5, ±

√
3 − 2x2

1

)
Example 3.26. Amore abstract application of the Implicit Function Theorem is a “smooth” version of the prob-
lem of extracting the roots of a polynomial equation. It is a famous result of Abel and Ruffini15 that for equations

15This predates Galois, who developed a complete theory in which the Abel-Ruffini theorem sits as a special case.
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of degree n = 5 andhigher, one cannot express the roots of a polynomial equation p(t) =
∑n

k=0 aktk “in radicals” –
that is, using only the ordinary algebraic operations alongwith taking k-th roots for k ≤ n. One can still however,
consider how a root of p varies aswe continuously vary the coefficients a = (ak) ∈ Cn+1. It seems intuitively clear
that a root will move continuously with the coefficients, and the Implicit Function Theorem allows us to make
this precise:

Suppose that c ∈ C is a simple root of p(t) - so (t− c) divides p but (t− c)2 does not. Equivalently p(c) = 0 but
p′(c) , 0. Let f : Cn+2 → C be the function f (a0, . . . , an, t) =

∑n
k=0 aktk, that is, f is the function obtained from

p by viewing it as a function of t and of all of its coefficients. Then ∂t f (a, c) = p′(c) , 0, so that if we decompose
Cn+2 = Cn+1 ⊕ C, the implicit function theorem shows that there is an open neighbourhood V of (a, c) in which
f (x, t) = 0 if and only if t = g(x), where g(a) = c.

Since a polynomial is smooth (i.e. infinitely differentiable)we can conclude that g(x) is also smooth. Thus the
roots of a polynomial (at least when they are simple) are smooth functions of the coefficients, even if they cannot
be written in the form of radicals as the mathematicians of the 17th century had wished.

*Remark 3.27. In the setting of infinite dimensional complete normed vector spaces, the Inverse Function The-
orem can be used to prove a version of the Implicit Function Theorem. Such a result can be used to prove a version
of Picard’s Theorem on existence and uniqueness of solutions to differential equations. See [R] for more details.

3.5 Lagrangemultipliers

Suppose first that X is a normed vector space andU is an open set in X with f : U → R a differentiable function.

Lemma 3.28. If f : U → R has a local minimum at a ∈ U , so that for some r > 0 we have g(a) ≤ g(x) for all
x ∈ B(a, r), then Dga = 0.

Proof. Suppose for the sake of contradiction that Dga , 0. Then we may find v ∈ X such that Dga(v) > 0 and
‖v‖ = 1. For t ∈ R let γ(t) = a + t.v, then γ−1(U) is an open set in R containing 0, hence for some δ > 0, the
function g ◦ γ is defined on (−δ, δ). Now by definition we have

0 ≤ g(x) − g(a) = Dga(x − a) + ‖x − a‖η(x),

where η(x)→ 0 = η(a) as x→ a. Thus for all t ∈ (−δ, δ) we have

0 ≤ g(γ(t)) − g(a) = t.[Dga(v) ± η(a + t.v)].

But since η(a + t.v)→ 0 as t → 0, and Dga(v) > 0, there is a δ1 < δ such that if t ∈ (−δ1, δ1) then Dga(v) ± η(a +
tv) > Dga(v)/2. But then for all t ∈ (−δ1, 0) the inequality above cannot hold, giving a contradiction. □

Wenowwish to study the problem ofminimizing g : U → R given constraints on x ∈ U . Before formulating
the general result, consider the problem of trying to minimize a function g : R3 → R on a surface S = {x ∈ R3 :
f (x) = 0}. In the unconstrained setting, as we just saw, if a point a ∈ R3 is a local minimum for g wemust have
∇g(a) = 0: This need not be the case in the constrained setting.

Example 3.29. Let f (x) = x2
1 + x2

2 + x2
3 − 1, and let S = {x ∈ R3 : f (x) = 0}. Suppose that wewish tomimimize

g(x) = x3 on S . Clearly Dgx = (0, 0, 1) never vanishes, but it is easy to check that p = (0, 0,−1) minimizes g on
S . Notice that, since D fx = 2(x1, x2, x3), so that at p we have 2Dgp + D fp = (0, 0, 2) + (0, 0,−2) = 0.

This dependence is not a coincidence: In the proof of Lemma 3.28, when Dgp , 0 we can find a direction to
move in where the linear approximation to g, given by Dgp increases in value (and so decreases in the opposite
direction) and that the approximationhas an error ofmagnitudeoY (‖x−a‖) suffices to show that the failure of the
linearized problem to have a local minimum forces the same to be true of the original nonlinear problem. In the
situation of the constrainedminimum in this example, D fp(x) = 0 can be seen as the linear approximation to the
non-linear constraint f (x) = 0 near p. If Dgp and D fp aremultiples of each other, then Dgp actually vanishes on
the locus given by the linearized constraint D fp(x) = 0. This suggests the replacement for the condition Dgp = 0
in the unconstrained problem should be that Dgp vanishes on the linearization at p of the constraint f (x) = 0,
that is, we should have ker(D fp) ⊆ ker(Dgp).
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To make this observation into a theorem, we need to show that the linearised problem is a good enough ap-
proximation to theoriginalnon-linear constrainedoptimizationproblemfor the linear conditionwe justobtained
to remain necessary in the original problem. But this is exactly what the Implicit Function Theorem does for us!

Theorem 3.30. Suppose that U is an open subset of a finite-dimensional normed vector space X and g : U → R is
continuously differentiable. Let f : U → Rk be constraint function, and consider the optimization problem given by
seeking to minimize g(x) subject to x ∈ S = {x ∈ U : f (x) = 0}.

If z is a local minimum for g on S , then if D fx0 has rank k, there exist scalars λ0, λ1, . . . , λk ∈ R such that

λ0Dgz +

k∑
i=1

λiD fi,z = 0,

where f (x) =
∑k

i=1 fi(x).ei, with {ei : 1 ≤ i ≤ k} the standard basis ofRk.

Proof. The hypothesis of the theorem ensures that we can apply the Implicit Function Theorem: D fz has rank k,
hence there is a subspace X2 ≤ X on which D fz restricts to give an isomorphism from X2 to Rk. If we pick any
complementary subspace X1, then the Implicit Function Theorem shows that there is an open neighbourhoodΩ
of z in which there is a system of local coordinates (t1, . . . , tn) for which f = (tn−k+1, . . . , tn). Thus restricting g to
f (x) = 0 simply sets tn−k+1 = . . . tn = 0, and hence from the previous Lemmawemust have

Dgz = (∂1g(z)|∂2g(z)) = (0|∂2g(z)),

and hence Dgz lies in the span of {Dti : i ≥ n − k + 1}, or equivalently the span of {D fi : 1 ≤ i ≤ k}, which is
equivalent to the existence of the linear dependence in the statement of the theorem. □

Remark 3.31. Since the hypothesis of the Theorem assumes that D fz has rank k, and the Jacobianmatrix of D fz
has rows given by the derivatives of the components D fi,z, these are linearly independent, so that the scalar λ0
must be non-zero. It follows that one can rescale the λi to ensure λ0 = 1, and some texts will state the result this
way. (In practice, in some situations the calculations are tidier setting λ0 = 1 and in others it can be easier not to
distinguish λ0 in this way.)

Example 3.32. Consider the problem of finding the extrema of the function g : R3 → R given by

g(x1, x2, x3) = x1 + x2 + 3x3,

subject to the constraints that x = (x1, x2, x3) must satisfy ( f1(x), f2(x)) = (2, 1) where

f1(x) = x2
1 + x2

2, f2(x) = x1 + x2 + x3.

That is, x lies on the cylinder of radius
√

2 centred along the x3-axis and on the plane perpendicular to (1, 1, 1)
passing through 1

3 (1, 1, 1). LetC = {x ∈ R3 : f1(x) = 2, f2(x) = 1} denote this locus, a level-set of f : R3 → R2,
where f = ( f1, f2).

It is easy to check thatC is bounded, and hence as any level-set is closed, it is compact. It follows g attains a
maximum and minimum on C. By the Lagrange multiplier theorem, at such an extremum c = (c1, c2, c3) there
must exist scalars λ1, λ2 ∈ R such that

Dgc = λ1D f1,c + λ2D f2,c,

and hence
(1, 1, 3) = λ1(2c1, 2c2, 0) + λ2(1, 1, 1).

Thus λ2 = 3, and hence 2λ1c1 = 2λ1c2 = −2. It follows that c = (−λ−1
1 ,−(λ1)−1, c3). The constraint f1(c) = 2

then implies λ1 = ±1 so that since f2(c) = 1 we see that if we set c± = (±1,±1, 1 ∓ 2), the points c± are the
only possibilities for extrema of g onC, and sincewe know g attains amaximumandminimumvalue, we see that
−1 = g(c+) ≤ g(x) ≤ g(c−) = 7 for all x ∈ C.
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Example 3.33. Let us prove the Cauchy-Schwarz inequality using Lagrange multipliers. Thus we wish to show
that, for any two vectors a, b ∈ Rn we have |a · b| ≤ ‖a‖.‖b‖. This is trivially true if either a or b is zero, so wemay
assume both are non-zero. But thenwemay rewrite the inequality as (a/‖a‖) · (b/‖b‖) ≤ 1. Since a/‖a‖ and b/‖b‖
are unit vectors, we are thus reduced to the following:

Problem: Maximize x · y for x, y ∈ Rn subject to the contraints that ‖x‖ = ‖y‖ = 1.

Let us formulate this in the language of Theorem 3.30. Let g : R2n = X1 ⊕ X2 (the span of the first n and last
n standard basis vectors respectively) be given by g(x, y) = x · y (thus we use the same notational conventions as
in Theorem 3.22) and let f : R2n → R2 be given by f (x.y) = (x · x, y · y). We wish to maximize g subject to the
condition that (x, y) ∈ S = {(x, y) ∈ R2n : f (x.y) = (1, 1)}.

Now S is clearly compact (as it is closed and bounded) hence g attains a maximum value on S . Now for any
(x, y) ∈ S we have D f1,(x,y) = 2(x, 0) and D f2,(x,y) = 2(0, y), and hence rank(D f(x0,y0)) = 2, so that S is a 2n − 2-
dimensional submanifold of R2n. Hence, by Theorem 3.30, if p = (x0, y0) is a local maximum for g on S , there
must exist scalars λ1, λ2 ∈ R, not all zero, such that

Dg(x0,y0) = λ1D f1,(x0,y0) + λ2D f2,(x0,y0).

Now it is easy to see that Dg(x0,y0) = (y0, x0), hence the previous equation becomes

(y0, x0) = (2λ1.x0, 2λ2.y0),

so that, taking components inRn andRn
n wemust have

y0 = 2λ1.x0, x0 = 2λ2.y0.

But then we must have y0 = λ1.x0 and x0 = λ2.y0, so that λ1λ2 = 1, and since ‖x0‖ = ‖y0‖ = 1, we must have
|λ1| = |λ2| = 1 and hence either x0 = y0 or x0 = −y0. Since g(x0, x0) = ‖x0‖ = 1 and g(x0,−x0) = −‖x0‖ = −1, it
follows immediately that−1 ≤ g(x, y) ≤ 1 on S and we obtain the equalities g(x, y) = ±1 if and only if x = ±y.
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4 Submanifolds of a normed vector space

4.1 Definition and basic properties

The goal of this section is to apply the inverse and implicit function theorems to geometry. The theorems allow
us to show the equivalence of two natural definitions of a smooth surface in R3, and, more generally, define the
notion of a submanifold of a normed vector space X.

Example 4.1. Let S = {x ∈ R3 : x2
1 + x2

2 + x2
3 = 1} is the standard unit sphere. It is smooth (in a sense that we

have yet tomake precise) andwe can describe the pointswhich lie on it in (at least) twoways. The first is implicit
in the definition – a point p = (x1.x2.x3) lies in S if the function f (x1, x2, x3) = x2

1 + x2
2 + x2

3 evaluates to 1 on p,
that is, S is a level set of the function f .

The secondway to describe points on S is via a parametrization: for example, themap ϕ : [−1, 1]× [−π, π)→
R3 given by (t, θ) 7→ (cos(θ).

√
1 − t2, sin(θ).

√
1 − t2, t) has S as its image, thus we can use the parameters (t, θ)

to study S . Note that our parametrizing map ϕ is not injective, though it is on much of its domain. In general
we will usually only be able to obtain parametrizations of a surface locally, that is, given a point p on our surface
S , we will show that there is a diffeomorphism from an open subset U of R2 to an open subset V of our surface
containing p.

On the other hand, if we only wish to obtain parametrizations for open subsets of a surface, we can often use
the Implicit Function Theorem to turn the condition f (x1, x2, x3) = 0 into an equation for one of the variables
in terms of the others. For example, if H3 = {x ∈ R3 : x3 > 0}, then on H3 ∩ S we may write S as the graph

of h(x1, x2) =
√

1 − x2
1 − x2

2, that is, in H3 we have x ∈ S if and only if S ∈ graph(h) = {(x1, x2, h(x1, x2)) :

(x1, x2) ∈ V}, where V = {(x1, x2) ∈ R2 : x2
1 + x2

2 < 1}.

Definition 4.2. Let M ⊆ X be a closed subset of an n-dimensional normed vector space X. We say that M is a k-
dimensional submanifold ofX if, for every point p ∈ M, there is anopen subsetU ofX containing p anda smooth16

function f : U → Y , where Y is an (n − k)-dimensional normed vector space, such that M ∩ U = f −1(0), and at
each p ∈ M ∩ U the derivative D fp has maximal rank, that is rank(D fp) = n − k.

We say that M is Ck if we can choose f ∈ Ck(U,Y) where k ∈ N ∪ {∞}. If k = ∞ we say M is a smooth
submanifold ofRn.

Informally, this definition says that, locally (i.e. near any given point of M) the submanifold is given as the
level-set of n − k smooth functions (the components of f ) which are not “tangent to each other” – this last re-
quirement being captured by the rank condition.

The Implicit Function Theorem allows us to relate this definition to the second method of understanding
surfaces discussed above, namely, via parametrizations. In the next theorem, for k ≤ n we viewRk as a subspace
ofRn spanned by {e1, . . . , ek}.

Theorem4.3. Let M be a k-dimensional submanifold of an n-dimensional normed vector spaceX, and let p ∈ M. Then
there is a direct sum decomposition X = X1 ⊕X2 where dim(X1) = k, dim(X2) = n− k, and open neighbourhoodsV and
U1 ×U2 of p and 0X respectively, where for i = 1, 2, Ui is an open subset of Xi, and a diffeomorphismψ : U1 ×U2 → V
such that M ∩ V = ψ(U1 × {0X2}). In particular,ψ|U1×0X2

: U1 → M ∩ V gives a parametrization of M ∩ V .

Proof. Bydefinition, there is anopen setV1 containing p anda function f : V → Rn−k such thatV1∩M = {x ∈ V :
f (x) = 0n−k}, and rank(D fx) = n − k for all x ∈ V1. But then Theorem 3.22 shows that there is a diffeomorphism
ψ : U → V ⊆ V1, whereU an open neighbourhood of 0n andV1 ⊆ V is an open neighbourhood of p, such that in
the coordinate system (t1, . . . , tn) given by ti = xi ◦ψ−1, the function f is given by (tk+1, . . . , tn) (that is, for v ∈ V1,
we have f (v) = (tk+1(v), . . . , tn(v))). Moreover, the functions (t1, . . . , tk) parameterise the submanifold M on the
open subset M ∩ V of M: if (t1, . . . , tk, 0, . . . , 0) ∈ Rk ∩ U , and we set ϕ(t1, . . . , tk) = ψ(t1, . . . , tk, 0, . . . , 0) then
ϕ(t1, . . . , tk) ∈ M ∩ V and if u ∈ M ∩ V then u = ϕ(t1, . . . , tk) for ti = xi ◦ ψ−1.

□
16At least continuously differentiable, but many texts automatically assume infinitely differentiable.
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Remark 4.4. The Implicit Function Theorem shows that, at least locally, a submanifold M can be viewed as the
graphof aC1 function. Toput it anotherway, let us define a k-dimensional subgraphold17 of a normedvector space
X to be a subset M ⊆ X such that, for any point a ∈ M, there is an open neighbourhood U of a together with a
decomposition X = X1 ⊕X2 with dim(X1) = k, and a functionψ ∈ C1(U ∩ (a+X1),V2) such that M ∩U = Γ(ψ),
where Γ(ψ) = {(v, ψ(v)) : v ∈ U ∩ (a + V1)} is the graph of ψ. In this terminology, the previous discussion
shows that that any k-submanifold of X is a k-subgraphold. In fact the converse is also true: indeed, as we show
in Lemma 4.7 below, ifV = V1 ⊕V2 and ϕ ∈ C1(Ω1,V2) for some open subsetΩ1 ⊆ V1 ofV1, then Γ(ϕ), the graph
of ϕ, is always a submanifold of V .

Thus the two notions – that of submanifold and subgraphold are equivalent, and we can use either local de-
scription to study submanifolds. One advantage of the definition in terms of level-sets is that it does not require
introducing an auxiliary decomposition ofRn into a direct sum.

*Remark 4.5. Our definition of a k-dimensional sub-manifold M is a subset of a normed vector space X which
is locally given as a level-set for aC1-function f taking values in an (n− k)-dimensional vector space Y for which
D fx has rank n − k. Theorem 4.3 shows that, if M is a submanifold, then M is locally given as the image of a C1-
map ψ from an open subset V of a k-dimensional normed vector space Z, where Dψ has rank k. This is, a priori
strictly weaker, since the domainV is not identifiedwith an open subset of a subspace X1 of X in such away that
the image of ψ takes values in a complementary subspace.

Nevertheless, it turns out to be true that if M ⊆ X is locally given as the image of an injective C1-map from
a suitable open subset V of a k-dimensional normed vector space Z whose derivative has rank k at each point of
V , then M is a sub-manifold in the sense of Definition 4.3: More precisely, if V ⊆ Rk is an open subset of Rk and
ψ ∈ C1(V,Rn) we say that ψ is an immersion if rank(Dψp) = k for all p ∈ V . The immersion criterion states that
a subset M ⊆ Rn is a k-submanifold in the sense of Definition 4.2 if, for every a ∈ M there is a neighbourhood
Ua of a, and an immersion ψ ∈ C1(B(0k, r),Rn) from an open ball of radius r > 0 centred at 0k ∈ Rk such that
ψ(0k) = a and M ∩ Ua = im(ψ). For more details on this see Appendix 5.4.

Example 4.6. Suppose that g : R2 → R is given by g(x1, x2) = x1x2. Then Dg(x1,x2) = (x2, x1) and hence
rank(Dg(x1,x2)) = 1 unless (x1, x2) = (0, 0). Then for all c , 0, the level-sets Lc = g−1(c) are smooth 1-
submanifolds of R2, but L0 = g−1(0) = {(x, 0) : x ∈ R} ∪ {(0, y) : y ∈ R}, which is not smooth at the origin
(0, 0), exactly the point where Dg fails to havemaximal rank.

On the other hand, if V1 and V2 are normed vector spaces and ψ ∈ C1(U,V2) is a continuously differentiable
function on an open subset U of V1 taking values in V2, then if we set

Γ(ψ) = {(v, ψ(v) : v ∈ U} ⊂ V = V1 ⊕ V2,

then the following Lemma shows that Γ(ψ) is always a submanifold of V .

Lemma 4.7. Let X1, X2 be finite-dimensional normed vector spaces, and suppose that ψ ∈ C1(Ω, X2) is a continuously
differentiable function on an open subsetΩ of X1 taking values in X2. Then the graph Γ(ψ) = {(v, ψ(v)) : v ∈ Ω} is a
submanifold of X = X1 ⊕ X2.

Proof. But if we let g : Ω1 × X2 → X2 be given by g(v1, v2) = v2 − ϕ(v1), then clearly g ∈ C1(Ω1 × X2, X2)
and (v1, v2) ∈ Γ(ϕ) if and only if g(v1, v2) = 0. Moreover, if a = a1 + a2 ∈ X1 ⊕ X2, then Dg(a1,a2)(v1, v2) =
−Dϕa1(v1) + v2. Thus for any v2 ∈ X2 and any a ∈ Ω1 × X2 we have Dga(0, v2) = v2, and hence the derivative
Dg(a1,a2) is surjective for all a ∈ Ω1 × X2. Thus Γ(ϕ) is a k-submanifold ofRn, where k = dim(X1). □

Example 4.8. The simplest case of the previous Lemma is when V1 = R
n and V2 = R, so that C1(U,V2) =

C1(U,R) is just the space of real-valued continuously differntiable functions on an open subset U of Rn. If f is
such a function, we can then view Γ( f ) = {(x, f (x) : x ∈ U} as a subset of Rn+1 = Rn ⊕ R. Writing a point in
Rn+1 as (x, y) where x ∈ Rn and y ∈ R, we see immediately that Γ( f ) = {(x, y) ∈ U × R : g(x, y) = 0 where
g(x, y) = y − f (x). Since Dg(x, f (x)) has Jacobian matrix (−∂1 f (x), . . . ,−∂n f (x), 1), clearly Dg(x, f (x)) always has
rank 1, and so Γ( f ) is an n-submanifold ofRn+1

17The term is completely non-standard, and therefore, to honest, deliberately chosen to be clunky.
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Example 4.9. Suppose that n ∈ R3 is a unit vector and

C = {x ∈ R3 : x2
1 + x2

2 − x2
3 = 0, 〈n, x〉 = d}.

Then C is a level set of the function f : R3 → R2, where f has components f1(x) = x2
1 + x2

2 − x2
3 and f2(x) =

〈n, x〉 = n1x1 + n2x2 + n3x3: indeedC = f −1({(0, d)}). Now

D fx =

(
2x1 2x2 −2x3
n1 n2 n3

)
hence D f has rank 2 on the complement of the lineR.(n1, n2,−n3). If d = 0 then clearly 0 ∈ C and D f0 has rank
1, so we will suppose that d , 0. But then it is easy to check the line R.(n1, n2,−n3) does not intersect the level
setC, and hence D f has rank 2 at every point ofC, and soC is a 1-dimensional submanifold ofR3.

Suppose we wish to parameterize the curve C. The Implicit Function Theorem in the form of Theorem 3.22
shows that, at least locallywe canwrite it as the graph of any one of our coordinates x1, x2, x3. In fact, by rotating
around the x3-axis, wemay assume that n = (n1, 0, n3), and hence wemay write n = (cos(ϕ), 0, sin(ϕ)) for some
θ ∈ R. ThenC is given by the system of equations:

x2
2 = x2

3 − x2
1 = (x3 − x1)(x3 + x1),

cos(ϕ)x1 + sin(ϕ)x3 = d.

If cos(ϕ) = 0, it is easy to see thatC is just oneof the circlesC±d = {(x1, x2,±d) : x2
1+x2

2 = d2}, so assume cos(ϕ) ,
0. Moreover, if cos(ϕ) = sin(ϕ) then C is clearly a parabola with parametrization s 7→ (d1 + (s/2d1)2, s, d1 −
(s/2d1)2), where d1 = d/

√
2. Otherwise, writing ℓ = d/ cos(ϕ), we have x1 = ℓ − tan(ϕ)x3, and hence our

equations become

x2
2 = ((1 + tan(ϕ))x3 − ℓ)((1 − tan(ϕ))x3 + ℓ) = (1 − tan(ϕ)2)x2

3 + 2ℓ tan(ϕ).x3 − ℓ2

Since ℓ = d/ cos(ϕ) , 0, then the quadratic on the right is non-negative on Iϕ = R\(−2, 2) when tan(ϕ) < 1 and
non-negative on Iϕ = [2, 2] when tan(ϕ) > 1. and hence writing t = tan(ϕ) we obtain a parameterization:

C = {(ℓ − t.s,±
√

(1 − t2).s2 + 2tℓ.s − ℓ2, s) : s ∈ Iϕ}
= {(1 − t.s,±

√
(1 − t2)s2 + 2t.s − 1, s) : s ∈ ℓ.Iϕ}.

Thusweobtain ellipses or hyperbolas for tan(ϕ) > 1 and tan(ϕ) < 1 respectively. The signswhichoccur, as before,
are determined, for example, by choosing a point p ∈ C aroundwhichwewish to obtain a local parameterization.

Of course the Implicit Function Theorem can also be applied starting with different local coordinates at a
point p ∈ C: Indeed it might, given the nature of f , be more sensible to start with the cylindrical polar coor-
dinates ρ(r, θ, z) = (r cos(θ), r sin(θ), z): In these coordinates the level-set C becomes {p ∈ R3 : r2 − z2 =

0, r cos(θ) cos(ϕ) + z sin(ϕ) = d}, where p = ρ(r, θ, z) = (r(p), θ(p), z(p)).
Note that the derivative of f = ( f1, f2) with respect to these coordinates is

D f(r,θ,z) =

(
2r 0 −2z

cos(θ) cos(ϕ) −r sin(θ) cos(ϕ) sin(ϕ)

)
.

and so has rank 2 provided r , 0 and θ , nπ (when cos(ϕ) , 0),
The level set f1(p) = 0 is thus parameterized by (s1, s2) 7→ (s1 cos(s2), s1 sin(s2), s1) ∈ R3, or equivalently18

(s1, s2) 7→ ρ(s1, s2, s1), for (s1, s2) ∈ R2. Since the case cos(ϕ) = 0 is equally easy to handle in this setting, we
assume cos(ϕ) , 0, and again set ℓ = d/ cos(θ). We then find thatC can be parameterized by s ∈ R via

s 7→ ρ(r(s), θ(s), z(s)) = ρ(
ℓ

tan(ϕ) + cos(s)
, s,

ℓ

(tan(ϕ) + cos(s))
).

Thus recovering the polar form for the equations of a parabola, ellipse or hyperbola. One can also determine the
differential equation the function g(s) = (r(s), z(s)) must satisfy, as we did in Example 3.2, which can be solved
in this case by separation of variables.

18If z < 0 then this shifts s2 by π from the normal convention of r > 0.
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4.2 Tangent spaces and normal vectors

We now wish to define the notion of tangent vectors and normal vectors at a point in a submanifold of a finite-
dimensional inner product space E.

Definition 4.10. Let S be a subset of a normed vector space X and let p ∈ S . A path on S centred at p is a function
γ ∈ C1((−r, r), X), where r > 0, such that the image of γ lies in S and γ(0) = p. We write P(S , p) for the set of
all paths on S centred at p. Let T : P(S , p) → X be the map given by T (γ) = γ′(0). The image of T is called the
tangent space to S at p and is denoted TpS .

If V is an inner product space, we can also define TpS ⊥ = {n ∈ X : 〈n, v〉 = 0,∀v ∈ TpS }, the normal space to
S at p. This space is also sometimes denoted NpS .

Remark 4.11. Note that while the normal space NpX is by definition a linear subspace of X, the tangent space
need not in general be a linear subspace (see Example 4.16). Indeed since TpS ⊆ (TpS ⊥)⊥ = NpS ⊥with equality
if and only if TpS is itself a linear subspace of X. Thus NpS ⊥ is the smallest subspace of X containing TpS , that
is, NpS ⊥ is the linear span of TpS . We will shortly see that TpS = NpS ⊥ when S is a submanifold.

Remark4.12. LetX beanormedvector space andR ⊆ S ⊆ X be subsets. For any p ∈ R clearlyP(R, p) ⊆ P(S , p)
and hence TpR ⊆ TpS .

Slightly less trivially, if p ∈ S andU is an open subset containing p, thenTp(U ∩S ) = TpS . Since S ∩U ⊆ S ,
by the above we see that Tp(U ∩ S ) ⊆ TpS . For the reverse inclusion, note that if v ∈ TpS then we may pick a
path γ ∈ P(S , p)with T (γ) = v. Then γ is continuous, so γ−1(U) is an open neighbourhood of 0 (since γ(0) = p)
and so contains an open interval of the form (−s, s). Let γs = γ|(−s,s). Then γs ∈ P(S ∩ U, p), and, since it is the
restriction of γ to an open set containing 0. T (γs) = (γs)′(0) = γ′(0) = v, and hence v ∈ Tp(U ∩ S ).

Thus the tangent space TpS of S at p is only sensitive to the nature of S near p. This simple observation,
along with the Chain Rule, gives us the following Lemma, which although easy to prove, will be the key tool in
calculating with tangent spaces.

Lemma 4.13. Let X and Y be a normed vector spaces and letU be an open subset of X and let S be an arbitrary subset of
X. If ψ ∈ C1(U,Y), and p ∈ U ∩ S , then if R ⊆ Y is such that ψ(U ∩ S ) ⊆ R, and q = ψ(p), the derivative of ψ at p
induces a map

Dψp : TpS → TqR

Proof. Let v ∈ TpS . By Remark 4.12, we may assume that v = T (γ) for γ ∈ P(X ∩ U, p). But then ψ ◦ γ ∈
P(ψ(U ∩ S ), b) ⊆ P(R, q), so that T (ψ ◦ γ) ∈ TqR. But by the Chain Rule,

T (ψ ◦ γ) = (ψ ◦ γ)′(0) = Dψa(γ′(0)) = Dψa(v),

so that Dψp(v) ∈ TqR as required. □

Corollary 4.14. Let X and Y be normed vector spaces, U an open subset of X, and S any subset of X. Suppose that
ψ ∈ C1(U,Y) and p ∈ U ∩ S . Then we have the following:

1. If Dψp is an invertible linear map, then Dψp gives a bijection between TpS and TqR, where q = ψ(p) and R =
ψ(U ∩ S ).

2. If ψ(X) = q then TpX ⊆ ker(Dψp).

Proof. Since Dψp is invertible, the Inverse Function Theorem shows that ψ induces a diffeomorphism from a
neighbourhood U1 of p to Ω, and open subset of W containing q = ψ(p). But then if θ : Ω → U1 is the in-
verse of ψ, by Lemma 4.13 applied to ψ and θ, we have Dψp : TpX → TqY and Dθq : TqY → TpX, and Dψp and
Dθq are inverse, the result follows.

For the second part, Lemma 4.13 shows that Dψp(TpX) ⊆ Tq{q}. But clearlyP({q}, q) consists of the constant
maps γwhich take the value q, and hence have derivative 0. It follows that Tq({q}) = {0}, and hence that TpX ⊆
ker(Dψp). □
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Example 4.15. If M is a k-submanifold of X, so that for any a ∈ M we can find an open neighbourhood U of a
such that U ∩ M = f −1(0) for some f ∈ C1(U,Rn−k) for which D fx has rank n − k for all x ∈ U . Using Example
4.12 and Corollary 4.14 part (2), we see that

TpM = Tp(U ∩ M) = Tp( f −1(0)) ⊆ ker(D fp).

If X is a subset ofV andU is a neighbourhood of a ∈ X such that X∩U = f −1(0) for some f ∈ C1(U,Rm), the
containment TpX ⊆ ker(D fp) can, in general, be strict. However, when M is a submanifold ofRn locally defined
by the vanishing of f , then wewill shortly see that TpM = ker(D fp).

Example 4.16. Consider Example 4.6 again, that is, let g : R2 → R the continuously differentiable function
given by g(x1, x2) = x1.x2, and, for c ∈ R let Lc = {(x1, x2) ∈ R2 : x1.x2 = c}. Then Dg(a1,a2) = (a2, a1),
which has maximal rank (i.e. rank 1) provided a = (a1, a2) , 0. Thus for any a , 0, if g(a) = c Corollary 4.14
shows that Ta(Lc) ⊆ ker(Dga) = {(x1, x2) : a2x1 + a1x2 = 0}, while at a = 0 we only get the trivial bound
T0L0 ⊆ ker(Dg0) = R2. In fact you can check that TaLc = ker Dga for all a , 0, while at a = 0, T0L0 = L0, giving
an example where the tangent space of a level-set is not a linear subspace.

Example 4.17. Now case where M = {x ∈ Rn : xl = 0,∀l > k} and p = 0n. Then M is defined by the vanishing
of f (x) = (xk+1, . . . , xn}. Then it is clear that D f0 has kernel given by spanR{e1, . . . , ek}. On the other hand, if
v = (v1, . . . , vk, 0, . . . , 0), then γ(t) = t.v lies in M, and γ′(0) = v, hence we see that v ∈ T0M if and only if
D f0(v) = 0.

The above example along with the Implicit Function Theorem shows the following:

Proposition 4.18. Let M be a k-dimensional submanifold ofRn and let p ∈ M. Then if U is an open subset ofRn such
that M ∩U = f −1(0), where f : U → Rn−k is continuously differentiable with D fx of maximal rank for all x ∈ U . Then
we have

TpM = ker(D fp).

In particular, TpM is a k-dimensional vector subspace.

Proof. We have already shown the containment TpM ⊆ ker(D fp) in Corollary 4.14, so it remains to establish
the reverse inclusion. In the case where f = (xk+1, . . . , xn) this was shown in the previous Example, but the
Implicit Function Theorem shows us that, for any point p ∈ M, we can find a diffeomorphism ψ : V → U from
an open neighhourhood V of 0n to an open neighbourhood U of p taking N ∩ V to M ∩ U where N = {x ∈ U :
(xk+1, . . . , xn) = 0n−k}. The result then follows from Lemma 4.13. □

Using the notion of gradient vector fields, we can also describe the normal space TpM⊥ of a k-dimensional
submanifold:

Proposition4.19. Suppose that M is a k-dimensional submanifold and p ∈ M. IfU is an open neighbourhood of p such
that M ∩ U is given by f −1(0) where f : U → Rn−k is a continuously differentiable function, then if f = ( f1, . . . , fn−k)
we have

TpM⊥ = spanR{∇ f1(p), . . . ,∇ fn−k(p)}.

In particular TpM⊥ is a vector space of dimension n − k.

Proof. By Proposition 4.18, the tangent space TpM = ker(D fp) is a k-dimensional subspace of Rn. Let f =
( f1, . . . , fn−k) and let N = spanR{∇ f1(p), . . . ,∇ fn−k(p)}, an (n − k)-dimensional subspace. Now the rows of the
Jacobianmatrix of D fp are given by∇ fi(p)T , so that

D fp(v) =
n−k∑
i=1

(∇ fi(p) · v)ei

It follows that v ∈ TpM if and only if v ∈ N⊥. Thus TpM = N⊥ and hence N = TpM⊥ as required (since, for any
subspace W of an inner product space V we have (W⊥)⊥ = W). □
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Example 4.20. Let S = {(x1, x2, x3) ∈ R3 : x2
1 + 2x2

2 − 7x2
3 = 1}. Then if f (x) = x2

1 + 2x2
2 − 7x2

3, the surface S is a
level-set of f . Since∇ f (x) = (2x1, 4x2,−14x3), the function f has maximal rank (i.e. rank 1) everywhere except
0, and since 0 < S , it follows that S is a 2-dimensional submanifold of R3. The tangent and normal spaces to S
at a point a = (a1, a2, a3) is then

TaS = {v = (v1, v2, v3) ∈ R3 : 2a1.v1 + 4a2.v2 − 14a3.v3 = 0},
TpS ⊥ = {λ.(2a1, 4a2,−14a3) : λ ∈ R}

Example 4.21. Let On(R) = {X ∈ Matn(R) : X.XT = In} be the orthogonal group, the group of linear isometries
ofRn (equippedwith the ‖.‖2-norm). We claim this is a smooth submanifold ofMatn(R) of dimension n(n−1)/2.

Now the definition of On(R) shows that it is a level-set of the function q(X) = X.XT , which has entries which
are degree two polynomials in the entries of X. Thus q(X) is clearly continuously differentiable, and moreover
DqX(H) = X.HT + H.XT , since

q(X + H) = (X + H).(X + H)T = q(X) + H.XT + X.HT + H.HT ,

and ‖H.HT ‖∞ ≤ ‖H‖∞.‖HT ‖∞ so that ‖H‖−1
∞ H.HT → 0 as H → 0 (since clearly HT → 0 as H → 0).

Now (X.XT )T = X.XT , so the image of q lies in the linear subspace S (Rn) of symmetric matrices in Matn(R),
which is a subspace of dimension n(n + 1)/2. Thus it will follows that On(R) is a submanifold of dimension
n(n − 1)/2 if we can show that DqX is a surjective linear map fromMatn(R) to S (Rn). But ifC ∈ S then (CX)T =

XT .C = X−1.C, so that

DqX(
1
2

(C.X)) =
1
2

(C.X.XT + X.(C.X)T ) =
1
2

(C.In + In.C) = C,

so that Dq is surjective as required.
The groupOn(R) is thus what is known as a Lie group. Its tangent space at the identity In is denoted by on(R).

Explicitly this is ker(DqIn) = {H ∈ Matn(R) : H + HT = 0}. It carries a kind of non-associative product, called a
Lie bracket: IfH1,H2 ∈ on(R) then you can check that [H1,H2] = H1H2−H2H1 ∈ on(R). The Lie algebra structure
gives a kind of “infinitesimal” or deriviative of the group structure on On(R). This is studied in detail in courses
in Part C.

Remark4.22. Nowthatwehave the languageof tangent spaces and submanifolds,we can reinterpret the theory
of Lagrange multipliers in more geometric terms: if U is an open subset of a normed vector space X and f ∈
C1(U,Y) is a constraint function and we seek to minimize g(x) on the locusC = {x ∈ U : f (x) = 0}.

If a ∈ C and ∇ga has a non-trivial component in TaC, then the same argument as the one used in Lemma
3.28 shows that a cannot be a localminimum (onemust use a path γ centred at a lying on S which hasT (γ) equal
to the projection of∇ga onto TaC, but with this extra detail the same strategy works). It follows that a necessary
condition for a ∈ C to be a local minimum is that ∇ga is normal to C at a. Provided that D f has maximal rank
on C, if f =

∑k
i=1 fi.wi for {w1, . . . ,wk} some basis of Y , then Proposition 4.19 shows that this is equivalent to

∇ga ∈ Span{∇ fi(a) : 1 ≤ i ≤ k}, and so we recover the theorem on Lagrangemultipliers.

4.3 *AbstractManifolds

Suppose that M is a k-dimensional submanifold of Rn. If V is an open neighbourhood of a point p ∈ M, then
there is an open subset of Rn with V = M ∩ U . Shrinking V and U is necessary, we can find a diffeomorphism
ψ : B(0, r)→ U such that ψ(V ∩ (Rk ⊕ 0n−k)) = M ∩U . If we write ψ−1(x) = (t1, . . . , tn), then if f : M ∩U → R
is any function, wemay define f̃ : U → R by

f̃ (x) = f ◦ (ψ(t1, . . . , tk, 0, . . . , 0)).

If x ∈ M ∩ U then f̃ (x) = f (x), so that f̃ extends f to a function on U an open subset of Rn. We then say that f
isC1 at x ∈ M ∩ U if f̃ is. Using the chain rule, one can check that this definition is independent of the choice of
diffeomorphismψ. In effect, f is differentiable at x ∈ M ∩U if it is differentiable as a function of the parameters
(t1, . . . , tk). Thus the crucial fact is that we can equip M, at least locally, with “C1-coordinates”.

39



There is anotionofanabstractdifferentiablek-dimensionalmanifold: This is a topological spaceM, equipped
with a collection of “charts” {ϕi : Ui → Vi : i ∈ I}, where the collection {Vi : i ∈ I} forms an open cover of M (that
is, M =

⋃
i∈I Vi andeachVi is anopensubset ofM) theUi areopensubsetsofRk, and theϕi arehomeomorphisms.

The charts allow us to say when a function f : M → R is continuously differentiable: if x ∈ M, we say f is
differentiable at x ∈ M if f ◦ ψi is differentiable at ψ−1

i (x), where i ∈ I is such that x ∈ Vi. In order for this
definition to be consistent, the charts must satisfy a compatibility condition: if x ∈ Vi ∩ V j lies in the image of
two charts ψi and ψ j we need f ◦ ψi to be differentiable at ψ−1

i (x) if and only if f ◦ ψ j is C1 at ψ−1
j (x). But by the

chain rule, this follows if ψ−1
j ◦ ψi : Ui ∩ U j → Ui ∩ U j is diffeomorphism, and this is exactly the compatibility

condition which is imposed. Abstract differentiable manifolds are studied in the Part C course ”Differentiable
Manifolds”.
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5 Appendix

5.1 Notation: o andO

Definition 5.1. Let X and Y be normed vector spaces. Let N(X,Y) be the vector space of functions f : D →
Y whose domain of definition D ⊆ X is a neighbourhood of 0X and let N0(X,Y) be the subspace of N(X,Y)
consisting of those functions f ∈ N(X,Y) which are continuous at 0X and satisfy f (0X) = 0Y . Note that if
f : D1 → Y and f2 : D2 → Y , then their sum f1 + f2 is only defined on D1 ∩ D2, but this is still a neighbourhood
of 0X , so that N(X,Y) is indeed a vector space. In fact, the same observation shows that if c ∈ N(X,R) and
f ∈ N(X,Y) then c. f ∈ N(X,Y), and if f ∈ N0(X,Y) so is c. f .

If g is a non-negative function inN(,R) then we will write OY (g) for the subspace ofN(X,Y) consisting of
those functions f : D→ Y for which there exists a constantC > 0 and an open ball B(0X , r) ⊆ D such that

‖ f (x)‖ ≤ C.g(x), ∀x ∈ B(0X , r).

Note that if g ∈ N0(X,R) it follows that f ∈ N0(X,W) also, that is if g ∈ N0(X,R) the OW(g) ⊆ N0(X,Y).
Similarlywewrite oY (g) for the subspace ofN(X,Y) consisting of those functions f : D→ Y forwhich, given

any ϵ > 0, there is some δ > 0 such that for all x ∈ B(0X , δ) we have ‖ f (x)‖ ≤ ϵ.g(x). If g is non-vanishing in a
neighbourhood of 0X (except perhaps at 0X itself) then this is equivalent to the condition that

lim
v→0V

‖ f (x)‖
g(x)

= 0.

Notice that, again assuming g is non-vanishing on B(0X , r)\{0X} for some r > 0, if we set f1(x) = g(x)−1. f (x) for
x , 0 and f1(0X) = 0Y , then by assumption f1 defines an element ofN0(V,W), so that wemay equivalently view
oY (g) = g.N0(V,W).

By a standard abuse of notation, we will write f1(x) = f2(x) + oY (g) to mean f1(x) − f2(x) ∈ oY (g), and
similarly for f1(x) = f2(x) + O(g). Note that if the target space Y is clear from the context, we will omit the
subscript W and simply write o(g) or O(g).

Remark 5.2. Note that the functions in OY (g) can, informally, be considered as those functions f (x) for which
f (x) → 0Y as x → 0X “at the same rate” as g(x) → 0, while the functions in oW(g) tend to 0Y “faster” than g
tends to 0.

The easiest case to consider here is if g is continuous and g(0) > 0. Then, by continuity, 0 < g(0)/2 < g(x) <
3g(0)/2 on some small ball B(0X , r) say, and hence f ∈ OY (g) precisely if it is bounded near 0X , while f ∈ oY (g)
precisely when f (x)→ 0Y as x→ 0X .
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5.2 *Multilinearmaps and higher derivatives

In this section we describe how one can understand the higher derivatives of a function f : U → W without
partial derivatives. The main point is to obtain a better understanding of the space in which Dk f takes values
when k > 1. Example 2.37 shows how the space L(V,L(V,R)) is equivalent to the space Bil(V,R) of bilinear
forms on V , that is functions B : V × V → Rwhich are linear in each factor.

There is a similar way to describe the vector space of functions in which the higher derivatives Dk f for k ≥ 2
take values. The key point here is quite general:

Lemma 5.3. Let X,Y and Z be sets, and write F(X,Y) for the set of all functions from X to Y . Then there is a bijection
θ : F(X, F(Y,Z))→ F(X × Y,Z) given by θ( f )(x, y) = f (x)(y), for all x ∈ X, y ∈ Y .

Proof. This is trivial to check – the inversemap ξ : F(X×Y,Z)→ F(X, F(Y,Z) is given by ξ(g)(x) = [y 7→ g(x, y)],
for all x ∈ X, y ∈ Y . □

Write Vk = V × . . . × V for the Cartesian product of V with itself k times, and letMk(V,W) be the space of
k-multilinear functions on V taking values in W :

Mk(V,W) = { f : Vk → W : f (v1, . . . , vk) is linear in each vi, 1 ≤ i ≤ k}

Example 5.4. If k = 1 thenM1(V,W) is just the space of linear mapsL(V,W). The spaceM2(V,R) is just the
space Bil(V,R) of bilinear forms on V . The determinant function, viewed as a function on the column vectors of
an n × n matrix, is an element ofMn(Rn,R).

Lemma 5.5. Let V and W be finite dimensional normed vector spaces. For each k ≥ 1 there is a natural isomorphism
θk : L(V,Mk−1(V,W)) →Mk(V,W), and hence if f : U → W is a function on an open subset U of V which is k-times
differentiable, we may view Dk f as a function from U toMk(V,W).

Proof. Taking X = V ,Y = Vk−1 andZ = W in Lemma 5.3, you can check that themap θ in the proof of the Lemma
restricts to give the required isomorphism θk. The final part of the Lemma then follows by induction on k. □

Thus we see that the higher derivatives Dk f can be viewed as functions on U taking values inMk(V,W),
the space of k-multilinear functions on V taking values in W . Arguing essentially as we do in Example 2.37, it is
possible to check that, if {w1, . . . ,wm} is a basis ofW , andwewrite f =

∑m
i=1 fiwi, so that the fi are the components

of f , and {e1, . . . , en} is as before the basis of V , then

Dk fi(e j1 , . . . , e jk ) = ∂α fi,

where α = ( jk, jk−1, . . . , j1).

Proposition 5.6. Let V,W be normed vector spaces, let U be an open subset of V , and let f : U → W . Then f ∈
Ck(V,W) if and only if the higher total derivative

D f k : U →Mk(V,W)

exists and is continuous. Moreover f is smooth if and only if all of the higher total derivatives D f k exist.

5.3 *Symmetries of higher derivatives

The multivariable calculus result on the symmetry of the mixed partial derivatives is just the statement that the
Hessianmatrix of D2 f is symmetric which implies that D2 fa is a symmetric bilinear form, thus the symmetry of
mixed partial derivatives can be reinterpreted in a coordinate-free way, namely that D2 fa(v1, v2) = D2 fa(v2, v1)
for all v1, v2 ∈ V . An advantage of this formulation is that the famous “symmetry of mixed partial derivatives”
obtains a natural invariant formulation, andmoreover the symmetry holds as soon as the “total” second deriva-
tive exists, which is a weaker hypothesis than the classical one (which requires all second partial derivatives to
exist and be continuous19).

We first need the following a simple Lemma. It is the analogue of the fact that, if α : V → R is a linear
functional, and α = o(‖x‖) then α = 0, as one readily sees by considering the operator norm of α.

19This is, unsurprisingly, reminiscent of the relationship between the total derivative and continuity of the partial derivatives.
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Lemma 5.7. Suppose that β : V × V → R is a bilinear map and suppose that β(v,w) = o((‖v‖ + ‖w‖)2). Then β = 0.

Proof. Since β is bilinear, it suffices to show that β(v1, v2) = 0 for any v1, v2 ∈ V with ‖v1‖ = ‖v2‖ = 1. Thus we
fix unit vectors v1, v2 ∈ V . But now, for s ∈ R>0,

β(sv1, sv2)
(‖sv1‖ + ‖sv2‖)2 =

s2β(v1, v2)
(2s)2 =

1
4
β(v1, v2).

while (‖sv1‖ + ‖sv2‖)2 = 4s2 → 0 as s → 0. Thus if β(v1, v2) is o(‖v1‖2 + ‖v2‖2) we must have β(v1, v2) = 0 as
required. □

The previous Lemma is the key to proving that D2 fa is a symmetric bilinear form. (In examining the proof of
the next result, it may be worth noting that the linear analogue of the previous Lemma is one way to see that the
derivative D fa is unique).

Proposition 5.8. Let U be an open subset of a normed vector space V . If f : U → R is twice differentiable at a ∈ U ,
then viewing D2 f as a bilinear form on V we have D2 fa(v1, v2) = D2 fa(v2, v1).

Proof. Note that, in order for D2 f to be defined, we must have f differentiable in a neighbourhood of a, and D f
is continuous at a since it is differentiable at a.

Fix r > 0 such that B = B(a, r) ⊆ U such that D f is defined for all x ∈ B(a, r). Consider the function
A : B × B→ R given by

A(h, k) = f (a + h + k) − f (a + h) − f (a + k) + f (a).

Note that A has the virtue of being symmetric, that is A(h, k) = A(k, h), but, unlike D2 f (h, k) it is not bilinear in h
and k. The idea of the proof is to compare the twowhen (h, k) ∈ V⊕V is very small. Thus, fixingh for themoment,
consider

J1(k) = A(h, k) − D2 fa(h, k)

Now, noting J1(0) = 0, and writing ih(D2 fa) for the linear functional k 7→ D2 fa(h, k), we can apply the Mean
Value Inequality 2.24 to J to obtain

‖J1(k)‖ ≤ ‖k‖. sup
0≤t≤1

‖D fa+h+tk − D fa+tk − ih(D2 fa)‖∞ (5.1)

Now as D f is differentiable at a, wemay write

D fa+tk = D fa + itk(D2 fa) + ‖tk‖ϵ1(tk),

D fa+h+tk = D fa + ih+tk(D2 fa) + ‖h + tk‖ϵ1(h + tk).

where ϵ1(x)→ 0 as x→ 0. Hence we see that

D fa+h+tk − D fa+tk − ih(D2 fa) = ‖h + tk‖ϵ1(h + tk) − ‖tk‖ϵ1(tk).

so that, in particular, ifwe let ϵ2(h, k) = sup{‖ϵ1(s.h+ t.k)‖ : 0 ≤ s, t ≤ 1}, then ϵ2(h, k) = ϵ2(k, h) and ϵ2(h, k)→ 0
as (h, k)→ 0 and

‖D fa+h+tk − D fa+tk − ih(D2 f1)‖ ≤ (‖h‖ + ‖k‖).ϵ2(h, k)).

Thus returning to the inequality (5.1), we see that

‖J1(k)‖ = ‖A(h, k) − D2 f (h, k)‖ ≤ ‖k‖.(‖h‖ + ‖k‖).ϵ2(h, k).

But carrying out the same analysis for J2(k) = A(k, h) − D2 f (k, h) we see that ‖A(k, h) − D2 f (k, h)‖ ≤ ‖h‖(‖h‖ +
‖k‖).ϵ2(k, h), and hence if we let

β(h, k) = D2 fa(h, k) − D2 fa(k, h),

we see that β is a bilinear formwhich, by the symmetry of A(h, k), satisfies:

‖β(h, k)‖ ≤ ‖D2 fa(h, k) − A(h, k)‖ + ‖A(k, h) − D2 fa(k, h)‖ ≤ (‖h‖ + ‖k‖)2ϵ2(h, k). (5.2)

But now Lemma 5.2 shows that β = 0 and hence D2 fa is symmetric as required. □

Remark5.9. Using induction, it is straight-forward touse thepreviousTheoremto see that,whenever they exist,
the higher derivatives Dk fa as symmetric k-multilinear forms.
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5.4 *The immersion criterion for a submanifold

For completeness, we include here a proof of the equivalence of the definition of a submanifold given in Remark
4.5with that given inDefinition 4.2. In factweprove something slightly stronger, giving a condition for the image
of an injective immersion to yield a submanifold.

Proposition 5.10. Let V be a n-dimensional normed vector space, and let 0k denote the origin in Rk. Suppose that
M ⊆ V is such that, for some a ∈ M, there exists

• an open neighbourhood Ua of a;

• an injective functionψ ∈ C1(B(0k,R),V) whose derivative Dψx is injective for every x ∈ B(0k,R);

• an r ∈ (0,R) such that ψ(B(0k, r), 0k) = (U ∩ M, a).

Then M ∩ Ua is a k-dimensional submanifold of V , and hence if the above conditions hold for all a ∈ M then M is a
submanifold of V .

Proof. If suffices to show that ψ(B(0, r)) is a k-submanifold of V . Suppose p ∈ ψ(B(0k, r)). Then since ψ is injec-
tive, there is a unique q ∈ B(0k, r) such that ψ(q) = p. Let V1 = im(Dψq), and pick a complementary subspace
V2 of V1 in V , so that V = V1 ⊕ V2. Let i2 : V2 → V denote the inclusion map. Let φ ∈ C1(B(0k, r) × V2,V) be
given by φ(x, v) = ψ(x) + i2(v). Since i2 is a linear map, Dφ(q,0) = Dϕq + i2, and hence Dφ(q,0) is an isomorphism.
The inverse function theorem then shows that there is an open neighbourhood Up of φ(q, 0) = p and an open
neighbourhoodΩ1 × Ω2 ⊆ B(0, r) × V2 of (q, 0) such that φ restricts to a diffeomorphism from (Ω1 × Ω2, (q, 0))
to (Up, p). But now if θ ∈ C1(Up,R

k × V2) is the inverse of φ|Ω1×Ω2 , and we write θ = θ1 ⊕ θ2 as the sum of its
components in Rk and V2 respectively, so that θ2 ∈ C1(Up,V2), it is easy to see M ∩ Up = θ

−1
2 (0), and that that

Dθ2,p = π2, where π2 : V → V2 is the projection map with kernel V1. It follows immediately that Dθ2,p has rank
dim(V2) = n − k, and hence, since p was arbitrary, that ψ(B(0k, r)) is a k-submanifold as required. □
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5.5 *Normed vector spaces: duals and quotients

5.5.1 Bounded linear functionals

In Theorem 2.24, we assumed the differentiable function f : U → Y was a map between inner product spaces.
In fact the proof only requires that Y is an inner products space: the goal of the theorem is to bound the length
of a vector y ∈ Y (where in the theorem y = f (z2) − f (z1)). The functional δy : Y → R given by δy(x) = 〈y, x〉,
i.e. taking the inner product with y, allows us tomap our problem in Y to the real line in such a way that δy never
increases the length of a vector (that is |δy(z)| ≤ ‖z‖ is length preserving for vectors parallel to y, thus any bound
we can calculate such as δ(v) ≤ δ(z) immediately implies that ‖v‖ ≤ ‖z‖.

Thus to use the same strategy of proof for an arbitrary normed vector space Y , onewould need, for any vector
z ∈ Y , a linear functional η : Y → R with the property that ‖η‖∞ = 1 and η(z) = ‖z‖. In fact, as we now show,
one can prove that such functionals always exist for any normed vector space. Indeed if you have a functional
η : Z → R defined on a subspace Z of Y , then we say that a functional δ : Y → R is a norm-preserving extension
of η if δ(z) = η(z) for all z ∈ Z and ‖δ‖∞ = ‖η‖∞. If we take Z = R.z and η the linear functional defined by
η(z) = ‖z‖, then if δ is a norm preserving extension of η it has the properties we required above. The next Lemma
shows that norm-preserving extensions always exist when Y is finite-dimensional20

Lemma 5.11. Suppose that X is a finite-dimensional normed vector space and Z is a subspace of X. If ηZ : Z → R is a
linear functional on Z, then there is a functional δ : X → Rwhich satisfies δ(z) = η(z) for all z ∈ Z. In other words η can
be extended to a linear functional on X without increasing the operator norm.

Proof. Weuse induction on n = dim(X). If dim(V) = 1, then its only subspaces are {0} and itself, and in each case
the result is trivial. If dim(V) = n > 1 and Z ≤ X is a subspace, then if Z = X there is nothing to prove, while if
Z < X, we may find a hyperplane H with Z ≤ H < V , and by induction, there is a norm-preserving extension of
δ to H, hence replacing Z with H if necessary, wemay assume Z is codimension 1 in X.

Rescaling η if necessary, we may assume that ‖η‖∞ = 1. Pick u ∈ X\Z, so that X = Span{Z, u} = Z ⊕ R.u.
Any δ : X → Rwhich restricts to η on Z is then determined by its value on u, say δ(u) = λ, and the condition that
‖δ‖∞ = 1 is

|δ(z + t.u)| = |η(z) + t.λ| ≤ ‖z + t.u‖, ∀t ∈ R, z ∈ Z.

This is automatic if t = 0, while if t , 0, we may divide through by it to see that our condition is equivalent to
|η(z) + λ| ≤ ‖z + u‖ for all z ∈ Z.

Rearranging, this becomes λ ∈ Iz for every z ∈ Z, where Iz = [−‖z + u‖ − η(z), ‖z + u‖ − η(z)]. Thus we need
the intersection of the closed intervals Iz over all z ∈ Z to be non-empty. But this follows precisely when, for any
z1, z2 ∈ Z, the lower end-point of Iz1 is always at most the upper limit of Iz2 , that is, if and only if for all z1, z2 ∈ Z
we have

−‖z1 + u‖ − η(z1) ≤ ‖z2 + u‖ − η(z2)

But this is justδ(z2−z1) ≤ ‖z1+u‖+‖z2+u‖, andsinceηhasnorm1wehave |η(z2−z1)| ≤ ‖z2−z1‖ ≤ ‖z2+u‖+‖z1+u‖
as required. □

5.5.2 Quotients and normed vector spaces

If (V, ‖.‖) is a normed vector space, then any linear subspace F clearly inherits the structure of a normed vector
space: the norm ‖.‖ restricts to a norm on F. A somewhat more delicate question is whether the quotient vector
spaceV/F inherits a norm. The first question is to decidewhat the notion of a norm onV/F should be? A natural
suggestion is to consider how close the affine subspace x+U comes to the origin inV . This leads to the definition
of the function

x + F 7→ inf
{‖x + v‖ : v ∈ F

}
.

20The result (if you believe in the axiom of choice) holds for arbitrary normed vector spaces, and is called the Hahn-Banach theorem. It
is important because it is a basic tool allowing one to build bounded linear functional having desirable properties.
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Notice that while we might expect there to be a ”closest point” on x + F to the origin21, it is not necessary to
determinewhetherornot that is indeed the case inorder to check this gives anormonV/F, provided the subspace
F is a closed subset of V .

Lemma 5.12. Let X be a normed vector space and let F be a closed subspace, that is, a linear subspace which is also a
closed subset of X. The the quotient vector space X/F inherits a norm:

‖x + F‖ := inf{‖x + u‖ : u ∈ F}.

Moreover, the quotient map q : X → X/F is bounded, with ‖q‖∞ ≤ 1.

Proof. For any x ∈ X we have ‖x + F‖ = infu∈F ‖x − u‖ = 0 if and only if x is a limit point of F, thus since F is
closed ‖x + F‖ ≥ 0 for all x with equality if and only if x + F = 0 + F. Now suppose that λ ∈ R. If λ = 0 then
‖λ.x + F‖ = |λ|.‖x + F‖ = 0, while if λ , 0,

‖λ.x + F‖ = inf
u∈F
‖λ.x + u‖ = inf

u∈F
|λ|.‖x + λ−1u‖ = |λ| inf

u1∈F
‖x + u1‖ = |λ|.‖x + F‖

For the triangle inequality, suppose x + F, y + F ∈ V/F. By the approximation property, for any ϵ > 0, we may
find u1, u2 ∈ F such that ‖x + F‖ ≤ ‖x + u1‖ < ‖x + F‖ + ϵ, and ‖y + F‖ ≤ ‖y + u2‖ < ‖y + F‖ + ϵ. But then since
u1 + u2 ∈ F, by definition we have

‖(x + y) + F‖ ≤ ‖(x + y) + (u1 + u2)‖ = ‖(x + u1) + (y + u2)‖
≤ ‖x + u1‖ + ‖y + u2‖ < (‖x + F‖ + ϵ) + (‖y + F‖ + ϵ)
= ‖x + F‖ + ‖y + F‖ + 2ϵ,

and since this holds for any ϵ > 0, it follows that ‖(x + y) + F‖ ≤ ‖x + F‖ + ‖y + F‖, as required. Since ‖q(x)‖ =
infu∈F ‖x + u‖ ≤ ‖x + 0‖ = ‖x‖we have ‖q‖∞ ≤ 1, which completes the proof. □

Thequotient construction fornormedvector spaces in fact gives another approach toTheorem1.17, aswenow
show: The key point is that, proving the statement by induction on dimension, it follows by the same argument
used to prove Corollary 1.18 that subspaces of a finite-dimensional vector space are necessarily closed, hence any
quotient is again a normed vector space.

Proposition 5.13. LetV andW be normed vector spaces and suppose that dim(V) < ∞. Then any linear mapα : V →
W is automatically bounded, that isB(V,W) = L(V,W).

Proof. We use induction dim(V). In the case dim(V) = 1, pick a vector e ∈ V of norm 1. Then for any v ∈ V , we
have v = ±‖v‖.e and hence ‖α(v)‖ = ‖α(e)‖.‖v‖, so that ‖α‖∞ = ‖α(e)‖, and α is bounded as required.

Next note that, for any givenfinite-dimensional vector spaceV , the statement of the proposition follows from
the case W = R, i.e. where α ∈ V∗ is a linear functional. Indeed if dim(V) = n then dim(α(V)) = m ≤ n, hence
we can pick a basis {w1,w2, . . . ,wm} of α(V), and if, for v ∈ V we define αi : V → R by α(v) =

∑m
i=1 αi(v).wi, then

the functions αi are linear. and α is continuous if each αi is. Indeed

‖α(v)‖ ≤
m∑

i=1

|αi(v)|.‖wi‖ ≤
 m∑

i=1

‖αi‖∞.‖wi‖
 ‖v‖.

where the second inequality follows from the definition of the operator norm.
Now suppose that n = dim(V) > 1, and that, by induction, we know any linear map whose domain is a

normed vector space of dimension less than n must be bounded. Let U < V be a subspace of V of dimension
k < n. Picking a basis {u1, . . . , uk} of U defines a linear isomorphism ϕ : Rk → U where if x = (x1, . . . , xk) ∈ Rk

then ϕ(x) =
∑k

i=1 xiui. By our inductive hypothesis, ϕ is a topological isomorphism, and hence since Rk (viewed
as a normed vector space using the ‖.‖2 norm) is complete, so is22 U . It follows that U must therefore be closed
in V .

21This is always true if F is finite-dimensional, but is in fact not necessarily the case when F is infinite-dimensional.
22Note that while completeness is not invariant under homeomorphism, continuous linear maps are Lipschitz continuous, and Lips-

chitz continuous functions preserve Cauchy sequences.
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Butnowthe fact that any linear functionalα ∈ V∗ is continuous follows fromthe1-dimensional case together
with Lemma5.12: Indeed ifα is zero, it is trivially continuous, and ifα , 0 thenH = ker(α) is (n−1)-dimensional
subspace of V , and hence as noted above H is closed. But then by Lemma 5.12, the norm on V induces one on
V/H and the quotient map q : V → V/H has operator norm ‖q‖∞ ≤ 1. But the functional α can be written as
the composition α = ᾱ ◦ q, where ᾱ : V/H → R is the injective linear map induced by α on V/H. But since
dim(V/H) = 1 we know ᾱ is bounded, and hence by the submultiplicativity of the operator norm, α is bounded
as required. □

Remark 5.14. This proposition shows that the topologyT induced by any norm on a finite dimensional vector
space is independent of the choice of norm. In fact, with a bit more thought it follows that this topology is deter-
mined by the linear functionals onV : it is the topology generated by the condition that every linear functional on
V is continuous.
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