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Overview

This course builds on both the first courses in quantum field theory and
general relativity. The second course in GR and a course on differential
geometry will be helpful, but are not essential.

Learning Outcomes

Students will be able to formulate classical and quantum field theories in
curved space-time including an understanding of global features.

Syllabus

Non-interacting fields in curved space-time: Lagrangians, coupling to grav-
ity, spinors in curved space-time, global hyperbolicity, asymptotic structure,
conformal properties. Black hole thermodynamics. Canonical formulation.
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Quantization, choice of vacuum. Quantum fields in Anti de Sitter space.
Quantum fields in an expanding universe. Unruh effect. Casimir effect.
Hawking radiation. Interacting quantum fields in curved space-time.

Reading List

There are many texts. The section on global structure, spinors and classical
field theory on curved space-time partly follows the following books;

Hawking & Ellis, The large scale structure of Space-time, 1971 CUP.
Penrose & Rindler, Spinors & Space-time, Vols 1 & 2, CUP, 1984 & 1986.

Those that go further into the QFT include:
R Wald, QFT in Curved Space-time and Black Hole Thermodynamics,

Univ Chicago Press, 1994, ISBN 0226-87027-8.
Birrell & Davis, Quantum field theory in curved space-time, CUP.
Ford, Quantum Field theory in Curved space-time, arxiv:9707062.
Gibbons/Hawking/Townsend, Black Holes lecture notes, arxiv:9707012.
Jacobson, Introduction to quantum fields in curved space-time and the

Hawking effect, arxiv:0308048.
Mukhanov and Winitzki, Introduction to quantum fields on classical back-

grounds.
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1 Introduction

The goal of this course is free, i.e., non-interacting, classical and quantum
fields in curved space-time. This is a first essential step towards interact-
ing quantum field theory on a curved background, and beyond to quantum
gravity. Already, there are two main areas of application

• Black hole thermodynamics: Hawking radiation provides the temper-
ature in Bekenstein’s analogies between properties of black holes and
thermodynamics, with the area playing role of entropy.

• In cosmology, the cosmic microwave background spectrum is one naive
consequence of QFT in curved space-time. The fluctuations that caused
the creation of galaxies are also thought to have a quantum origin.

More recently these ideas have played a role in AdS/CFT which relates con-
formal QFTs to quantum gravity on anti de-Sitter spaces and this has limits
that can be probed with QFT in curved space-time.

Quantization is a global problem, in which the global structure of space-
time plays a crucial role. Thus the first half of the course will be devoted
to improving our understanding of classical field theory in curved space-time
and global features. Furthermore, Fermions play a basic role in physics,
and require the use of spinors. We will therefore devote a couple of lectures
to introducing spinors in curved space-time. These also have a number of
independent applications such as the positive mass theorem and the geometry
of congruences.

1.1 Conventions

Planck units ~ = c = G = k = 1 ;

• Mass ∼ 10−5g ∼ 1019 GeV.

• distance ∼ 10−33 cm

• time ∼ 10−44 sec

• temperature ∼ 1032 ◦K.
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A nuclear mass ∼ 10−18, a Planck mass is almost visible. The cosmological
constant is of the order of 3 × 10−122 in these units. For a body of mass M
and size R, having

GM

c2R
> 1 must use general relativity (GR)

~
MRc

> 1 must use quantum field theory (QFT) .

This leads to a M −R-plane diagram of validity of theories.

Let (M, gab) be a space-time where for the most part, we will take M to
be a 4-dimensional manifold, with local coordinates xa, a, b = 0, . . . , 3 with
metric gab. Indices are as usual raised and lowered by gab and its inverse gab.

We take Penrose conventions:
The metric has signature (1, 3) The Ricci identity is

[∇a,∇b]V
d = Rabd

cV d . (1)

These conventions are best for spinors but a positive definite sphere has neg-
ative curvature (whereas a space-like sphere has positive curvature).[Another
very common alternative is to have metric signature (3, 1) and a minus sign
in the above Ricci identity which conforms better with Riemmannian differ-
ential geometry, but less well with QFT and spinors.]

We then have for the Ricci curvature, scalar curvature and Einstein ten-
sors respectively

Rab = Racb
c , R = Ra

a , Gab = Rab − 1
2
Rgab . (2)

The Einstein field equations are

Gab + λgab = −8πGTab (3)

where λ is the cosmological constant, G Newton’s constant and Tab the stress-
energy tensor.

As part of Penrose conventions, we have the abstract index notation.
Indices are not understood to take on numeric values in general. They simply
signify the type of tensor that the object is, having the same downstairs
and upstairs indices as would be required if it were to be written out in a
coordinate frame. To express a vector in some coordinate or frame basis, we
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underline the index to refer it to a basis. This avoids the ambiguity in the
meaning of

∇3V
2

which could be ∂3V
2 or ∂3V

2 + Γ2
3aV

a because ∇3 doesnt know whether to
treat V 2 as a scalar or a component of a vector. So ∇ acting on an object
with a numerical or concrete underlined index never uses the connection,
whereas on an abstractly indexed quantity it does.

1.2 Some further geometry background: differential
forms

Differential forms often simplify formulae both computationally and concep-
tually. A p-form α ∈ Ωp is a totally skew covariant tensor. We usually
suppress the p skew downstairs indices by introducing formal objects dxa so
that

α = αa1a2...apdx
a1 ∧ . . . dxap = α[a1a2...ap]dx

a1 ∧ . . . dxap ∈ Ωp. (4)

The ∧ symbol signifies that the tensor is skew symmetrized, so that

dxa1 ∧ . . . ∧ dxap = dx[a1 ∧ . . . ∧ dxap] :=
1

p!

∑
σ∈Sp

dxaσ(1) ∧ . . . ∧ dxaσ(p)

In concrete indices these are just the infinitesimal coordinate variations dxa.
There are two key operations with differential forms, the wedge product

α ∧ β := α[a1...apβap+1...ap+q ]dx
a1 ∧ . . . ∧ dxap+q ∈ Ωp+q , (5)

where α is a p-form and β a q-form. This product is graded commutative

α ∧ β = (−1)pqβ ∧ α . (6)

We also have the exterior derivative defined by

dα := dxa ∧∇aα . (7)

Key features are:

Lemma 1.1 The exterior derivative does not depend on the choice of torsion-
free covariant derivative. We have d2α = 0 for all α asa consequence of the
commutation of partial derivatives (or symmetry of a torsion-free connec-
tion).
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Thus it is metric independent and can be defined just using the coordinate
derivative in any coordinate system. The fact that d2 = 0 allows us to define
cohomology groups

Hp(M) = {α ∈ Ωp|dα = 0}/{α = dβ} , (8)

because the exact forms, those that can be expressed as dβ, are a subset of
the closed forms, those that satisfy dα = 0. These encode the topology of M
because dα = 0 implies that locally there exists a β with α = dβ (Poincaré
lemma). As an example, consider dθ on the circle. Although clearly closed,
θ ∈ R/2π is not a single valued function on the circle, so it is not globally
exact.

The exterior derivative satisfies the graded Leibnitz rule

d(α ∧ β) = (dα) ∧ β + (−1)pα ∧ dβ . (9)

We also have the interior product with a vector V a that takes a p-form α
to a p− 1-form

(V yα)a2a3...ap = pV apαa1...ap . (10)

This also satisfies a graded leibnitz property,

V y(α ∧ β) = (V yα) ∧ β + (−1)pα ∧ (V yβ) . (11)

It plays a role in the Cartan formula for the Lie derivative of a form

LV α = V ydα + d(V yα) . (12)

When we have a metric, we can define Hodge duality: in d dimensions a
p-form α is dualized to a d− p form ∗α by

(∗α)ap+1...ad :=
1

p!
εa1...adα

a1...ap (13)

where εa1...ad = ε[a1...ad] and ε0 1...d−1 =
√
−g is the metric volume form.

A key application is to integration. Being a covariant tensor, a p-form
naturally ‘pulls back’ under a map, and restricts to provide a p-form on a
submanifold. On a p-dimensional submanifold, it can naturally be integrated
subject to the choice of an orientation on the surface.

Definition 1.1 A p-surface Σp is said to be orientable if it is possible to
choose a non-vanishing p-form. Such a choice provides an orientation on
Σp.
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The key point is that under a change of coordinates on the p-surface Σp, a
p-form transforms with the determinant of the Jacobian of the coordinate
transformation, whereas the change of variables formula for integration re-
quires the modulus of the determinant which can introduce additional signs,
and so we must restrict the coordinate transformations to those that preserve
the sign of the chosen form making sure that the sign in question is positive.1

The standard example of a non-orientable manifold is RP2n = S2n/Z2 where
the Z2 acts by the antipodal map which reverses the sign of the volume form.

The main theorem concerning integration on manifolds is Stoke’s theorem:

Theorem 1 (Stokes) Let Σ be a p-surface with boundary S with compatible
orientations (i.e., the orientation on S is obtained from that on Σ by use of
an outward pointing normal vector), and let α be a p− 1-form on Σ, then∫

Σ

dα =

∫
S

α . (14)

Another application is the Cartan formulation of connections and cur-
vature. We first choose an orthonormal frame of one-forms ea := eaadx

a

satisfying
gab = ηabe

a
ae
b
b , (15)

where ηab = diag(1,−1,−1,−1) is the flat Lorentz metric. The eaa and its
inverse eaa can be used to freely convert abastract indices into concrete indices
and back again. The connection acting on this frame can be obtained from
the Cartan structural equation

dea = Γab ∧ eb (16)

where Γab = Γ[ab] = dxcΓcab are the connection 1-forms. These are as many
equations as unknowns being 4 2-forms and are nondegenerate, so admit a
unique solution for Γab. We can then define the full connection to be

∇ae
b
c = Γa

b
ce
c
c (17)

1The issue is seen in one dimension: under the transformation y = −x,∫ b

a

f(x)dx =

∫ −b

−a

−f(−y)dy =

∫ −a

−b

f(−y)dy ,

so that there is no sign change if we are to integrate from the lower limit to the upper in
each case.
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so that for a general 1-form Aa = eaaAa we have

∇aAb = (∇aAb − Γa
c
bAc)e

b
b , (18)

where according to the abstract index convention the first term is the ordi-
nary derivative of the components of Aa and doesnt involve the connection.
The skew symmetry of Γa

c
b on its concrete indices then can be seen to be

equivalent to the requirement that it preserves the metric ∇agbc = 0.
The connection 1-forms determine the curvature 2-form by

Ra
b := dxc ∧ dxdRcda

b = dΓab − Γac ∧ Γcb . (19)

which satisfy Bianchi identities

Ra
b ∧ eb = 0 , dRa

b + Γac ∧Rc
b − ΓcbR

a
c = 0 . (20)

These essentially follow from d2 = 0.

2 Classical fields in curved space-time

The main linear fields are Klein Gordon φ(x), Maxwell Aa(x) and spinor
fields (Dirac etc.). When coupling to a metric, we often adopt the minimal
coupling prescription, that we take the flat space action, and replace coor-
dinate derivatives by covariant derivatives sufficient to guarantee covariance.
However, we could in principle include additional curvature terms if desired.
For example, for scalar wave equation (Klein-Gordon) we can have

S[φ] = 1
2

∫
M

gab∂aφ∂bφ− (aR +m2)φ2 dνg , dνg =
√
−gd4x . (21)

Here m the mass and a is a number that can be zero, but when non-zero
violates minimal coupling. This yields field equations(

2 +m2 + aR
)
φ = 0 . (22)

However, the scalar curvature term has some utility because, when2 and
m = 0, this equation is conformally invariant under

(gab, φ)→
(

Ω2gab,
φ

Ω

)
, (23)

2in d dimensions, when a = (d− 2)/4(d− 1), although with a different scaling weight.
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for any Ω(x) 6= 0.
We remark on the differential form version of the kinetic term∫

dφ ∧ ∗dφ (24)

which leads to the coordinate formula for the wave operator

2φ = ∗(d∗dφ) =
1√
−g

∂a(
√
−ggab∂bφ) = ∇a∇aφ . (25)

We determine the energy momentum tensor by

T ab = − δS

δgab
(26)

so as to give the source term for the Einstein equations. This yields for a = 0

Tab = ∂aφ∂bφ−
1

2
gab((∂φ)2 −m2φ2) .

For an observer with 4-velocity Ua, the field has 4-momentum density TabU
b.

Differential forms come into their own in Maxwell theory. These are
equations on a 1-form potential A = Aadx

a ∈ Ω1 defined up to the gauge
freedom Aa → Aa + ∂ag(x), or A→ A+ dg, for arbitrary g(x). The field is

F = Fabdx
a ∧ dxb = dA ∈ Ω2 , Fab = ∇[aAb] , (27)

and the action coupled to gravity is

S[Aa] =
1

4

∫
M

F ∧ ∗F =
1

2

∫
M

FabF
abdνg , (28)

with Bianchi identities dF = 0, or ∇[aFbc] = 0 and field equations

d∗F = 0 , or ∇aFab = 0 . (29)

In order to obtain a deterministic equation, it is normal to impose Lorenz
gauge ∇aAa = 0 upon which these equations reduce to the wave equation
2Aa = 0 although there is nevertheless still residual gauge freedom under
A → A + dg with 2g = 0. These equations are conformally invariant (see
problem sheet).
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The stress-energy tensor in this case is

Tab = FacFb
c − 1

4
gabFcdF

cd . (30)

Conformal invariance here is manifested in the fact that T aa = 0. This is a
general property of conformally invariant field theories, and is a consequence
of the invariance of the action under δgab = ωgab.

In both cases we have the positivity of energy manifested in the dominant
energy condition that for any non-zero timelike or null vector ta,

Tabt
atb ≥ 0 (31)

with equality in the timelike case if only if Fab = 0 or ∇aφ = 0.

2.1 Spinors and space-time

To discuss the Dirac and Rarita-Schwinger equations in curved space-time
we need to introduce spinors. In flat space we introduce 2-component spinors
via the identification of R4 with Hermitian 2× 2 matrices:

dxAA
′
:= σAA

′

a dxa :=
1√
2

(
dt+ dz dx+ idy
dx− idy dt− dz

)
, A = 0, 1, A′ = 0′, 1′ .

(32)
The matrices σAA

′
a are sometimes known as Van de Waerden symbols. The

determinant is a multiple of the metric. This can be expressed by introducing

εAB :=

(
0 1
−1 0

)
, εA′B′ :=

(
0 1
−1 0

)
, (33)

so that
ds2 = ηabdx

adxb = εABεA′B′dxAA
′
dxBB

′
. (34)

We use the εAB and its inverse εAB to raise and lower indices via

ψAεAB = ψB , ψA = εABψB , (35)

and similarly for the primed version; beware signs, particularly when differ-
entiating with respect to spinors.

Let S denote the two-dimensional complex vector space of spinors ψA

and S′ primed spinors ψA
′
. Although the above has been written out in a

concrete basis, it can be undertood to express the abstract isomorphism

T = S⊗ S′ , (36)
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where T here is the tangent space. We will often use this to replace vector
indices by pairs of spinor indices all thought of as abstract indices3 so we can
write for abstract indices only

V a = V AA′
. (37)

The above establishes the Lorentz invariant identification of (R4, ηab) with
(S⊗S′, εAB, εA′B′) underpinned by the spinor isomorphism between the space
and time orientation preserving Lorentz group SO+(1, 3) and SL(2,C)/Z2

given by

Lbaσ
AA′

b = LABL̄
A′

B′σBB
′

a , Lab ∈ SO+(1, 3) , LAB ∈ SL(2,C) . (38)

Since primed spinors transform with the complex conjugate SL(2,C) there
is a complex conjugation map

S = S′ , ψA → ψ̄A
′
. (39)

For infinitesimal Lorentz transformations lab = l[ab], this is given in spinors
by

labσAA
′

a σBB
′

b = lAA
′BB′

= εA
′B′
lAB + εAB l̄A

′B′
(40)

where
lAB = l(AB) = 1

2
lAA

′BB′
εA′B′ (41)

so that on the Lie algebra level so(1, 3) = sl(2,C)⊕ sl(2,C).
To prove this note first that ψAB − ψBA = εABψC

C as skew matrices in
2d are necessarily multiples of εAB. We can use the skew symmetry of lab to
write

lAA
′BB′

= 1
2
lAA

′BB′ − 1
2
lBA

′AB′
+ 1

2
lAA

′BB′ − 1
2
lAB

′BA′
. (42)

where the two terms with minus signs are equal and opposite by skew sym-
metry of lab. The first pair of terms therefore reduces to εAB l̄A

′B′
and the

second its conjugate.
These are reduced (chiral) spinors. They are related to Dirac spinors by

ψα = (ψA, φA
′
). The Clifford matrices are represented in terms of Van de

Waerden symbols by

γαcβ =
√

2

(
0 σcB′A

σcB
A′

0

)
, γaγb + γbγa = −2Iηab (43)

3this doesnt work well in dimensions greater than 6.
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suppressing the the Dirac spinor indices. The Dirac equation γa∂aψ = mψ
in this notation becomes

∂AA′ψA = mφA′ , ∂AA′φA
′
= mψA , (44)

where we have introduced the notation ∂AA′ = σaAA′∂a.
This can be extended to curved space by introducing an orthonormal

tetrad eaa := (e0
a, e

1
a, e

2
a, e

3
a) such that

gab = ηabe
a
ae
b
b . (45)

We can then use σAA
′

a to introduce spinors with respect to the orthonormal
frame.

To extend the Dirac equation to curved space, we must introduce covari-
ant differentiation for spinors. In an orthonormal frame we introduce the
Ricci rotation coefficiencts via

∇be
a
c = Γb

a
ce
c
c , (46)

where ∇b is the covariant derivative, and the abstract index notation is now
being used to indicate that the derivative uses the space-time connection on
abstract but not concrete indices. Since ∇agbc = 0 and ηab are constant,

Γbac = Γb[ac] (47)

and so converting to spinors using the Van de Waerden symbols we can define
the spin connection by

ΓbAB = 1
2
ΓbAA′B

A′
, ΓbA′B′ = 1

2
ΓbA′AB′

A . (48)

These define the covariant derivative of the spin frame εA
A that corresponds

to our choice of orthonormal frame by

∇aεA
A = ΓaB

AεA
B (49)

and this together with the complex conjugate determines the covariant deriva-
tives on all spinors by the relations

εB
B∇aα

B = ∇aα
B − ΓaC

BαC . (50)

where the first term on the right, according to the abstract index convention
denotes the ordinary derivative of the components of αB whereas on the left,
∇aα

B is necessarily a covariant derivative.
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Once we are happy using fully abstract indices, we can incorporate the
isomorphism TM = S⊗ S′ given by the abstract σAA

′
a into equations writing

for example
∇aα

B = ∇AA′αB . (51)

The curvature on spinors is given by spinorial Ricci identities

[∇AA′ ,∇BB′ ]αC =

(
εA′B′

(
ΨABD

C − R

12
εD(AεB)

C

)
+ εABΦA′B′D

C

)
αD

(52)
Here R is the scalar curvature,

ΦABA′B′ = Φ(AB)(A′B′) , Φab = −1

2

(
Rab −

R

4
gab

)
(53)

the trace-free Ricci curvature, and ΨABCD = Ψ(ABCD) is the spinorial version
of the Weyl curvature

Cabcd = εA′B′εC′D′ΨABCD + εABεCDΨ̄A′B′C′D′ . (54)

It is also called the conformal curvature because Cabc
d is invariant under

gab → Ω2gab. It can be written in terms of the regular curvature as

Cab
cd = Rab

cd − 4P
[c
[aδ

d]
b] (55)

where Pab is the Schouten tensor

Pab = −1

2
Rab +

1

12
Rgab , (56)

which we will see later because of its good conformal variations properties.
In this notation we have the Bianchi identities

∇D
A′ΨABCD = ∇B′

(AΦBC)A′B′ ∇aΦab +∇bR/8 = 0 (57)

The Massless field equations: We can now write down massless field equa-
tions for arbitrary half-integral helicity s on space-time. These are equations
on a symmetric spinor field φA1A2...A2s = φ(A1A2...A2s)(x)

∇A1

A′ φA1...A2s = 0 . (58)

For s < 0 we have the complex conjugate equation on primed spinors (and
at s = 0 the scalar wave equation). We have key examples:
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1. s = 1/2, the Weyl neutrino equation (chiral massless Dirac).

2. s = 1 we obtain the spinor form of the Maxwell Field equations

Fab = εA′B′φAB + εABφ̄A′B′ . (59)

The Maxwell equations ∇aFab = 0, and ∇[aFbc] = 0 become

∇AA′
φAB = 0. (60)

To see this it is helpful to note that under Hodge duality we have

1
2
εab

cdFcd = iεA′B′φAB − iεABφ̄A′B′ . (61)

which follows from the expression

εabcd = iεACεBDεA′D′εB′C′ − iεADεBCεA′C′εB′D′ . (62)

Thus φAB defines a self-dual two form (+i eigenvalue under Hodge
duality) and φ̄A′B′ anti-self-dual.

3. For s = 2 we obtain the vacuum Bianchi identity on the Weyl Spinor

∇AA′
ΨABCD = 0 , (63)

thus describing gravity.

There are two key results for the general massless field equations

Proposition 2.1 The massless field equations are conformally invariant un-
der gab → Ω2gab with φA1...A2s → Ω−1φA1...A2s.

Proof: by direct calculation using the conformal variation formulae under
gab → ĝab = Ω2gab that give ∇a → ∇̂a such that

∇̂AA′ξB
′...

B... = ∇AA′ξB
′...

B... −ΥA′Bξ
B′...
A... − . . .+ εA′

B′
ΥAC′ξC

′...
B... + . . . , (64)

where Υa = ∇a log Ω and the . . . can include terms with primed exchanged by
unprimed indices in the obvious way, with one term for each index on ξ. These
formulae can be obtained for example from the Cartan structure equations.
If all the indices are downstairs and in addition φ̂B1...Bn = φB1...Bn/Ω we have

Ω∇̂AA′φ̂B1...Bn = ∇AA′φB1... −ΥAA′φB1... −ΥA′B1φAB2... − . . . , (65)
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and so the resulting expression is symmetric in its unprimed indices and so
will vanish on contraction with the skew εAB1 . 2

Note that the law satisfied by the Weyl spinor is that under gab → Ω2gab,
ΨABCD → ΨABCD and not the spin-2 variation given above, so Einstein’s field
equations are not conformally invariant as could be expected. Nevertheless,
the vacuum Bianchi identity allows us to rescale the Weyl spinor into a
solution to the conformally invariant spin-2 equation.

Proposition 2.2 The massless field equations (58) with s > 1 are overde-
termined and inconsistent.

Proof: A symmetric spinor φA1...A2s has 2s + 1 components whereas there
are 2 × 2s equations, i.e., a surfeit of 2s − 1 equations. These only lead to
problems in curved space where taking a further derivative of the equation
and using the Ricci-identities (52) we obtain

0 = ∇A1

A′∇A2A′
φA1...A2s = ΨB1B2B3

(A3φA4...A2s)B1B2B3 . (66)

This is vacuous in spin one giving a Bianchi identity amongst between the
field equations (corresponding to charge conservation) and it then gives
Bianchi identities showing the equations are consistent, but with higher spin
in curved space it implies new relations on the fields and the equations rapidly
become inconsistent. 2

The Weyl tensor itself escapes via an algebraic identity that gives the
automatic vanishing of the RHS when ΨABCD = φABCD. Otherwise, spin-2
fields are inconsistent on curved space.

Spin 3/2 fields are a key ingredient of supergravity theories. They escape
the Buchdahl conditions in a Ricci-flat background via the Rarita-Schwinger
equation, a potential modulo gauge version appropriate for gauging the su-
persymmetry. This is best understood as an analogue of a Maxwell potential

ρA = dxbρbA , modulo gauge freedom δρA = dξA := dxb∇bξA . (67)

The action is

S =

∫
M

iρ̄A′ ∧ dxAA′ ∧ dρA , (68)

which gives the field equations

dxAA
′ ∧ dρA := dxd ∧ dxc ∧ dxbσAA′

[d ∇cρb]A = 0 . (69)
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Here σAA
′

b are the abstract Van der Waerden symbols. In flat space, this
relates to the spin 3/2 field above because a consequence of this equation is
that

dρA = φABCεB′C′dxBB
′ ∧ dxCC′

, (70)

where φABC is a spin 3/2 massless field in the sense above. However, in
curved space, a pure gauge field gives¡ using the Ricci identity (52) with
vanishing Ricci tensor in differential form version gives

d2ξA = −dxBB′ ∧ dxCC′
εB′C′ΨABC

DξD ,

so that φABC is not a gauge invariant quantity, changing by ΨABC
DξD.

It is nontrivial that the field equation is compatible with the gauge free-
dom, but we have the identity

d
(
dxAA

′ ∧ dσA
)

= dxAA
′ ∧ d2σA = iGAA′

b
∗dxb ∧ σA . (71)

Here ∗dxa = εabcddx
b ∧ dxc ∧ dxd, and d2 6= 0 because it is acting on an

abstractly indexed quantity and hence requires a commutator that gives rise
to curvature. Since Gab is the Einstein tensor, in vacuum we can take ρA to
be a 0-form, hence proving the consistency of the gauge freedom with the
field equations, or as a 1-form, providing a Bianchi identity that gives the
consistency of the overdetermined field equations amongst themselves. These
identities play a key role in Witten’s positive mass theorem.

2.2 Null congruences

A null congruence is a foliation of a region of space-time by null geodesics.
It can be defined by a null vector field la whose integral curves are the null
geodesics through each point. If it is tangent to a congruence of affinely
parametrised null geodesics, then

∇ll
b := la∇al

b = 0 (72)

Spinors are particularly natural for describing null congruences because a
4-vector la is null iff it can be expressed as la := oAōA

′
. This follows because

the vanishing determinant of lAA
′

implies that it has rank 1 and conversely.
It is always possible to choose the phase of oA so that oA is parallel also

oAōA
′∇AA′oB = 0 . (73)
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It is a standard fact that for spinors αA, βA, αAβA = 0 iff they are propor-
tional

αA = fβA (74)

for some f (i.e., they are proportional) as spin space is two-dimensional and
the inner product skew. We can deduce that there is a pair of complex scalars
ρ, σ such that

oB ō
A′∇AA′oB = −ρoA , oBo

A∇AA′oB = −σōA′ . (75)

These have the following geometric interpretation: parametrize the two-plane
orthogonal and transverse to la by ζ ∈ C by

Xa = ζm̄a + ζ̄ma , ma := oAῑA
′

(76)

for some choice of ιA with oAι
A = 1, and ma is a complex null vector defined

modulo la. We can choose ιA so that ∇lι
A = 0, and then we will also have

∇lm
a = 0. If Xa connects nearby geodesics of the congruence, then it is Lie

derived along la, i.e.,

[l, X]a = ∇lX
a −∇X l

a = 0 . (77)

This gives
∇lζ = −ρζ − σζ̄ . (78)

This can be interpreted as follows:

1. The imaginary part of ρ is the twist and generates rotations of the ζ
plane. It vanishes iff the congruence is hypersurface forming, l[a∇blc] =
0 which implies that there is a rescaling of oA so that oAoA′ = ∇AA′u
for some function u.

2. The real part of ρ gives the expansion,∇al
a = −2ρ and the area element

of the orthogonal transverse plane evolves by

A = −imadx
a ∧ m̄bdx

b,

satisfies
LlA = −2ρA (79)

3. The complex scalar σ is the shear in the sense that a circle in the ζ
plane evolves into an ellipse.
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4. Equation (77) implies the geodesic deviation equation

∇l∇lX
a = lblcXdRbdc

a (80)

and this combines with (78) to give the Sachs equations

∇lρ = ρρ̄+ σσ̄ + Φ00 (81)

∇lσ = (ρ+ ρ̄)σ + σσ̄ + Ψ0 (82)

Here Ψ0 = ΨABCDo
A . . . oD, Φ00 = Φabl

alb = −1
2
Rabl

alb and is positive
when the dominant energy condition is satisfied. An important conse-
quence for horizons and singularity theorems is that the whole RHS of
(81) is manifestly positive definite.

5. If a null hypersurface has vanishing shear, then it has the intrinsic
geometry of a light cone or null hyperplane in Minkowski space up to
scaling (i.e. the metric restricts to a multiple of dζdζ̄ on R3 or S2 × R
where la∂a = ∂v for a third coordinate v).

3 Causal structure and global hyperbolicity

The wave equation 2φ = 0 is hyperbolic and, in the massless case, prop-
agates data along null geodesics, see for example the flat space solutions
f(kax

a) = f(t− z) where ka = (1, 0, 0, 1) is a null vector and f an arbitrary
wave profile (more generally with some back-reaction, information propagates
along causal curves).

Unless otherwise stated, we will take space-time to be both space-time and
time orientable and oriented, i.e., we can consistently pick a future directed
component of the lightcone at each point, and a non-vanishing four-form.

Time orientability isn’t quite enough to rule out almost timelike curves
which could be quite bad so we assume

Definition 3.1 A spacetime (M, g) is strongly causal if for all p ∈M there
exists an open neighbourhood U of p such that no causal (i.e., timelike or
null) curve intersects V more than once.

We expect to be able to solve an initial value problem (IVP) in which
we pose initial data (φ, φ̇) on some space-like4 3-surface Σ ⊂ M and let the
equation evolve φ off the surface. More properly, we will require

4Characteristic initial value problems can also be considered on null hypersurfaces,
although the nature of the initial data changes there.
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Definition 3.2 a hypersurface Σ is achronal if no pair of points in Σ can
be connected by a timelike curve.

We will say that the initial value problem for solutions on some region U
with the given data on Σ is well posed if there exists a unique solution on U
with given data5 on Σ.

The fact that solutions propagate along null or timelike curves (i.e., causal
curves) suggests that the data on Σ can only influence the region

J+(Σ) = {p ∈M |∃ future directed causal curve from Σ to p} . (83)

This is the future of the set Σ and can be defined for any type of set. J+(Σ)
is also said to be the domain of influence of Σ. We can similarly define the
past of Σ,

J−(Σ) = {p ∈M |∃ future directed causal curve from p to Σ} . (84)

and one uses I± replacing causal by strictly timelike. These sets are the
interiors of the J±.

Definition 3.3 The future domain of dependence D+(Σ) of Σ is

D+(Σ) = {p ∈M |every past inextendible causal curve from p intersects Σ} .
(85)

Replacing past by future, we similarly define D−(Σ) and the full domain of
dependence by D(Σ) = D+(Σ) ∪D−(Σ).

This is the region on which the initial value problem for wave equations can
be proved to be well-posed by PDE techniques. If p is a point lying on a
causal curve that cannot be extended in the past through Σ, then one can
envisage waves coming in along that curve that are not determined by data
on Σ and so would violate the uniqueness assumption.

Definition 3.4 A spacelike hypersurface Σ is a Cauchy surface for M if
D(Σ) = M . A space-time is said to be globally hyperbolic if it admits a
Cauchy surface.

We have

5The solution is also usally required to depend continuously on the data, although this
is straightforward for linear equations.
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Theorem 2 (Geroch 1970) If (M, gab) is globally hyperbolic, with Cauchy
hypersurface Σ then M is diffeomorphic to Σ × R with the second factor
determined by a smooth time coordinate t such that each Σt is a Cauchy
surface.

We quote that the the IVP for linear wave equations of the form 2φ+V (x)φ =
f(x) are well posed with data given by (φ, φ̇) in Sobolev spaces and other
function spaces on a Cauchy hypersurface in globally hyperbolic M . The
proofs usually proceed by energy estimates.

4 Conformal infinity and Penrose diagrams

To obtain a good grip on the global structure, one needs to understand
asymptotics. A neat way to do that is via conformal compactification, which
involves adding a conformal boundary to space-time the corresponds to in-
finity in the physical space-time.

A key feature of the diagrams that we will draw is that they represent
the causal structure directly by drawing light rays at 45 degrees. They will
give an intuition for the asymptotics by bringing infinity into the finite part
of the diagram so that we can see which light rays go where. Such diagrams
are known as Penrose diagrams (or Penrose-Carter diagrams in Cambridge).

4.1 The homogeneous cases

A first example is C → CP1 = S2 by stereographic projection and this
extends in Euclidean signature to Rn → Sn. Here coordinates near infinity
are mapped to those near the origin via the inversion

xa → x̃a =
xa

x2
, x2 := xaxa , (86)

under which

ds2 = dxadxa =
dx̃adx̃a
(x̃2)2

. (87)

Such a transformation that preserves the metric up to a rescaling g → Ω2g
is said to be a conformal motion. Here the rescaling Ω = x̃2 returns the RHS
to manifest flatness.

The same formulae hold in Lorentz signature, but now the light cone
x2 = 0 of the origin xa = 0 is sent to infinity, being interchanged with the
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light cone x̃2 = 0 of the point i at infinity given by x̃a = 0, not just the
points. Notice that the scale factor Ω = x̃2 vanishes on this light cone at
infinity to first order.

To be more systematic, we introduce the full conformal group of (con-
formally) flat space-time but this can only act on a compactification as it
interchanges finite with infinite points. We will denote points at infinity by
i and hypersurfaces at infinity by I , pronounced scri for script I.

For a flat metric of signature (p, q) the full conformal group is SO(p +
1, q + 1)/Z2, and so in four dimensions with Lorentz signature we have the
15 parameter group SO(2, 4). This acts on R6 with coordinates

XI = (s, w, xa) = (t, x, y, z, s, w) , a =, 0, . . . , 3 , I = 0, . . . , 5,

by orthogonal transformations preserving the quadratic form

X2 := ηIJX
IXJ = s2 − w2 + xaxa . (88)

Define first the projective space

RP5 = R6/{XI ∼ λXI , λ ∈ R− {0}} . (89)

Then we can define conformally compactified Minkowski space to be

M = {[XI ] ∈ RP5|X2 = 0} ⊂ RP5 . (90)

Lemma 4.1 M = S1 × S3/Z2 .

This follows by rewriting X2 = 0 and rescaling so that

s2 + t2 = w2 + x2 + y2 + z2 = 1 .

Thus (s, t) lie on S1 and (w, x, y, z) on S3 with the Cartesian product metric,
although note that XI ∼ −XI , hence the Z2.2

The Einstein cylinder: We can take the universal cover by unwrapping
the ‘time’ S1 by setting (s, t) = (cos τ, sin τ). This then gives the Einstein
cylinder metric

ds2
EC = dτ 2 − ds2

S3 (91)

where the unit round sphere 3-metric can be given in spherical polars by

ds2
S3 = dψ2 + sin2 ψ( dθ2 + sin2 θ dφ2) , (ψ, θ, φ) ∈ [0, π]× [0, π]× [0, 2π]

(92)
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where (w, x, y, z) = (cosψ, sinψ sin θ cosφ, sinψ sin θ sinφ, sinψ cos θ), although
there will be coordinate singularities at θ, ψ = 0, π. We either draw this as a
cylinder, or in the (τ, ψ)-strip R× [0, π].

To obtain the key maximally symmetric examples, we choose a non zero
constant vector KI ∈ R6 and define

ds2
K2 =

ηIJdX
IdXJ

(K ·X)2

∣∣∣∣
X2=0

, (93)

where K ·X := KIX
I , X2 = XIX

I etc.; under SO(2, 4), KI is distinguished
only by its norm K2 so there are only the 3 cases K2 = −1, 0, 1. With
maximal symmetry there is only the scalar curvature (the Weyl tensor and
trace-free Ricci tensor must vanish) and its sign is that of K2. By dividing
by a quadratic function, the metric is invariant under constant rescalings of
XI . However, on X2 = 0 the form XIdX

I = dX2/2 vanishes so it is easy to
see that under XI → f(X)XI , ds2

I is invariant for any f(X). Thus we can
scale X so that K ·X = 1.

From the inversion example we see that the set where K · X = 0 will
correspond to points at infinity. These sets will be denoted I , or I + and
I − if respectively to the future or past of the finite part of space-time where
K ·X can be scaled to be 1. The isometry group of ds2

K2 is the subgroup of
SO(2, 4) that preserves KI .

There are three cases:

K2 = 0 Flat space. We can takeK = (0, 0, 0, 0, 1,−1), so thatK·X = s+w = 1.
It is then immediate that X2 = 0 gives s− w = −xaxa and

ds2
0 = dxadxa (94)

i.e., flat space as desired. Thus (93) defines a conformally flat metric.

Had we chosen to rescale so that s+w = 1 instead (but with the same
KI), we would have obtain the inverted metric given by the right hand
side of (87).

To rewrite this in terms of Einstein cylinder coordinates we must divide
(91) by s+ w = cos τ + cosψ = 2 cos(ψ+τ

2
) cos( τ−ψ

2
)

ds2
0 =

ds2
EC

4 cos2(ψ+τ
2

) cos2( τ−ψ
2

)
(95)
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Future infinity I + is null defined by τ +ψ = π; it is the past lightcone
of i+ with (τ, ψ) = (π, 0) or future lightcone of i0 with (τ, ψ) = (0, π).
Past infinity I − is τ − ψ = −π and is the past light cone of i0 and
future lightcone of i− given by (τ, ψ) = (−π, 0). In M, the three points
i0, i+ and i− are identified, and I + is identified with I −.

K2 = 1 De Sitter space; Einstein vacuum with cosmological constant +1 and
isometry group SO(1, 4).

Put K = (0, 0, 0, 0, 1, 0) so s = 1 and X2 = 0 gives the hyperboloid

1 + t2 = w2 + x2 + y2 + z2 (96)

This clearly has topology R×S3, with 3-spheres of radius r =
√

1 + t2

at time t. Introducing (t, r) = (tan τ, sec τ) we can rewrite the metric
as

ds2
1 =

1

cos2 τ

(
dτ 2 − ds2

S3

)
(97)

This is therefore the region τ ∈ [−π/2, π/2] in the Einstein cylinder
with future/past infinities I ± both of topology S3 given by τ = ±π/2.

Alternative coordinates (t, r) = (sinhT, coshT ) yield

ds2
1 = dT 2 − cosh2 Tds2

S3 (98)

emphasizing the hyperbola shape with exponential expansion as appro-
priate for inflationary cosmology. Here T is proper time for observers
fixed in S3.

K2 = −1 Anti de-Sitter space; Einstein vacuum with cosmological constant −1,
symmetry group SO(2, 3).

Put now K = (0, . . . , 0, 1) then w = 1 and we obtain instead the
hyperboloid

s2 + t2 = 1 + x2 + y2 + z2, (99)

As before for the Einstein cylinder, unwrap the time S1 setting

(s, t) = secψ(cos τ, sin τ), tan2 ψ = x2 + y2 + z2 . (100)

and this gives

ds2
−1 = sec2 ψ

(
dτ 2 − ds2

S3

)
ψ ∈ [0, π/2] (101)

Thus we obtain the region ψ ∈ [0, π/2] inside the Einstein cylinder.

Anti-de Sitter is important in the AdS/CFT correspondence.

23



A number of remarks are in order:

1. Infinity I is a null hypersurface for flat space, space-like for de Sitter,
and time-like for AdS. We will see that the correlation with the sign of
the cosmological constant is not a coincidence.

2. These last two representations as hyperboloids are in fact double covers
of M−{K ·X = 0}. In the K2 = 1, 0 cases, I − and I + are identified
in M. This in particular shows that light cones of points of I − refocus
at the corresponding points of I +. We unwrap these spaces in order
to avoid closed timelike curves.

3. The light cone of a point XI
0 ∈M is the intersection of X0 ·X = 0 with

M.

4. In the K2 = ±1 cases we can still use the coordinates scaled so that
s + w = 1 as we did for flat space with K2 = 0 to obtain Poincaré
patch coordinates

ds2
1 =

dt2 − dx2 − dy2 − dz2

t2
, ds2

−1 =
dt2 − dx2 − dy2 − dz2

z2

(102)
These have infinity at respectively t = 0 or z = 0 and taking t > 0 or
z > 0, the patches miss out half the part of the space-times covering
M (which in turn is double covered by the hyperboloids and so on).
Sometimes one puts t = exp−T to obtain

ds2
1 = dT 2 − e2T (dx2 + dy2 + dz2) . (103)

The T is now the proper time of an observer at the origin in three space
and emphasizes the exponential expansion seen by that observer; the
coordinates cover the region in de Sitter space that can eventually be
observed by this observer.

5. It is clear that Minkowski space and de Sitter are globally hyperbolic,
but that AdS is not. For AdS, we need to present, not just data on an
initial t = const. hypersurface, but also data, or at least boundary con-
ditions on the time-like infinity. Otherwise, one can imagine incoming
radiation from infinity.
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4.2 Cosmological models

The Friedmann-Robertson-Walker (FRW) models are models in which we
assume a collection of comoving observers for whom the universe is homo-
geneous (the same for each observer) and isotropic (the same in every di-
rection). It is straightforward to deduce from this that the space-time can
divided up into spatial sections of constant curvature with 3-metrics ds2

E3
k

are for k = 0, 1,−1 the flat 3-metric, the round sphere or hyperbolic 3-space
respectively. The FRW metrics are

ds2
FRWk

= dt2 − a(t)2 ds2
E3
k
. (104)

They are all conformally flat and therefore can all be represented inside the
Einstein cylinder. The value of k is determined by whether the density of
the universe is greater than (k = 1), or less than (k = −1) or exactly equal
to (k = 0) some critical value. This is currently too close to call.

The k = +1 case is the simplest since then

ds2
FRW1

= S(τ)2( dτ 2 − ds2
S3) , τ(t) =

∫ t dt

a(t)
, (105)

and S(τ(t)) = R(t). We usually assume perfect fluid energy momentum
tensor

Tab = diag(ρ, p, p, p) ,

In this conformal time coordinate, the main Einstein equation is the Fried-
mann equation is

da

dτ

2

+ ka2 =
8πG

3
ρa4 +

λ

3
a4 . (106)

Another independent equation can be expressed as the conservation equation

dρ = −3(ρ+ p)d log a, . (107)

We need an additional equation of state relating p = f(ρ). For dust we have
simply p = 0 and then the conservation gives simply M = ρa3 for some
constant M (or for radiation p = ρ/3 we get M = ρa4).

The simplest ‘dust’ k = 1 case has, after solving the Friedmann equations

t =
C

2
(τ − sin τ) , S(τ) =

C

2
(1− cos τ), (108)
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so we have a big bang S = 0 at τ = 0 followed by a big crunch, again with
S = 0 at τ = π.

In the conformal diagram one sees cosmological horizons very clearly as
light rays are at 45◦ on the Einstein cylinder. We see that in general an
observer at later time can see far away regions A and B whose causal pasts
do not intersect. This then makes the apparent homogeneity of the universe
a surprise. In diagram that takes into account the size of a which tends to
zero at the big bang, it is unclear whether the past of A and B can mix,
whereas in the conformal diagram it is completely clear.

This surprising homogeneity is resolved by inflation which notes that
there is a surface of last scattering at some time τs soon after the big bang
before which we cannot see what was going on and for which the physics is
not so clear. This surface is where radiation decouples from matter and so
after this time, we can see what is going on, whereas before, we just have
what we see from the cosmic microwave radiation. They then posit a period
of inflation, modelled by gluing in an exponentially expanding region of de
Sitter, which gives the pasts of A and B time to mix and homogenize so as
to explain the apparent isotropy of the universe.

It is now known that the cosmological constant is positive. This now
allows a→∞ for finite τ even with k = 1. With perfect fluid as above, when
a is large, the λa4 term dominates the RHS of the Friedmann equation, and
in conformal time, for large a, the equation approximately gives

da

dτ
=

√
λ

3
a2 a ∼ 1

τI − τ

and S(τ) has a pole at τ = τI so that we get a I + that looks like that of
de Sitter.

For k = 0,−1 the result is similar. This exponential expansion arises
because a positive cosmological constant looks like a stress-energy tensor
Tab = diag(λ,−λ,−λ,−λ), so that although the effective energy density is
positive, the pressure is negative. At the current age of the universe, the
contribution of λ to the energy density is thought to be of the same order
as that of the matter including dark matter (visible matter being thought to
be 3%, dark matter 30% and cosmological constant about 67% of the critical
mass of the universe). Such a ratio of matter to cosmological constant is
extremely high at early times, and extremely low at late times, and this
sometimes leads to the ‘why are we alive now?’ question. The later periods
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are however, very cold and boring, and the early periods rather hot, and too
early for structure to form, so there are anthropic arguments here.

The k = 0,−1 models can be obtained similarly as subsets of the Einstein
cylinder (see for example Hawking and Ellis).

4.3 Conformal infinity in conformally curved spaces

Singularities are characterized by incomplete geodesics that cannot be ex-
tended beyond some finite time, perhaps because we have removed some
region where the curvature is infinite. A space-time is nonsingular if it is
geodesically complete, that is each geodesic can be extended to infinite affine
parameter. Typical examples are isolated systems in which, perhaps some
particles, fields or gravitational radiation come in from infinity, and interact
without forming a black hole, and then escape again to infinity. In order to
understand what is happening at large distances, we can introduce a concept
of conformal infinity.

In curved space, we do not have a group of conformal symmetries, but
we can nevertheless perform conformal rescalings g → Ω2g and this leads to
the following definition of conformal compactification in curved space.

Definition 4.1 A conformal compactification of a space-time (M, g) is a
manifold M̃ with boundary I = ∂M̃ and metric g̃ such that

1. g̃ is smooth on M̃

2. M is diffeomorphic to the interior of M̃ ,

3. On M we have g̃ = Ω2g with Ω smooth on M̃ , Ω 6= 0 on M ,

4. Ω = 0, and dΩ 6= 0 on I = ∂M̃ .

We can also specify the level of differentiability if desired.
We have already seen examples with Minkowski space, de Sitter space,

AdS and so on. If M is globally hyperbolic we can see that I = I + ∪I −

where future infinity I + is to the future of a Cauchy hypersurface and past
infinity I − to the past.

We have the theorem
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Proposition 4.1 Let (M, g) have conformal compactification (M̃, g̃), and
suppose that the space-time asymptotically satisfies the Einstein equations
with conformally invariant matter (so that the trace of the stress-energy ten-
sor vanishes) with cosmological constant λ. Then I is space-like when λ > 0,
time-like for λ < 0 and null when λ = 0.

We furthermore have that if the trace-free Ricci tensor falls off fast enough
at I , then I is umbilic, i.e., the trace-free part of the extrinsic curvature
vanishes. [The extrinsic curvature is kab := ∇(aNb) where Na is the unit
normal (and Na is continued off the surface by Na∇aNb = 0).] In the null
case this implies that I is shear-free.

Proof: Define the Schouten tensor 6

Pab = −1

2
Rab +

1

12
Rgab . (110)

This is constructed so that under a conformal rescaling we have

Pab = P̃ab + Ω−1∇̃a∇̃bΩ− Ω−2g̃ab∇̃cΩ∇̃cΩ (111)

With the vanishing of the trace of the energy momentum tensor, we have in
the physical metric P a

a = −R/6 = −λ/6. So

−λ
6

= P a
a = Ω2g̃abPab = Ω2P̃ a

a + Ω2̃Ω− 4∇̃aΩ∇̃aΩ . (112)

On I , Ω = 0 and so we have, defining the normal to I by Na = ∇̃aΩ

g̃abNaNb =
λ

24
(113)

hence the first part of the proposition follows.
To obtain the second part we use the trace-free part of (111) to see that,

multiplying through by Ω we have

(∇̃aNb −
1

4
g̃abg̃

cd∇cNd)|Ω=0 = 0 (114)

6This is defined in d-dimensions by

Pab = − 1

d− 2

(
Rab −

1

2(d− 1)
R

)
, (109)

with the same conformal transformation law. It plays a key role in conformal geometry.
Note the sign flip relative to Riemannian definitions.
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The extrinsic curvature is defined to be the projection of the covariant deriva-
tive of the normal into the surface and so this shows that its trace-free part
vanishes. 2

In the null case this implies that I has the intrinsic geometry of a light
cone in Minkowski space in the sense that it is shear free in the sense of the
Sachs equation.

4.4 Asymptotics and peeling

If the space-time is nonsingular, hence complete, we expect all light rays to
make it to infinity both in the past and future, and if so, we say that the
space-time is asymptotically simple. Such space-times can be thought of as
perturbations of Minkowski space, de Sitter space or anti-de Sitter space.
We have theorems now that tell us that such solutions can be constructed
from generic but small data in some Sobolev norms. In the case of positive
cosmological constant the stability of small perturbations of de Sitter was
proved by Friedrich in the 1980s and for vanishing cosmological constant
in the 1990s by Christodoulou and Klainerman and followers. However, in
recent work, anti-de Sitter space has been shown to be unstable in this sense.
For a start it is not globally hyperbolic, and one must impose some boundary
conditions at I to obtain a well-posed initial value problem, and then these
are usually chosen to be reflective so that waves can bounce back and forth
leading to instabilities.

If the unphysical metric is smooth enough, we can also deduce that the
Weyl tensor vanishes on I . For zero cosmological constant it is possible to
show that I has topology S2×R and indeed this is typically also the case in
black hole space-times with λ = 0. If so we can find, perhaps after a further
rescaling, Bondi coordinates (u, ζ, ζ̄) near I so that the unphysical metric
is given by

d̃s
2

= dudΩ− dζdζ̄

(1 + |ζ|2)2
+O(Ω) , (115)

where the second term is simply the sphere metric.
It is reasonable to expect conformally invariant and massless fields to

continue smoothly to I . Thus, if φ is a solution to the conformally in-
variant wave equation, φ̃ = φ/Ω should be smooth on I in (M̃, g̃) at least
if it is in the domain of dependence of M . When λ > 0, we can deduce
that a linear massless field will evolve past I as if it wasn’t there and so

29



φA1...An/Ω = φ0
A1...An

will be smooth and generically non-vanishing near I
in the unphysical space-time, giving sharp asymptotic falloff of the physical
field φA1...An = Ωφ0

A1...An
. It is instructive to compare this falloff to that in

terms of the affine parameter r along an outward going null geodesic. In the
case when I is null, we find

Ω ∼ 1/r. (116)

However, in the de Sitter case, it is easily seen that Ω ∼ exp(−t) when t is
proper time along a time-like geodesic going out to I since dt = fτ/τ where
τ is the Einstein cylinder coordinate. When λ = 0, the situation is as before
for the wave equation but more subtle for higher spin as different components
of the spinor scale differently according to whether they are aligned with I
or transverse. Taking oA aligned along the null geodesic, we find that if φr
is r contractions of ι and n− r with oA, then we have

φr ∼
1

rn−r+1
. (117)

We can construct a spin-two field ψ̃ABCD on M̃ from the Weyl spinor
ΨABCD by defining

ψ̃ABCD =
ΨABCD

Ω
. (118)

The asymptotics above apply to this field, i.e., ψABCD should be finite on I .
However, under the rescaling the Weyl tensor itself does not rescale. Thus
we learn that the Weyl tensor itself should vanish on I . The argument is
more delicate when I is null, but follows when it has topology S2 × R.

5 Black holes

More generally, we do not expect space-times to be complete and we expect
singularities to form.
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5.1 The Chandrasekhar limit

For a star whose nuclear fuel has burnt out, the pressure p is related to the
density ρ by P = αργ for some constants α, γ.

Gravitational potential energy ∼ M2

R

Pressure energy ∼ PV ∼ PR3 ∼ α

(
M

R3

)γ
R3

Total energy ∼ αMγR3(1−γ) − M

R
.

For γ > 4/3 a stable minimum exists for all M . For γ < 4/3 no stable
minimum exists. The parameter γ measures the stiffness, and one can ask
how stiff can matter become? The value γ = 4/3 value is in fact singled out
by fermionic degeneracy pressure arising from the Pauli exclusion principle
and represents a maximum stiffness.

For degenerate atoms/neutrons filling Fermi level pF , the degeneracy im-
plies that we have n = #/vol ∼ p3

F with one particle per cube of order of
the wavelength. The density is then ρ ∼ mnp

3
F , where mn is atom/neutron

mass, pressure ∼ npF ∼ p4
F

P ∼ m−4/3
n ρ4/3 ,

giving γ = 4/3. This implies

E =
M4/3

R
(α−M2/3) ,

and so for M > Mc = α3/2 collapse is inevitable. According to the above
Mc ' 1/m2

n ∼ one solar mass. This is the Chandrasekhar limit for white
dwarfs (electron degeneracy) and Landau limit (neutron degeneracy) for Neu-
tron stars.

These back-of the envelope calculations for the existence of black holes
from 1930 are bolstered on the one hand by rigorous mathematical arguments
in the form of the Hawking-Penrose singularity theorems from the 1960s, and
more recently by ample observational evidence see Nasa website for examples.

The final state of gravitational collapse is understood to settle down to the
Kerr or more simply the Schwarzschild solutions in which the star disappears
inside a radius R = 2M , the Schwarzschild radius from which light can no
longer escape.
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5.2 Schwarzschild and the standard picture

The Schwarzschild metric

ds2 =

(
1− 2m

r

)
dt2 −

(
1− 2m

r

)−1

dr2 − ds2
S2 (119)

provides the prototype nonrotating black hole exterior. It can be completed
with an interior by gluing in a collapsing dust Friedman model

dt′2 −R(t′)2(dχ2 + sin2 χds2
S2) . (120)

We relegate this gluing to the exercises.
After collapse, it can be seen that the metric has issues at r = 2m

but these are resolved by use of the respectively retarded and advanced
(Eddington-Finkelstein) coordinates u, v

du = dt− dr

1− 2m
r

, dv = dt+
dr

1− 2m
r

(121)

so that

(u, v) = (t− r∗, t+ r∗) , r∗ = r + 2m log

(
r − 2m

2m

)
. (122)

where r∗ is the Regge-wheeler tortoise coordinate that places the horizon at
r∗ = −∞. This allows us to put the metric in the form

ds2 =

(
1− 2m

r

)
du2 + 2dudr − r2ds2

S2 , (123)

and similarly with advanced coordinates, showing that there is no singularity
at r = 2m. We see in fact that r = 2m is a null hypersurface ruled by
outgoing null geodesics, but the fact that r = 2m means that the light rays
are not escaping to infinity. It is an event horizon. For r > 2m, light rays
with ṙ > 0 can and do escape. For r < 2m, all causal geodesics have future
end point at r = 0.

These are the best coordinates for examining I +. The rescaling can be
done with Ω = 1/r because r is an affine parameter on radial null geodesics.
This yields unphysical metric

d̃s
2

= Ω2

(
1− 2m

r

)
du2 + 2dudΩ− ds2

S2 , (124)
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and gives rise to the following picture:

In this picture it is clear that the event horizon satisfies the defining
property

Definition 5.1 The event horizon is the boundary of the past of I +.

There is a corresponding time-reversed picture using coordinates (v, r, θ, φ).
Using both we again have a problem at r = 2m

ds2 =

(
1− 2m

r

)
dudv − r2ds2

S2 , (125)

but this can be used by using Kruskal coordinates

U = − exp(−u/4m) , V = exp(v/4m) (126)

which yield

ds2 =
32m3

r
dUdV − r2ds2

S2 , (127)

and this now extends to negative values of U and V through U = 0 and
V = 0 which give the event horizons since

UV =
(

1− r

2m

)
er/2m . (128)

These give new asymptotic regions as U, V → −∞ and gives the full Kruskal
extension with Penrose-Carter diagram:

We can see that the singularity r = 0 (which is a genuine curvature
singularity) is a black hole to the future of every observer that crosses the
future event horizon, or a white hole in the past. Time translation by

∂t = V ∂V − U∂U (129)

in this picture is much like a boost in 1 + 1 dimensions.
Similar diagrams can be drawn for Reissner-Nordstrom, Kerr and the

Kerr-Newman, see Hawking and Ellis although the latter have the novelty of
Cauchy horizons, hypersurfaces beyond which neither fields nor space-time
itself are determined by Cauchy data essentially as a consequence of naked
singularities, singularities in the past of observers. However, these cannot be
seen from infinity. These black hole solutions are unique subject to various
assumptions (like the existence of a stationary Killing vector that looks like
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a time translation at large distances). They have extensions to versions with
cosmological constant.

This final state is tightly constrained as in four dimensions we have
powerful uniqueness theorems. Birkhoffs theorem says that any spherically
symmetric vacuum solution is static, which then implies that it must be
Schwarzschild. For Einstein-Maxwell system this extends to show that the
only spherically symmetric solution is Reissner-Nordstrom. But suppose we
know only that the metric exterior to a star is static. We further have:

Theorem 3 (Israel) If (M,g) is an asymptotically-flat, static, vacuum space-
time that is non-singular on and outside an event horizon, then (M,g) is
Schwarzschild.

More remarkably we have

Theorem 4 (Carter-Robinson) If (M,g) is an asymptotically-flat station-
ary and axi-symmetric vacuum spacetime that is non-singular on and outside
an event horizon, then (M,g) is a member of the two-parameter Kerr family.
The parameters are the mass M an the angular momentum J.

The assumption of axi-symmetry has since been shown to be unnecessary by
Hawking and Wald , i.e., for black holes, stationarity axisymmetry.

5.3 Horizons and black hole thermodynamics

For an asymptotically flat space-time, we define

Definition 5.2 The event horizon H is the boundary of the past J−(I +)
of I +, that is, it is the boundary of the region from which it is possible to
escape to infinity along a causal curve.

Much is known about event horizons under reasonable assumptions appro-
priate to isolated systems that settle down:

• H is a null hypersurface being the boundary of a past set (it clearly
cannot be time-like as causal paths could then cross both ways, and if
it were space-like there would be regions to its past that could not exit
to I +).

• H is ruled (or foliated) by complete null geodesics.
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• If I has topology S2×R, as appropriate for the exterior of an isolated
system, then so does H, with the R factor being the null geodesics.

• The cross-sectional area is bounded above.

This is a rather excessively global definition that requires knowledge of
the whole space-time. One can also define with just local knowledge:

Definition 5.3 a closed trapped surface is a two-surface of topology S2 such
that the outward pointing null geodesics have nonpositive expansion (i.e., the
area will drop or be constant in any outward going null direction or ρ ≥ 0
where ρ is the spin coefficient in the definition of the Sachs equation).

Penrose’s original singularity theorem deduces the existence of a singularity
(in the form of geodesic incompleteness) from the existence of such a closed
trapped surface. It is easy to see from the signs in the Sachs equations and
following the outward going null geodesic normals off hte surface that a closed
trapped surface leads to:

Definition 5.4 an apparent horizon is a null hypersurface of topology S2×R
such that the expansion of the outward going null rays is nonpositive (i.e.,
the area is non-increasing to the future).

The first of the Sachs equation for a null geodesic congruence generated by
l gives

∇lρ = ρ2 + σσ̄ + Φ00 ≥ ρ2 . (130)

Thus if ρ ≥ 0 then it cannot decrease. (Recall that if A is the area element,
LlA = −2ρA.)

However, Penrose’s theorem doesnt deduce the location of the singularity!
In particular it is not clear that an apparent horizon is hidden inside an event
horizon and the following is open:

The cosmic censorship hypothesis: All singularities that arise from
evolving from an initial data hypersurface are hidden behind an event horizon
and so cannot be seen from infinity.

Generally speaking we assume that a black hole settles down to being
stationary or static. Then, the event horizon must settle down to a null hy-
persurface with finite cross sectional area (otherwise geodesics will be escap-
ing to infinity). Once a black hole horizon settles down, its area is constant.
Assuming that the black hole is becoming stationary or static, it follows that
it is (under suitable analyticity assumptions) a Killing horizon:
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Definition 5.5 A Killing horizon is a null hypersurface on which a Killing
vector ka becomes null, so that the surface is defined by kak

a = 0 and ka 6= 0.
Thus ka is tangent to the null geodesic generators of the horizon.

The fact that ka is Killing means that we must have ρ = σ = 0.
It follows from the black hole uniqueness theorems that, even if we started

from some collapse scenario, the final black hole, if essentially static or sta-
tionary, is Kerr Newman or Schwarzschild. These all have a similar structure
to Schwarzschild in that they can be continued analytically back to a point
where the standard future event horizon intersects a past one at a 2-surface
C.

Definition 5.6 Such a Killing Horizon is said to be a bifurcate Killing hori-
zon if there exists cross-section C of topology S2 on which ka vanishes—it
is bifurcate because then in a neighbourhood of there is a transverse horizon
such that ka = U∂U − V ∂V as for the crossover in Schwarzschild.

On a Killing horizon we can define

Definition 5.7 The surface gravity κ is defined by

∇akbk
b = −2κka , or ka∇ak

b = κkb , (131)

where in the static case, ka is understood to be normalized to have kak
a = 1

at large distances. For Schwarzschild κ = 1/4m.

Black hole thermodynamics starts with the Bekenstein bound on the en-
tropy S: in a region of radius R and mass-energy E the entropy is constrained
by

S <
2πkRE

~c
(132)

where we have not set the usual fundamental constants k, ~, c to unity. It
was arrived at by consideration of throwing objects with entropy into black
holes and trying to avoid violations of the second law arising from the black
hole eating entropy. In this view, the black does have entropy

SBH =
kA

4G
(133)

and this is taken to be the maximal entropy state, i.e., the Bekenstein bound
is saturated by the black hole entropy.
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Classically, one does not think of black holes as having microstates that
could give rise to an entropy in view of the black hole uniqueness theorems.
These seem to imply that the black hole state is unique, whereas an enropy
suggests the existence of many equally likely microstates compatible with
given macroscopic observables. The black hole entropy is usually understood
as having its origin in quantum gravity.

This chain of reasoning subsequently led to the Holographic principle, that
the maximum number N of states in a spatial region of radius R satisfies

N < expSBH(R) (134)

This comes from the definition of entropy of a system as S := −
∑

i pi log pi
where pi is the probability of the ith state. If the system is equidistributed,
pi = 1/N , whereN is the number of states (the dimension of the Hilbert space
of the system) we obtain S = logN . This is counter-intuitive without general
relativity because one thinks of the number of states in a region as being
the exponential of the volume rather than the area. However, gravitational
collapse reduces this if there is too much matter (too many particles) and
indeed the vast bulk of the entropy is undertood to be gravitational.

The second law of thermodynamics: if the entropy is equated with the
area of the event horizon in black hole thermodynamics, the 2nd law states
that it can only increase. We have the area theorem

Proposition 5.1 The area of an event horizon is non-decreasing.

Proof: This is a simple consequence of the Sachs (or Raychauduri) equations

ρ̇ = ρ2 + |σ|2 + Φ00 . (135)

This shows that in particular ρ̇ ≥ ρ2 when the dominant energy condition is
satisfied. Thus, if ρ = ρ0 > 0 at some affine parameter value t = 0 on the
generator, it is bounded below by the solution

ρ0(t) =
ρ0

1− ρ0t
, (136)

the solution to ρ̇ = ρ2 with the same initial condition. Thus ρ→∞ in finite
time. This introduces a cusp after which the null geodesic must then leave
the horizon (see picture), contradicting its being a generator of H. 2
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The first law of black hole thermodynamics: for a variation of a closed
system with rotation and charge can be stated as

dE = TdS + ΩdJ + ΦHdQ (137)

Here E is the total energy, T the temerature, Ω the angular velocity, J
the angular momentum, Q the charge and φ the electrostatic potential. In
the context of black holes, the total energy is the mass, we identify the
temperature with the surface gravity by

T = κ/2π (138)

and S with the area.
For Reissner Nordstrom, Φ = ΦH is the electric potential at the horizon

and Q the total charge, and, in the case of the Kerr solution, Ω is the angular
velocity, and J the angular momentum.

There are a number of strategies for proving these formulae. The most
basic is to simply establish sufficient relations between the various quantities
(M,A,ΩH , J, φH , Q) as can be read off from the black hole metric, and then
to differentiate it. The simplest example is for Schwarschild where the area
is that associated with the Schwarzschild radius r = 2M , A = π4M2, upon
which differentiation yields

dM =
dA

8πM
=

κ

2π
dA , (139)

giving the most basic version.
If we wish to introduce charge, we must consider the Reissner-Nordstrom

solution

ds2 =
∆(r)

r2
dt2 − r2

∆(r)
dr2 − r2ds2

S2 , ∆(r) = r2 − 2Mr +Q2. (140)

This satisfies the Einstein equations with electromagnetic potential

A =
Q

r
dt . (141)

The Killing horizons are where ∆ = 0 giving

r± = M ±
√
M2 −Q2 , (142)
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assuming Q < M . The outer one is the event horizon and a short calculation
shows that differentiating the obvious relation A = πr2

+ now gives

dM =

√
M2 −Q2

2πr2
+

dA+
Q

r+

dQ . (143)

The coefficient of dQ is indeed the value of the potential at the horizon. It is
a more complicated task to see that the surface gravity does indeed appro-
priately give the coefficient of dA (see the exercises). Even more nontrivially,
this works as stated above for the Kerr-Newman solution where there is also
rotation.

The zeroth law of Black hole thermodynamics: In the analogy with
thermodynamics, κ plays the role of temperature via T = κ/2π. The zeroth
law is that the temperature is constant in equilibrium. It is easy to see that
the surface gravity κ is constant up the generators ofH, because ka is Killing.
We will see in the problems that for a bifurcate Killing horizon κ is actually
constant over the horizon. Hence it is constant everywhere. The next result
follows in greater generality but we will not prove it here.

There is also a third law, that the entropy of an object at absolute zero is
zero. This fails for black holes for a number of reasons, but a vaguer version,
that once cannot approach absolute zero temperature with a finite number
of processes does seem reasonable, as T → 0 corresponds to M →∞.

The glaring omission in all this is of course that the temperature of a
black hole classically would seem to have to be zero. This will be seen to be
resolved by Hawking radiation.
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