Quantum Field Theory
Homework #1

Hand-in time and place (week 3):

Class Hand-in time | Hand-in place | Teaching Assistant
Tuesday 15.30-17.00 | Sunday 6pm Mathematics' Johan Henriksson
Friday 14.30-16.00 Tuesday noon Mathematics’ Johan Henriksson
Thursday 8.30-10.00 | Monday 6pm Mathematics? Matteo Parisi
Friday 8.30-10.00 Monday 6pm Mathematics? Matteo Parisi

T Mezzanine level in the Mathematical Institute (Andrew Wiles Building,

Woodstock Road)

DO NOT FORGET TO PUT THE NAME OF YOUR TEACHING ASSISTANT ON THE SHEET.
(Problems with an asterisk (x) may be more difficult and are optional.)

1. Scalar Field Theory For the Lagrangian
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where ¢ is a real-valued scalar field:

(1)

(a) Derive the Klein-Gordon equation for ¢ from the least action prin-

ciple.

(b) Find the momentum 7(x) conjugate to ¢(x).

(c¢) Use m(x) to calculate the Hamiltonian density .

(d) Using the transformation rules for scalar fields

¢'(a) = ¢(x),

for 2™ = AF 2”

: (2)

prove that the scalar field theory is invariant under the Lorentz
transformations.

(e) Based on Noether’s theorem, calculate the stress-energy tensor T#
of this field and the conserved charges associated with time and
spatial transformations P* of this field.

(f) Using the Klein-Gordon equation show that 0,7% = 0 for this

field.



(2)

Show that P, calculated in part (e) is the same as the total Hamil-
tonian, i. e. spatial integral of H calculated in part (c).

2. Canonical Quantization of the complex scalar field

Consider the field theory of a complex-valued scalar field obeying the
Klein-Gordon equation. The Lagrangian of this theory is

(a)

L= 0,806 — m*¢" 6. 3)

Find the conjugate momenta to ¢(z) and ¢*(z) and the canonical
commutation relations. Show that the Hamiltonian is

H= [ Eatan+96" Vot mie'o). (1)

Compute the Heisenberg equation of motion for ¢(x) and show
that it is precisely the Klein-Gordon equation.

Diagonalize the Hamiltonian H by introducing creation and an-
nihilation operators. Show that the theory contains two sets of
particles with mass m.

Rewrite the conserved charge

Q=3 [ #sten — o), )

in terms of creation and annihilation operators, and evaluate the
charge of the particles of each type.

Consider the case of two complex Klein-Gordon fields with the
same mass. Label the fields ¢,(z), where @ = 1,2. Show that
there are four conserved charges, one given by the generalization
of the previous part, and other three given by

Q=g [ dr S e — o datn) . ©

where 0! are Pauli sigma matrices. Show that these three charges
have the commutation relations of angular momentum (SU(2)).

Generalize these results to the case of n identical complex scalar
fields.



3. Free particle path integral

(a)

Consider the free particle path integral (with the mass m =1 for
simplicity)

it = [Pawesn i [*Tal .

Write down a general path ¢(t) as the sum of the classical path
q.(t) (that is, motion at constant velocity) plus a Fourier series
with coefficients a,,n > 1.

Show that the action for such a general path is
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Write the entire path integral as a constant, depending only on
ty — t;, times the classical action:

- i i (g5 — @)’
/T]L;[ldane S = C(tf - tz> exp (éﬁ . (10)

Does the constant have a finite value?

Perform the integral

over a single Fourier mode.

The actual path integral measure contains a normalization con-
stant

(aptslat) = [Daes = [Tldene™, )
n=1

such that the combination v - ¢(ty — t;) is a finite number. The
requirement that

/dQ<Qf>tf|Qat><Q7t‘Qi>ti> = (g5, trla, ti) (12)

implies a relation between v-c(t; —t), v-c(t —t;) and v-c(ty —t;).
Find it and solve it. Hint: v - ¢(7) ~ 771/2,



