Noncommutative Rings, HT 2018 Problem Sheet 5

Throughout this sheet, A will denote a ring.

1. Show that a maximal two-sided ideal in A is left primitive, and a left primitive ideal in A is prime. Find an example of a ring A, and a prime ideal P in A, such that P is not left primitive.
2. (a) Let $A=k[x, y, z]$ be the polynomial ring in three variables over a field k, and let $I=(x y, y z, z x)$. Find $\min (I)$, and justify your answer.
(b) Suppose that A is a commutative Noetherian graded ring, and let I be a graded ideal in A. Prove that \sqrt{I} is also a graded ideal.
3. Suppose that A is commutative and Noetherian.
(a) If M is a finitely generated A-module and $I=\operatorname{Ann}_{A}(M)$, show that A / I is isomorphic to an A-submodule of M^{n} for some $n \in \mathbb{N}$.
(b) If $J \triangleleft A$ and d is a dimension function for A, prove that $d(A / J)=d\left(A / J^{m}\right)$ for all $m \geq 1$.
(c) Prove that a dimension function for A is completely determined by the values it takes on modules of the form A / P where $P \in \operatorname{Spec}(A)$.
4. Let $A=\left(\begin{array}{ll}\mathbb{Z} & \mathbb{Z} \\ 0 & \mathbb{Z}\end{array}\right)$ and let $P=\left(\begin{array}{ll}\mathbb{Z} & \mathbb{Z} \\ 0 & 0\end{array}\right)$. Show that P is a prime ideal in A. Also, show that $S:=A \backslash P$ is multiplicatively closed but is not a right Ore set. Prove that S is a left localisable subset of A and that $S^{-1} A \cong \mathbb{Q}$.
5. Suppose that A is left Noetherian, and let S be a left localisable subset of A.
(a) Prove that $Q:=S^{-1} A$ is also left Noetherian.
(b) Show that if I is a two-sided ideal in A then $Q \cdot I$ is also a two-sided ideal in Q.
(c) Suppose further that A is also right Noetherian, and that P is a prime ideal in A such that $P \cap S=\emptyset$. Show that $Q \cdot P$ is a prime ideal in Q.
6. Suppose that A is commutative, and write $A_{P}:=(A \backslash P)^{-1} A$ for every $P \in \operatorname{Spec}(A)$.
(a) Suppose that A_{P} has no non-zero nilpotent elements for all $P \in \operatorname{Spec}(A)$.

Show that A also has no non-zero nilpotent elements.
(b) If A_{P} is an integral domain for all $P \in \operatorname{Spec}(A)$, must A be an integral domain, too?

