Noncommutative Rings, HT 2018 Problem Sheet 6

- 1. Let A be a filtered ring and let M be a filtered left A-module.
 - (a) Show that $\widetilde{M}/t\widetilde{M}$ is isomorphic to gr M as a left gr A-module.
 - (b) Viewing M as a left \widetilde{A} -module via the isomorphism $\widetilde{A}/(t-1)\widetilde{A} \cong A$ from Lemma 4.20(2), show that $\widetilde{M}/(t-1)\widetilde{M}$ is isomorphic to M as a left \widetilde{A} -module.
- 2. (a) Verify that the commutator bracket on a ring A is a Poisson bracket.
 - (b) Let k be a field. Suppose that $\{,\}$ is a Poisson bracket on the polynomial ring $A = k[x_1, \ldots, x_n]$ such that $\{k, A\} = 0$. Prove that $\{,\}$ is completely determined by its values on the x_i 's.
 - (c) Let A be a filtered ring such that $\operatorname{gr} A$ is commutative, and let $\{,\}$ be the induced Poisson bracket on $\operatorname{gr} A$. Show that $\operatorname{gr} I$ is closed under $\{,\}$ for any left ideal I in A.
 - (d) Find an example of a filtered ring A and a graded ideal J in gr A such that gr A is commutative and $\{J, J\} \subseteq J$ but $\{\sqrt{J}, \sqrt{J}\} \nsubseteq \sqrt{J}$.
- 3. Let B be a left Noetherian ring, and let $t \in B$ be a central regular element. By considering the ring $(t^{\mathbb{N}})^{-1}B$ or otherwise, show that for any left ideal I of B there is an integer n such that $I \cap t^n B \subseteq tI$.
- 4. Let $n \ge 1$, and let k be a field of characteristic zero. Show that there are no $n \times n$ matrices X, Y with entries in k that satisfy the relation YX XY = 1. What happens if the characteristic of k is positive?
- 5. Let R be a filtered ring, let M be a filtered left R-module with filtration $(M_i)_{i \in \mathbb{Z}}$ and let N be a submodule of M. Equip N with the subspace filtration $N_i := N \cap M_i$, and equip M/N with the quotient filtration $(M/N)_i := (M_i + N)/N$. Show that
 - (a) there is an injective gr R-module homomorphism $\alpha : \operatorname{gr} N \to \operatorname{gr} M$,
 - (b) there is a surjective gr *R*-module homomorphism β : gr $M \to \text{gr}(M/N)$,
 - (c) $\ker \beta = \operatorname{Im} \alpha$.
- 6. Let $A = A_n(k)$ be the Weyl algebra, and let r be an integer such that $n \leq r \leq 2n$. Give an example of a cyclic A-module M such that d(M) = r. Justify your answer.

P.T.O.

7. (For the Easter break and the enthusiasts.)

Let A be a filtered ring and let M be a filtered left A-module.

- (a) Suppose that $M_n = \{0\}$ for all sufficiently small $n \in \mathbb{Z}$. Show that the filtration on M is good if and only if gr M is finitely generated as a left gr A-module.
- (b) Let $B = \bigoplus_{j \in \mathbb{Z}} B_j$ be a \mathbb{Z} -graded ring, and let $F_i B := \bigoplus_{j \leq i} B_j$. Show that $(F_i B)_{i \in \mathbb{Z}}$ is a ring filtration on B, and that gr B is isomorphic to B.
- (c) Now suppose that the filtration on A is positive and $\operatorname{gr} A$ is left Noetherian. Show that every graded left ideal of \widetilde{A} is finitely generated, and deduce that \widetilde{A} is also left Noetherian.