Noncommutative Rings, HT 2018 Problem Sheet 5

Throughout this sheet, A will denote a ring.

- 1. Show that a maximal two-sided ideal in A is left primitive, and a left primitive ideal in A is prime. Find an example of a ring A, and a prime ideal P in A, such that P is not left primitive.
- 2. (a) Let A = k[x, y, z] be the polynomial ring in three variables over a field k, and let I = (xy, yz, zx). Find min(I), and justify your answer.
 - (b) Suppose that A is a commutative Noetherian graded ring, and let I be a graded ideal in A. Prove that \sqrt{I} is also a graded ideal.
- 3. Suppose that A is commutative and Noetherian.
 - (a) If M is a finitely generated A-module and $I = \operatorname{Ann}_A(M)$, show that A/I is isomorphic to an A-submodule of M^n for some $n \in \mathbb{N}$.
 - (b) If $J \triangleleft A$ and d is a dimension function for A, prove that $d(A/J) = d(A/J^m)$ for all $m \ge 1$.
 - (c) Prove that a dimension function for A is completely determined by the values it takes on modules of the form A/P where $P \in \operatorname{Spec}(A)$.
- 4. Let $A = \begin{pmatrix} \mathbb{Z} & \mathbb{Z} \\ 0 & \mathbb{Z} \end{pmatrix}$ and let $P = \begin{pmatrix} \mathbb{Z} & \mathbb{Z} \\ 0 & 0 \end{pmatrix}$. Show that P is a prime ideal in A. Also, show that $S := A \setminus P$ is multiplicatively closed but is not a right Ore set. Prove that S is a left localisable subset of A and that $S^{-1}A \cong \mathbb{Q}$.
- 5. Suppose that A is left Noetherian, and let S be a left localisable subset of A.
 - (a) Prove that $Q := S^{-1}A$ is also left Noetherian.
 - (b) Show that if I is a two-sided ideal in A then $Q \cdot I$ is also a two-sided ideal in Q.
 - (c) Suppose further that A is also right Noetherian, and that P is a prime ideal in A such that $P \cap S = \emptyset$. Show that $Q \cdot P$ is a prime ideal in Q.
- 6. Suppose that A is commutative, and write $A_P := (A \setminus P)^{-1}A$ for every $P \in \operatorname{Spec}(A)$.
 - (a) Suppose that A_P has no non-zero nilpotent elements for all $P \in \text{Spec}(A)$. Show that A also has no non-zero nilpotent elements.
 - (b) If A_P is an integral domain for all $P \in \text{Spec}(A)$, must A be an integral domain, too?