
Topological groups, 2021–2022

Tom Sanders

Course overview

Groups like the integers, the circle, and general linear groups (over R or C) share a number

of properties naturally captured by the notion of a topological group. Providing a unified

framework for these groups and properties was an important achievement of 20th century

mathematics, and in this course we shall develop this framework.

Highlights will include the existence and uniqueness of Haar integrals for locally compact

topological groups, the topology of dual groups, and the existence of characters in various

topological groups. Throughout, the course will use the tools of analysis to tie together the

topology and algebra, getting at superficially more algebraic facts by analytic means.

Course synopsis

[6 lectures] Definition of topological groups. Examples and non-examples. Quotient groups.

Subgroups. Compactness and local compactness. Non-functional separation axioms. The

Open Mapping Theorem.

[5 lectures] Complete regularity of topological groups. Continuous partitions of unity and

Fubini’s Theorem. Existence and uniqueness of Haar integrals.

[5 lectures] Peter-Weyl Theorem for compact topological groups. Dual groups of topological

groups. Local compactness of the dual of a locally compact topological group.

References

There are other notes on similar topics with a slightly different focus: [Fol95, Kör08, Kra17,

Meg17] and [Rud90].

General prerequisites

The course is designed to be pretty self-contained. We assume basic familiarity with groups

as covered in Prelims Groups and Group Actions (see e.g. [Ear14]). We shall also assume

familiarity with Prelims Linear Algebra (see e.g. [May20]) and Part A: Metric Spaces and

Complex Analysis (see e.g. [McG19]) for material on metric and normed spaces.
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Familiarity with topology is essential, though not much is required. What we use (and

more) is covered in Part A: Topology (see e.g. [DL18]), with the exception of Tychonoff’s

Theorem. This can be informally summarised as saying that a non-empty product of com-

pact spaces is compact, and there is no harm in taking it as a black box for the course.

Those interested in more detail may wish to consult Part C: Analytic Topology (see e.g.

[Kni18]).

The Axiom of Choice is sometimes formulated as saying that an arbitrary product of

non-empty sets is non-empty, and in this formulation it may be less surprising that it can

be used to prove Tychonoff’s Theorem. It turns out that the converse is also true, i.e.

Tychonoff’s Theorem (and the other axioms of set theory) can be used to prove the Axiom

of Choice1.

Finally no familiarity with functional analysis is assumed, though there are clear simi-

larities and parallels for those who do have some. See e.g. [Pri17] and [Whi19].

Teaching

A first draft of these notes is on the website, but they will be updated after each lecture

with any resulting changes. This document was compiled on 3rd May, 2022 at 10:13.

Lectures will be supplemented by some tutorial-style teaching where we can discuss the

course and also exercises from the sheets. Once I have a list of the MFoCS students attending

I shall be in touch to arrange these.

Contact details and feedback

Contact tom.sanders@maths.ox.ac.uk if you have any questions or feedback.

1Those unfamiliar and looking for a reference may wish to consult the notes [Ter10].
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1 Groups with topologies

We say a group G is written multiplicatively to mean that the binary operation of the

group is denoted G2 Ñ G; px, yq ÞÑ xy; with inversion denoted G Ñ G;x ÞÑ x´1; and

identity denoted 1G. If G is Abelian then we say it is written additively to mean that

the binary operation of the group is denoted G2 Ñ G; px, yq ÞÑ x ` y and called addition;

with inversion denoted G Ñ G;x ÞÑ ´x and called negation; and identity denoted 0G.

!4All groups written additively will be Abelian, but not all Abelian groups will be written

additively.

A group G that is also a topological space is called a topologized group. Without

any additional assumptions these are no more than their constituent parts: a group and a

topological space. When the group inversion G Ñ G and the group operation G2 Ñ G are

both continuous, where in the latter case G2 has the product topology on G2, we say G is

a topological group.

Example 1.1 (Indiscrete groups). Any group G endowed with the indiscrete topology is a

topological group since any map into an indiscrete space is continuous.

Example 1.2 (Discrete groups). Any group G endowed with the discrete topology is a

topological group since the product of two copies of the discrete topology is discrete – so

both the topological spaces G and G2 are discrete – and any map from a discrete space is

continuous.

The reals under addition may be endowed with the discrete or indiscrete topologies

to make them into a topological group as above. However, neither of these is the ‘usual’

topology on R which is generated by intervals without their endpoints.

Example 1.3 (The real line). The group R (the operation is addition) endowed with its

usual topology is a topological group. The reals are a metric space and so the topology is

completely determined by sequences. Hence the relevant continuity is just the algebra of

limits: in particular, if xn Ñ x0 then ´pxnq “ p´1qxn Ñ p´1qx0 “ ´x0; and if additionally

yn Ñ y0, then xn ` yn Ñ x0 ` y0.

Example 1.4 (Normed spaces). The additive group of a normed space X with the topology

induced by the norm is a topological group by essentially the same argument as in Example

1.3 since addition and scalar multiplication are continuous in the norm. In particular, Rn

and Cn are topological groups under addition.

Example 1.5. The non-zero complex numbers, C˚, form a multiplicative group and with

the usual topology this is a topological group by the algebra of limits again: if xn Ñ x0 in

C˚ then x´1n Ñ x´10 ; and if additionally yn Ñ y0 then xnyn Ñ x0y0.
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There are more examples in Proposition 1.54 and on the exercise sheets in Exercises I.7,

II.2 & III.3, and we shall see later in Propositions 1.27, 2.9 & 2.15, that subgroups, product

groups, and quotient groups are naturally topological groups when the underlying groups

are topological groups and these constructions can be used to generate yet more examples.

Group notation

Remark 1.6. Suppose that G is a group written multiplicative and S, T Ă G. We write

S´1 :“ ts´1 : s P Su and ST :“ tst : s P S, t P T u.

For n P N0 we define Sn inductively by S0 :“ t1Gu and Sn`1 :“ SnS, and S´n :“ pS´1qn.

It will also be convenient to write xS :“ txuS and Sx :“ Stxu for x P G.

If G is written additively then the above notation changes in the obvious way so we write

S ` T instead of ST etc.

Remark 1.7. !4In general SS´1 ‰ S0 and S2 ‰ ts2 : s P Su.

Remark 1.8. !4Gn denotes the n-fold Cartesian product Gˆ¨ ¨ ¨ˆG not the product defined

in Remark 1.6; the product is just G.

We say S Ă G is symmetric if S “ S´1.

Remark 1.9. If S and T are symmetric then S X T is symmetric.

Remark 1.10. We write xSy for the group generated by S, that is
Ş

tH ď G : S Ă Hu, the

intersection of all the subgroups of G containing S.

Remark 1.11. If S is symmetric then xSy “
Ť

nPN0
Sn by the subgroup test.

Semitopological, quasitopological, and paratopological groups

Suppose that G is a topologized group written multiplicative. We say that the group oper-

ation on G is separately continuous if the maps GÑ G;x ÞÑ xy and GÑ G;x ÞÑ yx are

continuous for all y P G.

Remark 1.12. The maps G Ñ G2;x ÞÑ px, yq (and G Ñ G2;x ÞÑ py, xq) are continuous for

all y P G and so is the group multiplication is continuous then is is separately continuous.

Sometimes we say that the group operation is jointly continuous when it is continuous to

emphasise the difference with separate continuity.

Remark 1.13. Separate continuity of the group operation is exactly equivalent to saying that

xU and Ux are open (resp. closed) whenever U is open (resp. closed) and x P G.
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A topologized group G in which the group operation is separately continuous is called

a semitopological group. If additionally inversion is continuous then we call it a qua-

sitopological group. If the group operation is jointly continuous (but nothing is assumed

about inversion) then we call G a paratopological group.

Our purpose in introducing these structures is to understand exactly which topological

hypothesis lead to which conclusions in topological groups, but they are also studied in

their own right. For a much more detailed development including many examples and open

problems see [AT08, Chapters 1 & 2].

Remark 1.14. In view of Remark 1.12, we have the following implications:

Topological

ð
ù ð

ù

Quasitopological Paratopological

ð
ù

ð
ù

Semitopological

Example 1.17 gives a semitopological group that is neither quasitopological nor paratopo-

logical; Example 1.15 gives a paratopological group that is not topological; and Example

1.16 gives a quasitopological group that is not topological. So none of the implications can

be reversed.

Since a quasitopological group that is also a paratopological group is a topological group

these examples also show that there can be no implication (in either direction) between the

properties of being quasitopological and paratopological.

Example 1.15 (Reals with the right order topology). The set tpa,8q : a P Ru Y tH,Ru is

a topology on R, and R with the operation of addition is a paratopological group since

tpx, yq : x` y P pa,8qu “
ď

bPR

pa´ b,8q ˆ pb,8q

so that the preimage of the open set pa,8q is open in the product topology. This paratopo-

logical group is not a topological group since p´8,´aq is not open (for any a P R).

Example 1.16 (Groups with cofinite topologies). Since intersections and finite unions of

finite sets are finite, any set may be equipped with a topology in which the proper closed

sets are the finite sets – this is called the cofinite topology.

A group G equipped with the cofinite topology is a quasitopological group since U´1 is

finite if U is finite (so inversion is continuous), and xU and Ux are finite if U is finite (so

multiplication is separately continuous).

If G is finite then the cofinite topology is the same as the discrete topology and G is a

topological group (as in Example 1.2). On the other hand, if G is infinite we shall see in

Remark 1.33 that it is not a topological group.
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Example 1.17. Since intersections and finite unions of countable subsets of R that are

bounded below are, themselves, countable subsets of R that are bounded below, R may be

equipped with a topology in which the proper closed sets are the countable subsets of R
that are bounded below.

A translate of a set that is countable and bounded below is still countable and bounded

below, and hence R equipped with this topology is a semitopological group.

On the other hand, RzN0 is open, but ´pRzN0q “ Rzp´N0q is not so inversion is not

continuous, and so this is not a quasitopological group. It is not a paratopological group

either as we shall see in Remark 1.33, which are essentially the same reasons as in Example

1.16.

There are a few key lemmas (Lemmas 1.18, 1.22, 1.24,1.29, 1.31, and 1.35) which we

highlight in red because they each capture a crucial technique or idea.

Lemma 1.18 (Key Lemma I). Suppose that G is a topologized group in which inversion is

continuous. If U is a neighbourhood of 1G then U contains a symmetric open neighbourhood

of the identity; if K is a compact set then K is contained in a compact symmetric set; and

if S is symmetric then S is symmetric

Proof. If U is a neighbourhood of 1G then U contains an open neighbourhood V of 1G. Put

S :“ V X V ´1 which is open and contains 1G (since 1´1G “ 1G) and moreover S “ S´1 so

that S is a symmetric open neighbourhood of 1G contained in U .

Since inversion is continuous and K is compact, the image of K, K´1, is compact and

since the union of compact sets is compact we conclude that KYK´1 is a compact symmetric

set.

Finally, inversion is continuous and so the preimage of S under inversion (which is the

same as the image of S under inversion) is the set S
´1

and is closed and contains S´1 “ S.

It follows that S Ă S
´1

. But S
´1
Ă pS

´1
q´1 “ S, and we conclude that S

´1
“ S.

Remark 1.19. In particular Lemma 1.18 applies to quasitopological groups.

Remark 1.20. If K is compact and 1G P K then there is a symmetric compact C Ă K with

1G P C, namely C “ t1Gu. !4Intersections of compact sets in topological groups are not

necessarily compact. See Exercise I.4.

Example 1.21. The only sets in R with the right order topology (Example 1.15) that

are symmetric and open are H and R. Hence p´1,8q is a neighbourhood of the identity

that does not contain a symmetric neighbourhood of the identity; r1,8q is compact, but

p´8,´1s Y r1,8q is not compact; and t1,´1u “ p´8, 1s which is not symmetric despite

t1,´1u being symmetric. In particular every conclusion of Lemma 1.18 may fail if ‘topolo-

gized group with continuous inverse’ is replaced by ‘paratopological group’.
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Lemma 1.22 (Key Lemma II). Suppose that G is a semitopological group, U is open and

V is any set. Then UV and V U are open, and U is a neighbourhood of x if and only if

x´1U (or Ux´1) is a neighbourhood of the identity.

Proof. First, UV “
Ť

vPV Uv which is a union of open sets by the first part and hence open.

Similarly V U is a union of open sets and so open. Finally, if U is a neighbourhood of x

then there is an open set Ux Ă U containing x. Hence x´1Ux is an open set containing 1G

and contained in x´1U , which is to say x´1U is a neighbourhood of the identity. Similarly

if x´1U is a neighbourhood of the identity then U is a neighbourhood of x, and the same

two arguments also work for Ux´1.

A topological space X is Fréchet if every singleton in X is closed.

Lemma 1.23. Suppose that G is a semitopological group. Then G is Fréchet if and only if

t1Gu is closed.

Proof. This follows since txu “ xt1Gu is closed if and only if t1Gu is closed – see Remark

1.13.

Lemma 1.24 (Key Lemma III). Suppose that G is a semitopological group, S is a set and

V is an open neighbourhood of the identity. Then SV Ă SV V ´1.

Proof. Let A :“ GzpSV V ´1q and B :“ GzpAV q. B is closed since AV is open by Lemma

1.22. If x P SV and x P AV then there is some v P V such that xv´1 P A, so xv´1 R SV V ´1,

a contradiction. Hence SV Ă B and since B is closed SV Ă B. Now if x P B then by

definition x R AV and so in particular x R A (since 1G P V ) and hence x P SV V ´1 as

claimed.

The next result is, perhaps, a little surprising.

Corollary 1.25. Suppose that G is a semitopological group and H ď G. If H is a neigh-

bourhood in G then H is open in G; and if H is open in G then H is closed in G.

Proof. If H is a neighbourhood of some x P G then by Lemma 1.22 there is an open set

U such that x´1U is an open set containing the identity. Now H “ HU is open, again by

Lemma 1.22.

For the second part, if H is open then by Lemma 1.24 H Ă HH´1 “ H and so H is

closed.

Remark 1.26. If U is a neighbourhood in a semitopological group G then by Corollary 1.25

xUy is closed so U Ă xUy and hence xUy “ xUy. !4This need not be true if U is not a

neighbourhood, for example Q in R with its usual topology, has closure equal to R, but xQy
is countable and so does not contain R.
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Proposition 1.27. Suppose that G is a topologized group and H ď G is given the subspace

topology. If group inversion on G is continuous, then it is continuous on H; if multiplication

is separately continuous on G, then it is separately continuous on H; and if multiplication is

jointly continuous on G then it is jointly continuous on H. In particular if G is a topological

(resp. paratopological, quasitopological, or semitopological) group then so is H.

Proof. Suppose U is an open set in H, and let W be an open subset of G such that U “

WXH. Then U´1 “ pWXHq´1 “ W´1XH´1 “ W´1XH, but W´1 is open in G and so U´1

is open in H i.e. inversion is continuous; similarly, for x P H, xU “ xpW XHq “ pxW qXH,

but xW is open in G and so xU is open in H (and similarly for Ux), so multiplication is

separately continuous.

For joint continuity of multiplication, let V :“ tpx, yq P G2 : xy P W u so that V XH2 “

tpx, yq P H2 : xy P Uu. Since multiplication on G is jointly continuous, by definition of the

product topology there is a set S of products of open sets in G such that

V “
ď

tS ˆ T : S ˆ T P Su.

Now pS ˆ T q X H2 “ pS X Hq ˆ pT X Hq, and so the preimage of U under multiplication

on H is open in the product of the subspace topology on H with itself. That is to say,

multiplication is jointly continuous on H and the result is proved.

Example 1.28. S1 :“ tz P C˚ : |z| “ 1u is a subgroup of C˚ and so it is a topological

group. In this case it is closed, but in general we are not making the assumption that any

subgroups we are considering are (topologically) closed.

We now turn to a couple of key lemmas which (like Proposition 1.27) make essential use

of joint continuity.

Lemma 1.29 (Key Lemma IV). Suppose that G is a paratopological group and K1, . . . , Kn

are compact subsets of G. Then K1 ¨ ¨ ¨Kn is compact. In particular, if K is compact then

Kn is compact for all2 n P N0.

Proof. The (topological) product of two compact sets is compact so if K1 ¨ ¨ ¨Kn´1 is compact

and Kn is compact then pK1 ¨ ¨ ¨Kn´1q ˆKn is compact. But then the continuous image of

a compact set is compact and so K1 ¨ ¨ ¨Kn “ pK1 ¨ ¨ ¨Kn´1qKn is compact and the result

follows by induction on n.

Remark 1.30. Exercise I.2 gives an example of a quasitopological group where the conclusion

above does not hold.

2Note that K0 “ t1Gu by definition and so is compact since it is finite.
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Lemma 1.31 (Key Lemma V). Suppose that G is a paratopological group and X is a

neighbourhood of z. Then there is an open neighbourhood of the identity V such that zV 2 Ă

X. Moreover, if G is a topological group then V may be taken to be symmetric.

Proof. Let U Ă X be an open neighbourhood of z. The map px, yq ÞÑ xy is continuous and

so tpx, yq : xy P Uu is an open subset of GˆG. By definition of the product topology there

is a set S of products of open sets in G such that

tpx, yq : xy P Uu “
ď

tS ˆ T : S ˆ T P Su.

Since z1G “ z P U , there is some S ˆ T P S such that pz, 1Gq P S ˆ T . Thus S is an open

neighbourhood of z and T is an open neighbourhood of the identity, so by Lemma 1.22

V :“ pz´1Sq X T is an open neighbourhood of the identity. Now zV Ă S and V Ă T and so

zV 2 Ă U as required. Moreover, if G is a topological group so inversion is also continuous

then by Lemma 1.18 V contains a symmetric open neighbourhood of the identity, and the

conclusion follows by nesting.

Example 1.32. Suppose G is a Fréchet semitopological group all of whose proper closed

sets are smaller than any of its non-empty open sets, meaning there is no injection from a

non-empty open set to a proper closed set. We claim G cannot satisfy the conclusion of

Lemma 1.31:

First, Gzt1Gu is open and non-empty i.e. there is some z P G. IfG satisfied the conclusion

of Lemma 1.31 then there would be a non-empty open set V Ă G such that zV 2 Ă Gzt1Gu.

The map V Ñ G; v ÞÑ v´1z´1 maps into the proper closed set GzV since 1G R zV
2, and is

an injection since G is a group. This contradicts our assumption and the claim is proved.

Remark 1.33. Example 1.16 shows that a group with the cofinite topology is a quasitopolog-

ical group, and since singletons are finite and so closed it is Fréchet. If the group is infinite

then this quasitopological group additionally satisfies the hypotheses of Example 1.32 since

the proper closed sets are finite, while the non-empty open sets are infinite. It follows that

such a group is not a paratopological group, and hence not a topological group as claimed

in Example 1.16.

Example 1.32 also applies to the semitopological group of reals endowed with the topol-

ogy from Example 1.17, since every singleton is closed (so the topology is Fréchet) and

every proper closed set there is countable, while every non-empty open set is uncountable.

This shows that they do not enjoy the conclusion of Lemma 1.31 and hence are not a

paratopological group as claimed in Example 1.17.

Lemma 1.31 can be used to establish some uniformity in open covers of compact sets. A

cover U is a refinement of a cover V of a set X if U is a cover of X and each set in U is

contained in some set in V .
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Remark 1.34. Refinements are transitive meaning that if W is a refinement of V and V is a

refinement of U then W is a refinement of U .

Lemma 1.35 (Key Lemma VI). Suppose that G is a paratopological group and K Ă Gn is

compact for some n P N, and U is an open cover of K. Then there is an open neighbourhood

of the identity U Ă G such that tx1U ˆ ¨ ¨ ¨ ˆ xnU : x P Ku is a refinement of U . If G is a

topological group then U may be taken to be symmetric.

Proof. First, the structure of the product topology (and Lemma 1.22) means that we can

pass to a refinement of U where for each x P K there are open neighbourhoods of the iden-

tity U
pxq
1 , . . . , U

pxq
n (our notation is a little clumsy here to make the x-dependence explicit)

such that x1U
pxq
1 ˆ ¨ ¨ ¨ ˆ xnU

pxq
n is in the refinement. The set

Şn
i“1 U

pxq
i is an open neigh-

bourhood of the identity and so by Lemma 1.31 there is a (symmetric if G is topological)

open neighbourhood of the identity Ux such that U2
x Ă U

pxq
i for all 1 ď i ď n. In particular,

V :“ tx1Ux ˆ ¨ ¨ ¨ ˆ xnUx : x P Ku is an open cover of K and a refinement of U .

By compactness of K there is a finite set F Ă K such that W :“ tx11Ux1 ˆ ¨ ¨ ¨ ˆ x1nUx1 :

x1 P F u is a cover of K. Let U :“
Ş

x1PF Ux1 which is a finite intersection of (symmetric if G

is topological) open neighbourhoods of the identity and so a (symmetric if G is topological)

open neighbourhood of the identity. Since W is a cover of K, for each x P K there is some

x1 P F such that x P x11Ux1 ˆ ¨ ¨ ¨ ˆ x
1
nUx1 , and hence

x1U ˆ ¨ ¨ ¨ ˆ xnU Ă x11Ux1U ˆ ¨ ¨ ¨ ˆ x
1
nUx1U

Ă x11U
2
x1 ˆ ¨ ¨ ¨ ˆ x

1
nU

2
x1 Ă x11U

px1q
1 ˆ ¨ ¨ ¨ ˆ x1nU

px1q
n

so that tx1U ˆ ¨ ¨ ¨ ˆ xnU : x P Ku is a refinement of V which in turn is a refinement of U
as required.

Remark 1.36. The lemma above is not unrelated to the Generalised Tube Lemma from

topology (see e.g. [Mun00, Lemma 26.8]), which is also known as Wallace’s Theorem.

This proposition highlights an important interplay between compactness and the group

structure, and has content even in seemingly simple cases:

Corollary 1.37. Suppose that G is a topological group, A is a compact set and B is an open

set containing A. Then there is a symmetric open neighbourhood of the identity U such that

AU Ă B. In particular, every neighbourhood of x contains a closed neighbourhood of x.

Proof. Apply Lemma 1.35 with n “ 1 to the open cover tBu of A to get an open neigh-

bourhood of the identity, V , such that AV Ă B. By Lemma 1.31 there is a symmetric

open neighbourhood of the identity U such that UU´1 “ U2 Ă V , and so by Lemma 1.24

AU Ă AUU´1 Ă AV Ă B as required.
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The last part follows immediately since the given neighbourhood contains an open neigh-

bourhood B of x. The set txu is compact and so there is an open neighbourhood of the

identity U with xU Ă B as required.

Remark 1.38. The reals with the right order topology (Example 1.15), the open neighbour-

hood p0,8q of 1 does not contain a closed neighbourhood of 1 since all non-empty closed

sets in this topology contain arbitrarily large negative numbers, so ‘topological’ may not be

weakened to ‘paratopological’.

In an infinite group with the cofinite topology (Example 1.16) the only closed neigh-

bourhood is the whole group, and so there are neighbourhoods not containing a closed

neighbourhood, and so ‘topological’ may not be weakened to ‘quasitopological’.

A topological space is said to be Hausdorff if for any x ‰ y there are disjoint open sets

U and V such that x P U and y P V .

Remark 1.39. A topological space has unique limits (for nets) if and only if it is Hausdorff,

so this is a pretty uncontroversial axiom to want.

Remark 1.40. A subspace of a Hausdorff topological space is Hausdorff, so if H is a subgroup

of a Hausdorff topological (resp. paratopological, quasitopological, semitopological) group G

then H is a Hausdorff topological (resp. paratopological, quasitopological, semitopological)

group when equipped with the subspace topology.

Corollary 1.41. Suppose that G is a topological group. Then G is Hausdorff if and only if

t1Gu is closed (equivalently3 if and only if G is Fréchet).

Proof. First, if G is Hausdorff then for each x ‰ 1G there is an open set Ux containing x

and not containing 1G. Hence Gzt1Gu “
Ť

xPG Ux is open as required.

Conversely, if t1Gu is closed then G is Fréchet and so for all x ‰ y, txu is closed and tyu

is compact (since it is finite) so G is Hausdorff by Corollary 1.37.

Example 1.42. An infinite group with the cofinite topology (Example 1.16) is a quasitopo-

logical group that is Fréchet but not Hausdorff, and Exercise I.1 gives an example of a

paratopological group that is Fréchet but not Hausdorff.

Compact subsets of Hausdorff topological spaces are closed, and for non-Hausdorff topo-

logical groups the situation can be recovered by the next lemma.

Lemma 1.43. Suppose that G is a topological group and K is a compact subset of G. Then

K is compact.

3By Lemma 1.23.
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Proof. Suppose U is an open cover of K then by for each x P K there is an open neighbour-

hood of x in U , call it Ux. By Corollary 1.37 applied to the compact set txu in the open set

Ux there is an open neighbourhood of x, call it Vx, such that Vx Ă Ux. The set tVx : x P Ku

is an open cover of K and so by compactness has a finite subcover, say K Ă Vx1 Y ¨ ¨ ¨ Y Vxk
and hence K Ă Ux1 Y ¨ ¨ ¨ Y Uxk . Thus U has a finite subcover of K, and the result is

proved.

Remark 1.44. R with the right order topology (Example 1.15) has t0u as a compact subset

(since it is finite), but t0u “ p´8, 0s which is not compact since the open cover tpa,8q :

a P Ru has no finite subcover. In particular, we cannot relax the requirement that G be a

topological group to paratopological group in Lemma 1.43.

Exercise I.3 gives an example to show that we cannot relax the hypothesis to quasitopo-

logical group either.

A topological space X is locally compact if every point has a compact neighbourhood.

Example 1.45. Q is a subgroup of R (with its usual topology) and so by Proposition 1.27

is a topological group with the subspace topology. However, while R is locally compact, Q
is not locally compact. In particular, unlike the property of being Hausdorff (as covered in

Remark 1.40) local compactness is not in general preserved on passing to subgroups.

Remark 1.46. We shall mostly be interested in locally compact Hausdorff topologies; there

is a theorem of Ellis [Ell57, Theorem 2] which says that any locally compact Hausdorff

semitopological group is a topological group, and in fact any locally compact paratopological

group is a topological group.

Example 1.47 (Cofinite topologies on infinite groups, revisited). Suppose that G is a group

with the cofinite topology and U is an open cover of G. Then there is a non-empty set U0 P U .

Since U c
0 is finite we may write U c

0 “ tx1, . . . , xmu, and since U is a cover of G let Ui P U
have xi P Ui. Then U0, . . . , Um is a finite subcover of U . It follows that G is compact, and

hence if G is infinite then G is a compact, and a fortiori locally compact, quasitopological

group (Example 1.16) that is not a topological group.

We shall think of locally compact topological groups as groups that are ‘locally’ not too

large – every point has a neighbourhood that is compact – but it might otherwise be large,

for example any group with the discrete topology is locally compact.

Lemma 1.48. Suppose that G is a locally compact quasitopological group and K is a com-

pact set. Then there is a symmetric open neighbourhood of the identity containing K and

contained in a compact set.
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Proof. Since G is locally compact there is a compact neighbourhood of the identity L; let

V be an open neighbourhood of of the identity contained in L. The set txV : x P Ku is

an open cover of K and so there are x1, . . . , xm P K such that K Ă x1V Y ¨ ¨ ¨ Y xmV ; let

x0 :“ 1G.

The result hinges on the fact that the finite union of open (resp. symmetric or compact)

sets is open (resp. symmetric or compact). Since left multiplication and inversion are both

assumed continuous, and the continuous image of a compact set is compact, xiL and pxiLq
´1

are both compact; by Lemma 1.22 xiV and pxiV q
´1 are open; and xiV YpxiV q

´1 is symmetric

by design. It follows that
Ťm
i“0 pxiV q Y pxiV q

´1 is a symmetric open neighbourhood of the

identity containing K and contained in a compact set. The result is proved.

Remark 1.49. As it happens (see Remark 1.46) a locally compact paratopological group is

necessarily a topological group (though this is by no means immediate), and a fortiori a

quasitopological group.

A topological space X is σ-compact if X is a countable union of compact sets. We

think of σ-compact spaces as ‘globally’ not too large.

Example 1.50. Since Q is a countable union of finite sets, any topology on Q is σ-compact.

In particular, Q with its subspace topology (as described in Example 1.45) is σ-compact

but not locally compact.

Corollary 1.51. Suppose that G is a locally compact topological group. Then there is a

σ-compact, locally compact open subgroup of G.

Proof. Apply Lemma 1.48 to get a symmetric open neighbourhood of the identity S con-

tained in a compact set L. Then xSy is a subgroup of G (Remark 1.11) which is locally

compact and open by Corollary 1.25. It is contained in
Ť

nPN0
Ln, and the latter is a count-

able union of compact (by Lemma 1.29) sets. The result is proved.

The topological group of isometries of a metric space

A map f : X Ñ Y is an isometry if X and Y are metric spaces with metrics dX and dY

respectively and dY pfpxq, fpyqq “ dXpx, yq for all x, y P X.

Remark 1.52. Isometries are necessarily injective, but in general need not be surjective.

Surjective isometries are exactly the isometries with an isometric inverse and are sometimes

called global isometries though we shall not use this terminology.

For a metric space X we write IsopXq for the set of surjective isometries X Ñ X.

Remark 1.53. Suppose that X is a topological space, Y is a set and F is a set of functions

Y Ñ X. We say that F has the topology of pointwise convergence if it has the subspace
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topology it receives when considered as a subset of the set XY – the set of all functions

Y Ñ X – with the product topology. Equivalently this is the weakest topology on XY such

that the maps XY Ñ X; f ÞÑ fpyq are continuous for all y P Y .

If B is a base for the topology on X then a base for the topology of pointwise convergence

on F is given by the sets

tf P F : fpyiq P Ui for all 1 ď i ď nu where n P N0, y1, . . . , yn P Y, and B1, . . . , Bn P B,

and the reason for the name of the topology is that fn Ñ f if and only if fnpyq Ñ fpyq in

X for all y P Y .

Proposition 1.54. Suppose that X is a metric space. Then IsopXq is a group under com-

position and a topological group when endowed with the topology of pointwise convergence.

Proof. IsopXq is a subset of the group of bijections X Ñ X, and by the subgroup test is

a group under composition. Write d for the metric on X so that for f0 P X
X , ε ą 0 and

x1, . . . , xn P X the sets

Upf0; ε, x1, . . . , xnq :“ tf P XX : dpfpxiq, f0pxiqq ă ε for all 1 ď i ď nu

form a base for the topology of pointwise convergence on IsopXq.

For f, g, f0, g0 P X
X and x P X we have

dpg ˝ fpxq, g0 ˝ f0pxqq ď dpg ˝ fpxq, g ˝ f0pxqq ` dpg ˝ f0pxq, g0 ˝ f0pxqq

“ dpfpxq, f0pxqq ` dpgpf0pxqq, g0pf0pxqqq,

and hence

Upg0; ε{2, f0px1q, . . . , f0pxnqq ˝ Upf0; ε{2, x1, . . . , xnq Ă Upg0 ˝ f0; ε, x1, . . . , xnq.

It follows that multiplication is jointly continuous. Furthermore,

dpg´1pxq, g´10 pxqq “ dpg´1pg0pg
´1
0 pxqqq, g

´1
0 pxqq

“ dpgpg´1pg0pg
´1
0 pxqqqq, gpg

´1
0 pxqqq “ dpg0pg

´1
0 pxqq, gpg

´1
0 pxqqq,

and so Upg´10 ; ε, x1, . . . , xnq
´1 “ Upg0; ε, g

´1
0 px1q, . . . , g

´1
0 pxnqq and inversion is continuous.

Example 1.55 (Groups of unitary maps with the strong operator topology). Given an inner

product space V , it is in particular a normed space with norm }v} :“ xv, vy1{2, and hence a

metric space with metric dpx, yq :“ }x´y}. We write UpV q for the set of unitary maps from

V to itself, that is the set of surjective maps φ : V Ñ V with xφpvq, φpwqy “ xv, wy for all

v, w P V . UpV q ď IsopV q where the second V is the set V with the metric d, and consider

UpV q a topological group with topology inherited from IsopV q.

Page 14



Remark 1.56. The space BpV q of bounded linear maps V Ñ V contains UpV q, and the

topology of pointwise convergence on BpV q is called the strong operator topology.

!4Composition of maps in BpV q is not jointly continuous in the strong operator topol-

ogy, despite the fact that it is when restricted to UpV q.

2 The structure-preserving maps

The structure-preserving maps that are of primary interest to us are continuous group

homomorphisms.

Example 2.1. The map θ : RÑ S1;x ÞÑ expp2πixq is a (surjective) continuous homomor-

phism.

Example 2.2. Suppose that G is a group and θ : GÑ G is the identity map. If the domain

is endowed with the discrete topology then θ is a continuous homomorphism whatever the

topology on the codomain, and if the codomain is endowed with the indiscrete topology

then similarly.

This example may seem trivial but leads to a number of counter-examples.

Example 2.3. Suppose that θ : QÑ Q is the identity map, with the domain discrete and

the codomain the usual subspace topology inherited from R (as in Example 1.45). Then the

domain is locally compact but the codomain is not, so local compactness is not preserved by

surjective continuous group homomorphisms. (This may be compare with Corollary 2.14.)

Example 2.4. Suppose that θ : R Ñ R is the identity map, with the domain the usual

topology on R and the codomain the indiscrete topology. Then the domain is Hausdorff

and the codomain is not, so being Hausdorff is not preserved by surjective continuous group

homomorphisms.

By way of contrast, surjective continuous maps take compact sets to compact sets so

there is no analogous example with ‘compact’ in place of ‘Hausdorff’.

The group structure makes checking continuity and openness a little easier:

Lemma 2.5. Suppose that G and H are semitopological groups and B “ pBiqiPI is a neigh-

bourhood base4 of the identity in H. Then a homomorphism θ : G Ñ H is continuous if

(and only if) θ´1pBiq is a neighbourhood of the identity for all i P I; and a homomorphism

θ : H Ñ G is open if (and only if) θpBiq is a neighbourhood of the identity for all i P I.

4A neighbourhood base of a point x in a topological space X is a family B “ pBiqiPI of neighbourhoods

of x such that if U is an open set containing x then there is some i P I such that Bi Ă U .
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Proof. Suppose that U Ă H is open and θpyq P U . By Lemma 1.22 there is an open

neighbourhood of the identity Vy such that θpyqVy Ă U . Since B is a neighbourhood base

of the identity there is i P I such that Bi Ă Vy and hence θ´1pBiq Ă θ´1pVyq so yθ´1pBiq Ă

θ´1pUq (using that θ is a homomorphism) and hence θ´1pUq contains a neighbourhood of

y i.e. θ´1pUq is open. In the other direction, since Bi is a neighbourhood of the identity it

contains an open neighbourhood of the identity which has an open set as a preimage and the

identity in this preimage (since homomorphisms map the identity to the identity), whence

it is an open neighbourhood of the identity and θ´1pBiq is a neighbourhood of the identity.

Now suppose that U Ă H is open and x P θpUq so that there is some y P U such that

x “ θpyq. Since U is open, by Lemma 1.22 there is an open neighbourhood of the identity

Vy such that yVy Ă U . Since B is a neighbourhood base of the identity there is i P I such

that Bi Ă Vy and hence xθpBiq “ θpyBiq Ă θpUq (using that θ is a homomorphism). But

xθpBiq is open by hypothesis, so θpUq is open as required. In the other direction since Bi is

a neighbourhood of the identity it contains an open set containing the identity which has an

open image containing the identity (since homomorphisms map the identity to the identity),

and hence the image of Bi is a neighbourhood of the identity.

A map θ : G Ñ H is a homeomorphic isomorphism if it is both an isomorphism of

the groups and a homeomorphism of the topological spaces.

Example 2.6 (Opposite groups). Suppose that G is a topologized group with continuous

group inversion. Write Gop for the opposite group, that is the group and topological

space with the same base set, topology, identity, and inversion as G, but with multiplication

px, yq ÞÑ yx. Then inversion is a homeomorphic isomorphism GÑ Gop.

Since the map G2 Ñ G2; px, yq ÞÑ py, xq is continuous, Gop is a quasitopological (resp.

topological) group if G is quasitopological (resp. topological).

Example 2.7 (Conjugation). Suppose that G is a group. The map G ˆ G Ñ G; pa, xq ÞÑ

axa´1 is a left action of G on G – it is called conjugation. If G is a semitopological group

then for fixed a this map is a homeomorphic isomorphism of G.

Example 2.8. !4There are topological groups that are isomorphic as groups and homeo-

morphic as topological spaces but which are not homeomorphically isomorphic.

Let A be the group pZ{4Zq ˆ pZ{2Zq, N be a subgroup of A isomorphic to pZ{2Zq ˆ
pZ{2Zq, and K a subgroup isomorphic to Z{4Z. Since A is Abelian, N (resp. K) is normal

in A, and the topology tH, A,N,AzNu (resp. tH, A,K,AzKu) makes A into a topological

group which we denote G (resp. H).

G and H are isomorphic as groups by the identity map. Since A{N and A{K are

partitions of A into sets of the same size, there is a bijection GÑ H that maps each set in

A{N to a set in A{K. Such a map is a homeomorphism.
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On the other hand, if there were a homeomorphic isomorphism θ : G Ñ H then the

preimage of K would be either N or GzN , but it must be the former since the identity is

mapped to the identity by a group homomorphism. Thus θ restricts to a bijective homomor-

phism between N and K, but these are not isomorphic as groups since the latter contains

an element of order 4, while the former does not.

Some useful examples of topological groups and homomorphisms between them arise

through products.

Proposition 2.9. Suppose that pGiqiPI is a family of topologized groups. Then the direct

product of the groups,
ś

iPI Gi, with the product topology is a topologized group and the pro-

jection maps pj :
ś

iPI Gi Ñ Gj;x ÞÑ xj for each j P I are continuous open homomorphisms.

Moreover, if inversion is continuous on all of the Gis then it is continuous on the product;

if multiplication is separately continuous on all the Gis then it is separately continuous on

the product; and if multiplication is jointly continuous on all of the Gis then it is jointly

continuous on the product.

Proof. The first part is just combines the usual results concerning product groups and

topologies. The key to the ‘moreover’ parts is recalling the fact that the open sets in
ś

iPI Gi are unions of sets of the form

ź

iPI

Ui where

$

&

%

Ui “ Gi for all i P IzJ

Ui is open in Gi for all i P J
(2.1)

where J ranges all finite subsets of I. If
ś

iPI Ui is as in (2.1) then p
ś

iPI Uiq
´1 “

ś

iPI U
´1
i

is also open if inversion is continuous on all Gi and hence inversion is continuous. Separate

and joint continuity are similar.

Remark 2.10. We call the topologized group above the topological direct product of the

groups pGiqiPI .

Remark 2.11. Given topologized groups G1, . . . , Gn we write G1ˆ ¨ ¨ ¨ ˆGn for
ś

iPt1,...,nuGi

as usual, so for example this gives our intended meaning to S1 ˆ S1 in Exercise II.5.

Quotient groups

Suppose that G is a topologized group and H ď G. Then the quotient topology on G{H

is the strongest topology (meaning finest topology, or the topology having the most open

sets) making the quotient map q : GÑ G{H;x ÞÑ xH continuous.

Remark 2.12. For G a topologized group and H ď G, U Ă G{H is open if and only if
Ť

U

is open in G.
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Proposition 2.13. Suppose that G is a semitopological group and H ď G. Then the quotient

map (into G{H with the quotient topology) is open.

Proof. If U is open in G then UH is open by Lemma 1.22. But
Ť

qpUq “ UH, and so qpUq

is open in G{H by definition.

Corollary 2.14. Suppose that G is a compact (resp. locally compact) topologized group,

and H ď G. Then G{H with the quotient topology is compact (resp. locally compact).

Proof. For compact G this follows since the quotient map is continuous and the continuous

image of a compact set is compact. Suppose G is locally compact and write q for the

quotient map. Let xH P G{H. Since G is locally compact there is an open set U containing

x and contained in a compact set K. Since q is open, qpUq is an open set containing xH

and contained in qpKq. The latter is compact since q is continuous and so G{H is locally

compact as claimed.

Proposition 2.15. Suppose that G is a topologized group and H is a normal subgroup of

G. If group inversion on G is continuous, then it is continuous on G{H; if multiplication is

separately continuous on G, then it is separately continuous on G{H; and if multiplication

is jointly continuous on G then it is jointly continuous on G{H. In particular if G is

a topological (resp. paratopological, quasitopological, or semitopological) group then so is

G{H.

Proof. Suppose that U Ă G{H is open. First suppose inversion is continuous on G. Then

ď

U´1 “
ď

 

pxHq´1 : xH P U
(

“
ď

 

x´1H : xH P U
(

“

!

x´1 : x P
ď

U
)

“

´

ď

U
¯´1

and so U´1 is open in G{H by definition since
Ť

U is open in G. Secondly, suppose multi-

plication on G is separately continuous. For x P G,
ď

pxHq´1U “
ď

 

px´1HqpyHq : yH P U
(

“
ď

 

x´1yH : yH P U
(

“ x´1
ď

U,

and so pxHq´1U is open in G{H and hence left multiplication by xH is continuous. Similarly

right multiplication is continuous and we are done.

Finally suppose multiplication on G is jointly continuous. Define

W :“
 

pzH,wHq P pG{Hq2 : pzHqpwHq P U
(

and V :“
!

pz, wq P G2 : zw P
ď

U
)

.

Suppose that pxH, yHq P W . Then xy P pxHqpyHq Ă
Ť

U so px, yq P V and since V is open

there are open sets S, T Ă G such that x P S, y P T , and S ˆ T Ă V . If s P S and t P T ,

then st P
Ť

U , and since the latter is a union of cosets of H we have pstqH Ă
Ť

U . Since

H is normal we have psHqptHq “ pstqH Ă
Ť

U , and so SH ˆ TH Ă V .

By Lemma 1.22, SH and TH are open sets, and so the sets S 1 :“ tsH : s P Su and

T 1 :“ ttH : t P T u are open in G{H; xH P S 1 and yH P T 1; and S 1 ˆ T 1 Ă W . It follows

that W is open, and multiplication on G{H is jointly continuous. The result is proved.
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Example 2.16. The topological group R has a (normal) subgroup Z and R{Z is a topolog-

ical group – it is the reals modulo 1. Moreover, the map R{ZÑ S1;x` nZ ÞÑ expp2πixq is

a homeomorphic isomorphism.

!4The notation R{Z is sometimes (though not in these notes) used to refer to a different

space: the adjunction space in which all the integers in R are identified but the rest of R
remains the same. In other language this is a countably infinite bouquet of circles all

connected at the point Z.

Example 2.17. The group Q is a subgroup of R with its usual topology, and so R{Q is a

topological group. If U Ă R{Q is open then
Ť

U is open in R and so if it is non-empty it

contains an interval I. However,
Ť

U is a union of cosets of Q so
Ť

U “
Ť

U`Q Ą I`Q “
R. It follows that R{Q is indiscrete.

!4Note that the quotient map q : RÑ R{Q is not closed since e.g. qpt0uq “ tQu is not

closed in R{Q. This is by way of contrast with the fact that every quotient map between

topological groups is open.

Topological closure preserves algebraic structure in a useful way:

Lemma 2.18. Suppose that G is a quasitopological group and H ď G. Then H is a subgroup

of G. If G is compact then so is H; if G is locally compact then so is H; and if H is normal

then so is H.

Proof. Suppose that x P H and y P H. If xy P H
c
, then there is an open set U Ă H

c
such

that xy P U . The set x´1U is an open neighbourhood of y and so there is some h P H

such that h P x´1U and hence (since x P H, and H is a group) U X H ‰ H which is a

contradiction. We conclude that H Ă Hy´1 for all y P H. The set Hy´1 is closed and

hence contains the closure of H and so H
2
Ă H. Since inversion is continuous we have that

H
´1
“ H and H is a group.

Closed subsets of compact sets are compact so if G is compact then so is H; and if G is

locally compact then G has a compact neighbourhood of the identity N and hence N XH

is a compact neighbourhood of the identity in H and so H is locally compact.

Finally, assume that H is normal. Conjugation is continuous and hence a´1Ha is closed

for all a P G, and contains a´1Ha “ H. Hence it contains the closure of H and so applying

the map x ÞÑ axa´1 we get aHa´1 Ă H i.e. H is normal.

Remark 2.19. R with the right order topology (Example 1.15) has t0u as a subgroup, but

t0u “ p´8, 0s which is not a subgroup so that ‘quasitopological group’ may not be replaced

by ‘paratopological group’, and hence certainly may not be relaxed to ‘semitopological

group’, in Lemma 2.18.

Paratopological groups in which the closure of every subgroup is a subgroup have been

studied in [FT14].
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Corollary 2.20. Suppose that G is a topological (resp. quasitopological) group and H is a

normal subgroup of G. Then G{H is a Hausdorff (resp. Fréchet) topological (resp. qua-

sitopological) group.

Proof. This is immediate from Lemma 2.18, Proposition 2.15, and Corollary 1.41 (resp.

Lemma 1.23) for the topological (resp. quasitopological) case.

The open mapping theorem

Example 2.2 shows that there are continuous bijective group homomorphisms that are not

homeomorphic isomorphisms. This is by contrast with the purely algebraic situation where

any bijective group homomorphism is a group isomorphism (i.e. has an inverse that is a

homomorphism), but in alignment with the topological situation where continuous bijections

need not be homeomorphisms. With a few mild conditions on the topology we can recover

with algebraic situation:

Theorem 2.21. Suppose that G is a σ-compact semitopological group, H is a locally compact

Hausdorff topological group, and π : GÑ H is a continuous bijective homomorphism. Then

π is a homeomorphic isomorphism.

Proof. Since the inverse of a bijective group homomorphism is a group homomorphism, it

suffices to show that πpCq is closed whenever C is closed in G. Let Kn be compact in G

such that G “
Ť

nPN0
Kn.

Claim. There is some n P N such that πpKnq is a neighbourhood.

Proof. For those familiar with the Baire Category Theorem this is particularly straightfor-

ward. We shall proceed directly by what is essentially the proof of the BCT for locally

compact Hausdorff spaces.

SinceH is Hausdorff and the sets πpKnq are compact (as the continuous image of compact

sets), they are closed. We construct a nested sequence of closed neighbourhoods inductively:

Let U0 be a compact (and so closed since H is Hausdorff) neighbourhood in H, and for n P N
let Un Ă πpKnq

c X Un´1 be a closed neighbourhood.

This is possible since (by the inductive hypothesis) Un´1 is a neighbourhood and so

contains an open neighbourhood Vn´1. But then πpKnq
c X Vn´1 is open and non-empty

since otherwise πpKnq contains a neighbourhood. It follows that πpKnq
cXUn´1 contains an

open neighbourhood and so it contains a closed neighbourhood by Corollary 1.37.

Now by the finite intersection property of the compact space U0, the set
Ş

n Un is non-

empty. This contradicts surjectivity of π since G “
Ť

nPN0
Kn and the claim is proved.

Claim. If X Ă H is compact then π´1pXq is compact.
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Proof. By the previous claim πpKnq contains a neighbourhood (and hence so does xπpKnq

by Lemma 1.22) and the set txπpKnq : x P Hu covers X, so by compactness of X there are

elements x1, . . . , xm such that X Ă
Ťm
i“1 xiπpKnq and hence π´1pXq Ă

Ťm
i“1 π

´1pxiqKn (by

injectivity of π). π´1pxiqKn is compact by Lemma 1.22, and since a finite union of compact

sets is compact it follows that π´1pXq is contained in a compact set. Finally, X is closed so

π´1pXq is closed and a closed subset of a compact set is compact as required.

Finally, suppose that C Ă G is closed, and y is a limit point of πpCq. H is locally

compact so y has a compact neighbourhood X. Now π´1pXq is compact and so π´1pXqXC

is compact. But then X X πpCq is compact since π is continuous, and hence closed since H

is Hausdorff. But by design y P X X πpCq “ X X πpCq Ă πpCq.

Remark 2.22. The Open Mapping Theorem in functional analysis is the result that if A :

X Ñ Y is a surjective continuous linear operator between Banach spaces X and Y then A

is an open mapping.

Remark 2.23. As with the proof of the Baire Category Theorem our argument used the

axiom of dependent choices.

3 Complex-valued functions on topological groups

For a topological space X we write CpXq for the set of continuous functions X Ñ C.

Remark 3.1. CpXq is closed under pointwise addition and multiplication of functions and

contains the constant functions, so it is a C-algebra.

!4Quotients of continuous functions behave a little differently: if f, g P CpXq then the

support of g is open and there is a continuous function h : supp g Ñ C such that f “ gh,

but in general this need5 not have a continuous extension to the whole of X.

Remark 3.2. Suppose that f P CpXq. By the triangle inequality if ∆ :“ tz P C : |z| ă ε{2u

and fpxq, fpyq P z ` ∆ then |fpxq ´ fpyq| ă ε and hence U :“ tf´1pz ` ∆q : z P Cu is an

open cover of X such that if U P U and x, y P U then |fpxq ´ fpyq| ă ε.

The next result will provide a supply of continuous functions.

Theorem 3.3. Suppose that G is a topological group, A is a compact set and B is an open

set containing A. Then there is a continuous function g : G Ñ r0, 1s such that gpxq “ 0

on for all x P A and gpxq “ 1 for all x R B. Similarly, there is a continuous function

f : GÑ r0, 1s such that fpxq “ 1 for all x P A and supp f Ă B.

5Consider, for example, the functions fpxq “ x and gpxq “ x2 in CpRq. Then hpxq “ 1{x for all x P supp g

but h has no continuous extension to R.
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Proof. The proof of this theorem is really a more sophisticated version of the proof of

Corollary 1.37. As in the proof there we apply Lemma 1.35 to the open cover tBu to get

a symmetric open neighbourhood of the identity V such that AV Ă B. We may apply

Lemma 1.31 twice to get a symmetric open neighbourhood of the identity V0 such that6

V 3
0 Ă V , and continue iteratively in this manner producing symmetric open neighbourhoods

Vi with V 3
i`1 Ă Vi for all i P N0. In particular, note that Vi`1 Ă Vi since all the Vis are

neighbourhoods of the identity.

We shall ‘divide up the space between A and B’ in a way that will be indexed by

dyadic rationals, that is rationals whose denominator is a power of 2. For i P N0 we write

Di :“ tq P r0, 1s : 2iq P Zu, so D :“
Ť8

i“0Di is the set of dyadic rationals in r0, 1s. Note,

in particular, that D0 Ă D1 Ă . . . and every element of Di`1zDi can be written uniquely

in the form 1
2
pq ` q1q where q ă q1 are consecutive elements of Di. Furthermore, in any two

consecutive elements of Di`1, one of them will be an element of Di and one of Di`1zDi.

For each q P D we define an open set Uq such that if q ă q1 are consecutive elements of

Di for some i then UqVi Ă Uq1 . We proceed inductively on i P N0. First, D0 “ t0, 1u; let

U0 :“ AV0 which is open by Lemma 1.22 and U1 :“ B which is open by definition of B.

Then by Lemma 1.24 U0V0 “ AV0V0 Ă AV0V
´1
0 V0 Ă AV Ă B “ U1 as required.

Suppose Uq has been defined with the required property for all q P Di. For q ă q1

consecutive elements of Di we define U 1
2
pq`q1q :“ UqVi`1 which is open by Lemma 1.22, and

furthermore by Lemma 1.24 we have U 1
2
pq`q1qVi`1 Ă UqVi`1V

´1
i`1Vi`1 Ă UqVi Ă Uq1 . Now,

if q ă q1 are consecutive elements of Di`1 then either q P Di, q
2 :“ q ` 2i P Di and

q1 “ 1
2
pq ` q1q; or q1 P Di, q

2 :“ q1 ´ 2´i P Di and q “ 1
2
pq1 ` q2q. In either case, by design

we have UqVi`1 Ă Uq1 .

We now forget about the Vis: for each q P D we have an open set Uq such that (by

nesting) whenever q ă q1 are elements of D we have Uq Ă Uq1 . Moreover, A Ă U0 and

U1 Ă B. Define a function g : GÑ r0, 1s by

gpxq :“ inf tq P D : x P Uqu if x P U1 and gpxq “ 1 if x R U1.

First note that this is well-defined and really does map into r0, 1s. Then, since U1 Ă B we

have gpxq “ 1 for all x R B; and since A Ă U0 for all x P A we have gpxq “ 0 for x P A.

It remains to establish that g is continuous. Since all open subsets of r0, 1s are (possibly

empty) unions of finite intersections of sets of the form r0, αq and pα, 1s for α P p0, 1q, we

shall show that g is continuous by showing that preimages of sets of this form are open,

and we shall do this by showing that every point in the preimage is contained in an open

neighbourhood.

First, if x P g´1pr0, αqq then gpxq ă α and so x P U1 and by the approximation property

for infima there is some q P D such that gpxq ď q ă α. But then gpzq ď q ă α for all z P Uq,

6Since 1G P V0 we certainly have V 3
0 Ă pV

2
0 q

2.
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and so g´1pr0, αqq contains the open neighbourhood Uq of x as required.

Secondly, if x P g´1ppα, 1sq then since D is dense in r0, 1s there are q, q1 P D with

α ă q ă q1 ă gpxq. Hence x R Uq1 , but Uq Ă Uq1 by nesting and so x P Uq
c
. Moreover, if

z P Uq
c

then z R Uq and so (either z R U1 and gpzq “ 1 ą α or) gpzq ě q ą α and g´1ppα, 1sq

contains the open neighbourhood Uq
c

of x as required.

The first part is proved. For the second put f :“ 1 ´ g which is continuous and maps

into r0, 1s. By design fpxq “ 1 for all x P A and supp f Ă B.

Remark 3.4. The above result goes by the name ‘complete regularity of topological groups’

and is a slight variant of a purely topological result called Urysohn’s Lemma and the proof

is very similar. In particular, our argument used the axiom of dependent choice which is

often used in proofs of Urysohn’s Lemma.

Remark 3.5. !4Theorem 3.3 does not assume that G is not indiscrete so that there may

not be any non-constant continuous functions. Exercise II.8 asks for a proof of this and also

examples to show how things differ for quasitopological and paratopological groups.

Compactly supported continuous functions

Given a topological space X the support of a (not necessarily continuous) function f :

X Ñ C, denoted supp f , is the set of x P X such that fpxq ‰ 0; f is said to be compactly

supported if its support is contained in a compact set.

Remark 3.6. !4As we have defined it the support of a function that is compactly supported

need not actually be a compact set it is simply contained in one.

We write CcpXq for the subset of functions in CpXq that are compactly supported.

Remark 3.7. The set CcpXq is a subalgebra of CpXq since the union of two compact sets

is compact and the support of the sum of two functions is contained in the union of their

supports, and the support of the product of two functions is the intersection of their supports

which is certainly contained in a compact set if one is. More than this, the function

}f}8 :“ sup t|fpxq| : x P Xu

is a norm on CcpXq. It is well-defined since every continuous (complex-valued) function on

a compact set is bounded, and the axioms of a norm are easily checked. As a normed space

CcpXq is, itself, a topological group (recall Example 1.4).

!4In general } ¨ }8 is not a norm on CpXq since we are not assuming the elements of

CpXq are bounded.

!4In general CcpXq is not complete despite the fact that the uniform limit of continuous

functions is continuous since this limit function may not be compactly supported.
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Remark 3.8. By way of contrast with the warning in Remark 3.1, if f, g P CcpXq and

supp f Ă supp g then there is h P CcpXq such that f “ gh.

Proposition 3.9. Suppose that G is a semitopological group and CcpGq contains a function

that is not identically zero. Then G is locally compact.

Proof. Suppose that f P CcpGq is not identically zero. Then supp f is open (since f is

continuous), non-empty and contained in a compact set K (since f is compactly supported).

It follows that K is a compact neighbourhood of some point x P G, and by Lemma 1.22

yx´1K is then a compact neighbourhood of y for y P G as required.

We shall be interested in the case when the functions in CcpXq can ‘tell apart’ the points

of X: we say that a set A Ă CcpXq separates points if for all x, y P X with x ‰ y there

is f P A such that fpxq ‰ fpyq.

Remark 3.10. In particular, if G is a semitopological group and CcpGq itself separates points

then G is Hausdorff and (in view of Proposition 3.9) locally compact, and so (recall Remark

1.46) G is a topological group.

For us Theorem 3.3 will be crucial in providing a supply of compactly supported functions

in locally compact topological groups.

Corollary 3.11. Suppose that G is a locally compact topological group and K Ă G is

compact. Then there is a continuous compactly supported f : GÑ r0, 1s such that fpxq “ 1

for all x P K.

Proof. Since G is locally compact it contains a compact neighbourhood of the identity L;

let H Ă L be an open neighbourhood of the identity, and C Ă H a closed neighbourhood of

the identity (possible by Corollary 1.37). KH is open by Lemma 1.22 and apply Theorem

3.3 to get a continuous f : GÑ r0, 1s with fpxq “ 1 for all x P K and supp f Ă KH Ă KL

which is compact by Lemma 1.29.

Furthermore, we can produce continuous partitions of unity:

Corollary 3.12. Suppose that G is a locally compact topological group, F : G Ñ r0, 1s is

continuous, K is a compact set containing the support of F , and U is an open cover of

K. Then there is some n P N and continuous compactly supported functions f1, . . . , fn :

G Ñ r0, 1s such that F “ f1 ` ¨ ¨ ¨ ` fn; and for each 1 ď i ď n there is Ui P U such that

supp fi Ă Ui.

Proof. Since U is an open cover of K, for each x P K there is an open neighbourhood of x,

call it Ux P U , and by Corollary 1.37 there is a closed neighbourhood Vx Ă Ux of x. Since

each Vx is a neighbourhood and tVx : x P Ku is a cover of K, compactness tells us that there
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are elements x1, . . . , xn such that K Ă Vx1Y¨ ¨ ¨YVxn . By Lemma 1.43 K is compact and so

for each i the set VxiXK is a closed subset of a compact set and so compact. Apply Theorem

3.3 to Vxi XK Ă Uxi to get a continuous function gi : GÑ r0, 1s such that gipxq “ 1 for all

x P Vxi XK and supp gi Ă Uxi .

Since the sets Vx1 , . . . , Vxn are closed, K Ă Vx1 Y ¨ ¨ ¨ Y Vxn , and so since the gis are

non-negative we have

suppF Ă K Ă pVx1 XKq Y ¨ ¨ ¨ Y pVxn XKq Ă supppg1 ` ¨ ¨ ¨ ` gnq.

Thus (see Remark 3.8) there is h P CcpGq such that F “ hpg1 ` ¨ ¨ ¨ ` gnq and since F maps

into r0, 1s and g1pxq ` ¨ ¨ ¨ ` gnpxq ě 1 on the support of F , we conclude that h maps into

r0, 1s; for 1 ď i ď n put fi “ gih.

It remains to check the properties of the fis. First, fi is a continuous function GÑ r0, 1s

by design of h and gi. Secondly, F “ f1 ` ¨ ¨ ¨ ` fn by design. Finally, supp fi Ă supp gi Ă

Uxi P U . Moreover, since the fis are non-negative supp fi Ă K so fi has compact support.

The result is proved.

Integrals of continuous functions

We say that a complex-valued function f from a set X is non-negative if fpxq ě 0 for all

x P X; we say a linear functional
ş

from a complex vector space of complex-valued functions

V is non-negative if
ş

f ě 0 whenever f is non-negative.

Our motivating example of an integral is the Riemann integral:

Example 3.13. The set R of Riemann integrable functions RÑ C has some basic properties

often established in first courses on analysis e.g. [Gre20]. In particular, R is a complex vector

space under point-wise addition and scalar multiplication of functions, and
ż

: RÑ C; f ÞÑ

ż 8

´8

fpxqdx

is a non-negative linear map. Furthermore, CcpRq is a subspace of R, and
ş

restricted to

CcpRq is non-trivial (meaning not identically zero).

Remark 3.14. !4We are only concerned with proper integrals, and though the integral in
ş

appears to be improper we are restricting attention to compactly supported functions so

the integrals are, in fact, proper.

Remark 3.15. Non-triviality of
ş

when restricted to CcpRq is important; see Exercise III.7

for a contrasting situation.

Given a topological space X if f, g P CcpXq are both real-valued then we write f ě g if

f ´ g is non-negative, and C`c pXq for the set of f P CcpGq such that f ě 0, where 0 is the

constant 0 function.
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Remark 3.16. The functions CÑ R; z ÞÑ Re z, CÑ R; z ÞÑ Im z, RÑ Rě0;x ÞÑ maxtx, 0u

and R Ñ Rě0;x ÞÑ maxt´x, 0u are continuous and so any f P CcpXq can be written as

f “ f1 ´ f2 ` if3 ´ if4 for f1, f2, f3, f4 P C
`
c pXq, and this decomposition is unique. We

shall frequently have call to understand elements of CcpXq through this linear combination

of elements of C`c pXq.

Remark 3.17. If f, g P CcpXq are real-valued with f ě g and
ş

is a non-negative linear

functional CcpXq Ñ C then
ş

f ě
ş

g; and if f P CcpGq then
ˇ

ˇ

ş

f
ˇ

ˇ ď
ş

|f |.

Remark 3.18. The decomposition in Remark 3.16 can be used to show that if
ş

is a non-

negative linear functional then
ş

f “
ş

f for all f P CcpXq.

Remark 3.19. We think of non-negative linear functionals as integrals and in fact the Riesz-

Markov-Kakutani Representation Theorem actually tells us that every non-negative linear

map CcpXq Ñ C arises as an integral against a suitably well-behaved measure on X.

Given F : X ˆ Y Ñ C and x P X we write
ş

y
F px, yq for the functional

ş

: CcpY q Ñ C
applied to the function Y Ñ C; y ÞÑ F px, yq (assuming this function is continuous and

compactly supported), and similarly for y P Y and
ş

x
F px, yq. It will be crucial for us that

the order of integration can be interchanged and this is what the next result concerns:

Theorem 3.20 (Fubini’s Theorem for continuous compactly supported functions). Suppose

that G is a locally compact topological groups,
ş

and
ş1

are non-negative linear functionals

CcpGq Ñ C, and F P CcpGˆGq. Then the map x ÞÑ
ş1

y
F px, yq is continuous and compactly

supported, so that
ş

x

ş1

y
F px, yq exists. Similarly y ÞÑ

ş

x
F px, yq is continuous and compactly

supported, so that
ş1

y

ş

x
F px, yq exists and moreover

ż

x

ż 1

y

F px, yq “

ż 1

y

ż

x

F px, yq.

Proof. In view of the decomposition in Remark 3.16 and linearity of
ş

and
ş1

it is enough to

establish the result for F non-negative.

Since F P C`c pGˆGq has support contained in a compact set K, and since the coordinate

projection maps GˆGÑ G are continuous (and the union of two compact sets is compact)

there is a compact set L such that K Ă L ˆ L. It follows that the maps x ÞÑ F px, yq for

y P G and y ÞÑ F px, yq for x P G are continuous and have support in the compact set L.

We also need an auxiliary ‘dominating function’ which is a compactly supported con-

tinuous function on whose support all of the ‘action’ happens. For those familiar with the

theory of integration, the Dominated Convergence Theorem may come to mind. Concretely,

by Corollary 3.11 there is a continuous function f : G Ñ r0, 1s with fpxq “ 1 for all x P L

supported in a compact set M .

For ε ą 0 (by Remark 3.2) let U be an open cover of GˆH such that |F px, yq´F px1, y1q| ă

ε for all px, yq, px1, y1q P U P U . M ˆ M is compact and so by Lemma 1.35 there is a
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symmetric open neighbourhood of the identity U in G such that U 1 :“ txU ˆyU : x, y PMu

is a refinement of U (as a cover of M ˆM not of GˆG). First, the support of
ş1

y
F px, yq is

contained in the (compact) set L and if x1 P xU then by design and non-negativity of
ş1

we

have
ż 1

y

F px1, yq “

ż 1

y

F px1, yqfpyq ď

ż 1

y

pF px, yq ` εqfpyq “

ż 1

y

F px, yq ` ε

ż 1

f.

Since U is symmetric we have x P x1U and similarly
ş1

y
F px, yq ď

ş1

y
F px1, yq ` ε

ş1
f and

hence |
ş1

y
F px1, yq ´

ş1

y
F px, yq| ď ε

ş1
f . Since ε is arbitrary (and

ş1
f does not depend on

ε) it follows that x ÞÑ
ş1

y
F px, yq is continuous (and compactly supported) and similarly for

y ÞÑ
ş

x
F px, yq.

By Corollary 3.12 applied to f supported on the compact set M with the open cover

txU : x P Mu, there are continuous compactly supported f1, . . . , fn : G Ñ r0, 1s such that

f1 ` ¨ ¨ ¨ ` fn “ f and supp fi Ă xiU for some xi PM . Now, F px, yq “ F px, yqfpxqfpyq and

f “ f1 ` ¨ ¨ ¨ ` fn, so

F px, yq “
n
ÿ

i“1

n
ÿ

j“1

F px, yqfipxqfjpyq for all x, y P G.

By design of U 1 and U , for 1 ď i, j ď n there is λi,j ě 0 such that |F px, yq ´ λi,j| ă ε for all

px, yq P supp fi ˆ supp fj. We conclude that

n
ÿ

i“1

n
ÿ

j“1

λi,jfipxqfjpyq ´ εfpxqfpyq ď F px, yq ď
n
ÿ

i“1

n
ÿ

j“1

λi,jfipxqfjpyq ` εfpxqfpyq.

Since
ş

and
ş1

are non-negative linear functionals, we conclude that
ˇ

ˇ

ˇ

ˇ

ˇ

ż

x

ż 1

y

F px, yq ´
n
ÿ

i“1

n
ÿ

j“1

λi,j

ż

fi

ż 1

fj

ˇ

ˇ

ˇ

ˇ

ˇ

ď ε

ż

f

ż 1

f

and
ˇ

ˇ

ˇ

ˇ

ˇ

ż 1

y

ż

x

F px, yq ´
n
ÿ

i“1

n
ÿ

j“1

λi,j

ż

fi

ż 1

fj

ˇ

ˇ

ˇ

ˇ

ˇ

ď ε

ż

f

ż 1

f.

The result is proved by the triangle inequality since ε is arbitrary (and
ş

f and
ş1
f do not

depend on ε).

Remark 3.21. !4It is not enough to assume that F : G ˆ G Ñ C is such that the maps

G Ñ C;x ÞÑ
ş1

y
F px, yq and G Ñ C; y ÞÑ

ş

x
F px, yq are well-defined, continuous, and

compactly supported. Exercise III.4 asks for an example.

4 The Haar integral

We now turn to one of the most beautiful aspects of the theory of topological groups. This

describes the way the topology and the algebra naturally conspire to produce an integral.
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Given a topological group G and a function f P CpGq we write

λxpfqpzq :“ fpx´1zq for all x, z P G.

Remark 4.1. λxpfq P CpGq for all f P CpGq and x P G (since left multiplication is continuous

and the composition of continuous functions is continuous), and λ is a left action meaning

λxypfq “ λxpλypfqq for all x, y P G and λ1Gpfq “ f , and the maps λx are linear on the

vector space CpGq.

!4Without inversion this is naturally a right action.

Remark 4.2. For a topological group G, λ restricts to an action on the space CcpGq and this

action is isometric with respect to } ¨ }8 i.e. }λxpfq}8 “ }f}8 for all x P G.

Lemma 4.3. Suppose that G is a topological group and f P CcpGq. Then GÑ CcpGq;x ÞÑ

λxpfq is continuous.

Proof. Let U Ă CcpGq be open and x P G have λxpfq P U . Since U is open there is ε ą 0

such that λx1pfq P U whenever }λx1pfq ´ λxpfq}8 ă ε.

Let K be a compact set containing the support of f . As in Remark 3.2 let U be an

open cover of G such that |fpxq ´ fpyq| ă ε for all x, y P U P U . Then tU´1 : U P Uu is an

open cover of K´1. Since inversion is continuous and K is compact, K´1 is compact and

so by Lemma 1.35 there is a symmetric open neighbourhood of the identity V such that

tyV : y P K´1u refines tU´1 : U P Uu (as a cover of K´1), and hence tV ´1y : y P Ku is a

refinement of U (as a cover of K).

Suppose that v P V and y P G is such that λvpfqpyq ´ fpyq ‰ 0. Then either fpyq ‰ 0

so y P K, but then V ´1y is a subset of an element of U and so |λvpfqpyq ´ fpyq| ă ε; or

λvpfqpyq ‰ 0 so v´1y P K, but then V pv´1yq “ V ´1pv´1yq is a subset of an element of U
and so again |λvpfqpyq ´ fpyq| ă ε. Since λvpfq ´ f is continuous and compactly supported

it attains its bounds so }λvpfq´ f}8 ă ε. Finally, since λ is an action, the map λx is linear,

and this action is isometric (Remark 4.2) we have

}λxvpfq ´ λxpfq}8 “ }λxpλvpfq ´ fq}8 “ }λvpfq ´ f}8 ă ε.

By Lemma 1.22 xV is an open neighbourhood of x and by design it is contained in the

preimage of U . Since x was an arbitrary element of the preimage of U it follows this

preimage is open as required.

Given a topological group G we say that
ş

: CcpGq Ñ C is a (left) Haar integral on G

if
ş

is a non-trivial (meaning not identically zero) non-negative linear map with
ż

λxpfq “

ż

f for all x P G and f P CcpGq.

We sometimes call this last property (left) translation invariance.
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Remark 4.4. Our definition of Haar integral requires CcpGq to be non-trivial and hence (c.f.

Proposition 3.9) for G to support a Haar integral it must be locally compact. It will turn

out in Theorem 4.11 that this is enough to guarantee that there is a Haar integral.

Remark 4.5. There is an analogous notion of right Haar integral which we shall not pursue

here.

Example 4.6 (The Riemann Integral). The map
ş

in Example 3.13 restricted to CcpRq is

a Haar integral. The only property not already recorded is translation invariance, and this

is straightforward.

Example 4.7. If G is a discrete group then it supports a left Haar integral:
ż

: CcpGq Ñ C; f ÞÑ
ÿ

xPG

fpxq.

Remark 4.8. See Exercise III.1 for a partial converse.

The integral of a non-negative continuous function that is not identically 0 is positive,

and this already follows from the axioms of a Haar integral. To establish this we begin with

a lemma on the comparability of functions:

Lemma 4.9. Suppose that G is a topological group, f, g P C`c pGq and f is not identically

zero. Then there is n P N, c1, . . . , cn ě 0 and y1, . . . , yn P G such that

gpxq ď
n
ÿ

i“1

ciλyipfqpxq for all x P G.

Proof. Since f ı 0 there is some x0 P G such that fpx0q ą 0 and hence (by Lemma 1.22)

an open neighbourhood of the identity U such that fpx0yq ą fpx0q{2 for all y P U . Let K

be compact containing the support of g. Then txU : x P Ku is an open cover of K and so

there are elements x1, . . . , xn such that x1U, . . . , xnU covers K. But then

gpxq ď 2fpx0q
´1
}g}8

n
ÿ

i“1

fpx0x
´1
i xq “ 2fpx0q

´1
}g}8

n
ÿ

i“1

λxix´1
0
pfqpxq for all x P G,

and the result is proved.

Corollary 4.10. Suppose that G is a topological group,
ş

is a left Haar integral on G, and

f P C`c pGq has
ş

f “ 0. Then f ” 0.

Proof. Suppose that g P C`c pGq so by Lemma 4.9 we have g ď
řn
i“1 ciλyipfq for c1, . . . , cn ě 0

and y1, . . . , yn P G. Then by linearity, non-negativity, and translation invariance of the Haar

integral
ż

g ď
n
ÿ

i“1

ci

ż

λyipfq “
n
ÿ

i“1

ci

ż

f “ 0.

Since g ě 0, non-negativity of the Haar integral implies
ş

g ě 0, and hence
ş

g “ 0.

Now, in view of Remark 3.16 we have that
ş

h “ 0 for all h P CcpGq i.e.
ş

is identically

0 contradicting the non-triviality of the Haar integral. The lemma follows.
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Existence of a Haar Integral

Our first main aim is to establish the following.

Theorem 4.11 (Existence of a Haar integral). Suppose that G is a locally compact topolog-

ical group. Then there is a left Haar integral on G.

We begin by defining a sort of approximation: for f, φ P C`c pGq with φ not identically 0

put

pf ;φq :“ inf

#

n
ÿ

j“1

cj : n P N; c1, . . . , cn ě 0; y1, . . . , yn P G; and f ď
n
ÿ

j“1

cjλy´1
j
pφq

+

. (4.1)

We think of this as a sort of ‘covering number’ and begin with some basic properties:

Lemma 4.12. Suppose that f, g, φ, ψ P C`c pGq with φ and ψ are not identically 0. Then

(i) pf ;φq is well-defined;

(ii) pφ;φq ď 1;

(iii) pf ;φq ď pg;φq whenever f ď g;

(iv) pf ` g;φq ď pf ;φq ` pg;φq;

(v) pµf ;φq “ µpf ;φq for µ ě 0;

(vi) pλxpfq;φq “ pf ;φq for all x P G;

(vii) pf ;ψq ď pf ;φqpφ;ψq.

Proof. Lemma 4.9 shows that the set on the right of (4.1) is non-empty; it has 0 as a lower

bound. (i) follows immediately. For (ii)7 note that φ ď 1.λ1´1
G
pφq so that pφ;φq ď 1. (iii),

(iv), (v), and (vi) are all immediate. Finally, for (vii) suppose c1, . . . , cn ě 0 are such that

f ď
řn
j“1 cjλy´1

j
pφq, so that by (iii), (iv), (v), and (vi) we have pf ;ψq ď

řn
j“1 cjpφ;ψq. The

result follows on taking infima.

To make use of p¨ ; ¨q we need to fix a non-zero reference function f0 P C
`
c pGq and for

φ P C`c pGq not identically zero we put

Iφpfq :“
pf ;φq

pf0;φq
ď pf ; f0q, (4.2)

where the inequality follows from Lemma 4.12 (vii).

Many of the properties of Lemma 4.12 translate into properties of Iφ. In particular, we

have Iφpf1 ` f2q ď Iφpf1q ` Iφpf2q; for suitable φ we also have the following converse.

7As it happens it is easy to prove equality here but we do not need it.
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Lemma 4.13. Suppose that G is a locally compact topological group, f1, f2 P C
`
c pGq and

ε ą 0. Then there is a symmetric open neighbourhood of the identity V such that if φ P

C`c pGq is not identically 0 and has support in V then Iφpf1q ` Iφpf2q ď Iφpf1 ` f2q ` ε.

Proof. Let K be a compact closed set containing the support of both f1 and f2 (possible

since the union of two compact sets is compact and the closure of a compact set is compact

by Lemma 1.43) and apply Corollary 3.11 to get F : G Ñ r0, 1s continuous, compactly

supported, and with F pxq “ 1 for all x P K.

For j P t1, 2u let gj be continuous such that pf1 ` f2 ` εF qgj “ fj (possible in view of

Remark 3.8 and use that supp fi Ă K Ă suppF ). By Remark 3.2 (and the fact that the

intersection of two open covers is an open cover) there is an open cover U of G such that if

x, y P U P U then |gjpxq ´ gjpyq| ă ε for j P t1, 2u. K is compact; apply Lemma 1.35 to U
to get a symmetric open neighbourhood of the identity V such that tyV : y P Ku refines U
(as a cover of K).

Now suppose that φ P C`c pGq is not identically 0 and has support in V , and that

c1, . . . , cn ě 0 and y1, . . . , yn P G are such that

f1pxq ` f2pxq ` εF pxq ď
n
ÿ

i“1

ciφpyixq for all x P G.

If φpyixqgjpxq ‰ 0 then x P K and y´1i P xV (using V “ V ´1), by xV is a subset of a set in

U so gjpxq ď gjpy
´1
i q ` ε and hence

fjpxq ď
n
ÿ

i“1

ciφpyixqgjpxq ď
n
ÿ

i“1

cipgjpy
´1
i q ` εqφpyixq for all x P G, j P t1, 2u.

By Lemma 4.12 (ii),(iii), (iv),(v) & (vi) we have

pfj;φq ď
n
ÿ

i“1

cipgjpy
´1
i q ` εq for all j P t1, 2u,

but g1py
´1q ` g2py

´1q ď 1 for all y P G, so

pf1;φq ` pf2;φq ď
n
ÿ

i“1

cip1` 2εq.

Taking infima and then applying Lemma 4.12 (iv) and (v) and the inequality in (4.2) we

get

Iφpf1q ` Iφpf2q ď p1` 2εqIφpf1 ` f2 ` εF q

ď p1` 2εqpIφpf1 ` f2q ` εIφpF qq

ď Iφpf1 ` f2q ` p2pf1 ` f2; f0q ` pF ; f0q ` 2εpF ; f0qqε.

The result follows since ε ą 0 was arbitrary and F , f1, f2 and f0 do not depend on ε.
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With these lemmas we can turn to the main argument.

Proof of Theorem 4.11. By Corollary 3.11 (applied with K “ t1Gu) there is f0 P C
`
c pGq

with f0 ı 0. Write F for the set of functions I : C`c pGq Ñ Rě0 with Ipfq ď pf ; f0q for

all f P C`c pGq endowed with the product topology i.e. the weakest topology such that the

maps F Ñ r0, pf ; f0qs; I ÞÑ Ipfq are continuous for all f P C`c pGq. Since the closed interval

r0, pf ; f0qs is compact, F is a product of compact spaces and so compact. Let X be the set

of I P F such that

Ipf0q “ 1 (4.3)

Ipµfq “ µIpfq for all µ ě 0, f P C`c pGq, (4.4)

and

Ipλxpfqq “ Ipfq for all x P G, f P C`c pGq. (4.5)

The set X is closed as an intersection of the preimage of closed sets. Moreover, by Lemma

4.12 Iφ P X for any φ P C`c pGq that is not identically zero: the fact that Ipfq P r0, pf ; f0qs

follows from the inequality in (4.2); (4.3) by design; (4.4) by (v); and (4.5) by (vi).

This almost gives us a Haar integral (on non-negative functions) except that in general

the elements ofX are not additive, meaning we do not in general have Ipf`f 1q “ Ipfq`Ipf 1q.

To get this we introduce some further sets: for ε ą 0 and f, f 1 P C`c pGq define

Bpf, f 1; εq :“ tI P X : |Ipf ` f 1q ´ Ipfq ´ Ipf 1q| ď εu.

As with X, the sets Bpf, f 1; εq are closed. We shall show that any finite intersection of

such sets is non-empty: For any f1, f
1
1, f2, f

1
2, . . . , fn, f

1
n P C`c pGq and ε1, . . . , εn ą 0, by

Lemma 4.13 there are symmetric open neighbourhoods of the identity V1, . . . , Vn such that

if φ P C`c pGq is not identically 0 and is supported in Vi then

|Iφpfi ` f
1
iq ´ Iφpfiq ´ Iφpf

1
iq| ă εi. (4.6)

Since G is locally compact by Lemma 1.48 there is a symmetric open neighbourhood of the

identity H contained in a compact set L; set V :“ H X
Şn
i“1 Vi which is also a symmetric

open neighbourhood of the identity and by Theorem 3.3 there is φ P C`pGq that is not

identically 0 with support contained in V , and hence in the compact set L which is to say

it has compact support. Iφ enjoys (4.6) for all 1 ď i ď n, and we noted before that Iφ P X,

hence Iφ P
Şn
i“1Bpfi, f

1
i , εiq. We conclude that tBpf, f 1; εq : f, f 1 P C`c pGq, ε ą 0u is a set of

closed subsets of F with the finite intersection property, but F is compact and so there is

some I in all of these sets. Such an I is additive since |Ipf ` f 1q ´ Ipfq ´ Ipf 1q| ă ε for all

f, f 1 and ε ą 0. It remains to define
ş

: CcpGq Ñ C by putting

ż

f :“ Ipf1q´ Ipf2q` iIpf3q´ iIpf4q where f “ f1´ f2` if3´ if4 for f1, f2, f3, f4 P C
`
c pGq.
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This decomposition of functions in CcpGq is unique (noted in Remark 3.16) and so this is

well-defined. Moreover,
ş

is linear since I is additive and enjoys (4.4); it is non-negative since

I is non-negative (and Ip0q “ 0); it is translation invariant by (4.5); and it is non-trivial by

(4.3). The result is proved.

Uniqueness of the Haar integral

Our second main aim is to establish the following result.

Theorem 4.14 (Uniqueness of the Haar Integral). Suppose that G is a locally compact

topological group and
ş

and
ş1

are left Haar integrals on G. Then there is some λ ą 0 such

that
ş

“ λ
ş1

.

For this we introduce a little more notation: Given a topological group G and f P CcpGq

we write rfpxq “ fpx´1q.

Remark 4.15. r̈ is a conjugate-linear multiplicative involution?? on CcpGq, since complex

conjugation and x ÞÑ x´1 are both continuous (and continuous images of compact sets are

compact).

Proof of Theorem 4.14. Suppose that f0, f1 P C
`
c pGq are not identically 0 and write K for a

compact set containing the support of f0 and f1 (which exists since finite unions of compact

sets are compact). By Lemma 1.48 there is a symmetric open neighbourhood of the identity,

H, contained in a compact set L.

First, by Corollary 3.11 there is a continuous compactly supported function F : G Ñ

r0, 1s with F pxq “ 1 for all x P KL (this set is compact by Lemma 1.29, and hence the

corollary applies).

Now, suppose ε ą 0 and use Remark 3.2 (and the fact that intersections of open covers

are open covers) to get an open cover U of G such that if x, y P U P U then |fipxq´fipyq| ă ε

for i P t0, 1u. By Lemma 1.35 applied to U and the compact set KL there is a symmetric

open neighbourhood of the identity V such that txV : x P KLu is a refinement of U (as

a cover of KL), and by Theorem 3.3 there is a continuous function h : G Ñ r0, 1s that is

not identically zero and is supported in V XH, and in particular supported in L so it has

compact support.

For x P G, translation invariance of
ş1

(and Remark 3.18) tells us that

ż 1

y

hpy´1xq “

ż 1

y

rhpx´1yq “

ż 1

y

rhpx´1yq “

ż 1

y

rhpyq “

ż 1

rh.

For i P t0, 1u, the map x ÞÑ
ş1

y
fipxqhpy

´1xq “ fipxq
ş1
rh is continuous and is supported in K

and so is compactly supported and
ş

x

ş1

y
fipxqhpy

´1xq exists and equals
ş

fi
ş1
rh (by linearity
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of
ş

). On the other hand the map px, yq ÞÑ fipxqhpy
´1xq is continuous and supported on

K ˆ L and so is compactly supported and hence by Fubini’s Theorem (Theorem 3.20),

y ÞÑ
ş

x
fipxqhpy

´1xq exists, and (using translation invariance of
ş

) we have

ż

fi

ż 1

rh “

ż

x

ż 1

y

fipxqhpy
´1xq “

ż 1

y

ż

x

fipxqhpy
´1xq “

ż 1

y

ż

x

fipyxqhpxq.

Since tyV : y P Ku refines U (as a cover of KL) we have |fipyxq ´ fipyq| ă ε for x P V and

y P KL; and for x P H and fipyxq ‰ 0 or fipyq ‰ 0 we have y P KH whence F pyq “ 1. It

follows that

fipyqhpxq ´ εF pyqhpxq ď fipyxqhpxq ď fipyqhpxq ` εF pyqhpxq for all x, y P G,

and so by non-negativity and linearity of
ş

and
ş1

we have

ż 1

y

ż

x

fipyqhpxq ´

ż 1

y

ż

x

εF pyqhpxq ď

ż 1

y

ż

x

fipyxqhpxq ď

ż 1

y

ż

x

fipyqhpxq `

ż 1

y

ż

x

εF pyqhpxq.

It follows (using linearity of
ş

) that |
ş1
fi
ş

h´
ş

fi
ş1
rh| ď ε

ş1
F
ş

h, and hence by the triangle

inequality (and division, which is valid since
ş

f0,
ş

f1 ‰ 0 by Corollary 4.10 as f0 and f1 are

not identically zero) that

ˇ

ˇ

ˇ

ˇ

ˇ

ş1
f0

ş

f0
´

ş1
f1

ş

f1

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ˇ

ş1
f0

ş

f0
´

ş1
rh

ş

h

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

ş1
rh

ş

h
´

ş1
f1

ş

f1

ˇ

ˇ

ˇ

ˇ

ˇ

ď ε

ż 1

F

ˆ

1
ş

f0
`

1
ş

f1

˙

.

Since ε was arbitrary (and in particular f0, f1, and F do not depend on it) it follows that
ş1
f{

ş

f is a constant λ for all f P C`c pGq not identically zero. This constant must be non-

zero since
ş1

is non-trivial, and it must be positive since
ş1

and
ş

are non-negative. The result

follows from the usual decomposition (Remark 3.16), and the fact that
ş

0,
ş1

0 “ 0.

5 The Peter-Weyl Theroem

Suppose that G is a topological group, and for an inner product space V recall the definition

of UpV q from Example 1.55. A finite dimensional unitary representation of G is a

continuous homomorphism G Ñ UpV q for some finite dimensional complex inner product

space V .

A function f : GÑ C is said to be a matrix coefficient if there is a finite dimensional

unitary representation π : G Ñ UpV q, and elements v, w P V such that fpxq “ xπpxqv, wy

for all x P G.

Example 5.1. Suppose that π : G Ñ UpV q is a finite dimensional unitary representation

of a topological group G and e1, . . . , en is an orthonormal basis for V . If we write Ai,j :“
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xπpxqei, ejy and suppose that λ P Cn is the vector for v P V written w.r.t. the basis e1, . . . , en

(i.e. λi “ xv, eiy), then λA – the matrix A pre-multiplied by the row vector λ – is πpxqv

written w.r.t. the basis e1, . . . , en. This is the reason for the terminology ‘matrix coefficient’.

Remark 5.2. All matrix coefficients are continuous, since continuity of π : G Ñ UpV q and

the definition of the topology on UpV q means that x ÞÑ πpxqv is continuous for all v P V ,

and the projections v ÞÑ xv, wy are continuous for all w P V , so the resulting composition is

also continuous.

Lemma 5.3. Suppose that G is a compact topological group. Then there is a unique left

Haar integral
ş

on G with
ş

1 “ 1 such that

xf, gy :“

ż

fg for all f, g P CpGq

is an inner product on CpGq and for each x P G, λx is unitary w.r.t. this inner product.

Furthermore, }f}2 :“ xf, fy1{2 and }f}1 :“
ş

|f | define norms on CpGq and

}f}1 ď }f}2 ď }f}8 for all f P CpGq.

Proof. By Theorem 4.11 there is a left Haar integral
ş1

on G. Since G is compact the

constant function 1 is compactly supported and so by Corollary 4.10,
ş1

1 ą 0. Diving by

this positive constant we get a left Haar integral
ş

with
ş

1 “ 1. Now suppose that
ş1

is

another left Haar integral with
ş1

1 “ 1. By Theorem 4.14
ş1
“ λ

ş

for some λ ą 0, but since
ş

1 “ 1 “
ş1

1 we conclude that λ “ 1 and
ş

“
ş1

giving the claimed uniqueness.

Linearity in the first argument and conjugate-symmetry of x¨, ¨y follow from linearity

of the Haar integral and Remark 3.18 respectively. xf, fy ě 0 for all f P CpGq since
ş

is

non-negative and x¨, ¨y is then positive definite by Corollary 4.10.

The Haar integral is left-invariant so

xf, gy “

ż

fg “

ż

λxpfgq “

ż

λxpfqλxpgq for all f, g P CpGq,

and the first part is proved.

For any inner product f ÞÑ xf, fy1{2 is a norm, so } ¨ }2 is a norm. Absolute homogeneity

of } ¨ }1 follows from the fact that the modulus of a complex number is multiplicative and
ş

is linear, and the triangle inequality follows from, non-negativity, linearity and the triangle

inequality for the modulus of a complex number. }f}1 ě 0 by non-negativity of
ş

, and finally

} ¨ }1 is positive definite by Corollary 4.10.

Since G is compact the constant functions 1 and }f}28 are both in CpGq. By the Cauchy-

Schwarz inequality (which holds for all inner products) we have

}f}1 “

ż

|f | “ x1, |f |y ď }1}2}|f |}2 “ }f}2 for all f P CpGq;
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and by non-negativity of
ş

we have

}f}22 “

ż

|f |2 ď

ż

}f}28 “ }f}
2
8 for all f P CpGq.

The result is proved.

Remark 5.4. For the remainder of this section we write
ş

for the unique Haar integral in

Lemma 5.3, and use the notation x¨, ¨y, } ¨ }2 and } ¨ }1 as in this lemma.

Remark 5.5. Convergence in } ¨ }8 is called convergence in L8 or uniform convergence;

convergence in }¨}2 is called convergence in L2; and convergence in }¨}1 is called convergence

in L1.

The second inequality in Lemma 5.3 tells us that uniform convergence implies conver-

gence in L2, and the first that convergence in L2 implies convergence in L1.

For f, g P CpGq we define their convolution to be the function

x ÞÑ f ˚ gpxq :“

ż

y

fpyqgpy´1xq “ xf, λxprgqy.

Lemma 5.6 (Basic properties of convolution). Suppose that G is a compact topological

group. Then

(i) CpGq Ñ CpGq; g ÞÑ g ˚ f is well-defined and linear for all f P CpGq;

(ii) h ˚ pg ˚ fq “ ph ˚ gq ˚ f for all f, g, h P CpGq;

(iii) λxpg ˚ fq “ λxpgq ˚ f for all x P G, f, g P CpGq;

(iv) xg ˚ f, hy “ xg, h ˚ rfy for all f, g, h P CpGq (recall rf from just before Remark 4.15);

(v) }h ˚ f}8 ď mint}h}1}f}8, }h}2, } rf}2u for all f, h P CpGq.

Proof. By the first part of Fubini’s Theorem (Theorem 3.20) the function g ˚f P CpGq since

px, yq ÞÑ gpxqfpx´1yq is continuous and compactly supported. Since
ş

x
is linear, g ÞÑ g ˚ f

is well-defined and linear giving (i).

For (ii) we apply λy to the integrand z ÞÑ gpzqfpz´1y´1xq using that
ş

z
is a left Haar

integral; then Fubini’s Theorem (Theorem 3.20) since pz, yq ÞÑ hpyqgpy´1zqfpz´1xq is con-

tinuous; and finally linearity of
ş

y
to see that

h ˚ pg ˚ fqpxq “

ż

y

hpyq

ż

z

gpzqfpz´1y´1xq

“

ż

y

hpyq

ż

z

gpy´1zqfpz´1xq “

ż

z

ˆ
ż

y

hpyqgpy´1zq

˙

fpz´1xq “ ph ˚ gq ˚ fpxq

as claimed.
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For (iii) note that λtpg ˚ fqpxq “ g ˚ fpt´1xq “ xg, λt´1xp
rfqy “ xg, λt´1pλxp rfqqy “

xλtpgq, λxp rfqy “ λtpgq ˚ fpxq since λt is unitary w.r.t. x¨, ¨y by Lemma 5.3.

For (iv), since the function px, yq ÞÑ gpxqfpx´1yqhpyq is continuous and compactly sup-

ported, by Fubini’s Theorem (Theorem 3.20) and linearity of
ş

y
; and then Remark 3.18 we

have

xg ˚ f, hy “

ż

y

ż

x

gpxqfpx´1yqhpyq

“

ż

x

gpxq

ż

y

fpx´1yqhpyq “

ż

x

gpxq

ż

y

hpyq rfpy´1xq “ xg, h ˚ rfy,

as required.

Finally, (v) follows on the one hand since

|h ˚ fpxq| ď

ż

y

|hpyq||fpy´1xq| ď

ż

|h|}f}8 “ }h}1}f}8,

and on the other since |h ˚ fpxq| “ |xh, λxp rfqy| ď }h}2}λxp rfq}2 “ }h}2} rf}2. The result is

proved.

Remark 5.7. As usual, in view of the associativity in (ii) there is no ambiguity in omitting

parentheses when writing expressions like h ˚ g ˚ f .

Remark 5.8. The linearity of the maps in (i) and inequality (v) mean that convolution maps

convergence in L1 to uniform convergence c.f. Remark 5.5.

Before beginning our main argument we need one more tool which will deal with the

fact our inner product spaces are not in general complete.

Remark 5.9. A complete inner product space is called a Hilbert space and the results of this

section are usually developed with respect to these. !4In particular, a unitary represen-

tation is usually a continuous group homomorphism π : G Ñ UpHq for a complex Hilbert

space H, not merely a complex inner product space. Every finite dimensional complex inner

product space is complete and so a Hilbert space, and so our definition at the start of the

section is not at variance with this, but in general care is warranted.

Proposition 5.10. Suppose that G is a compact topological group G, f P CpGq and pgnqnPN

is a sequence of elements of CpGq with }gn}1 ď 1. Then there is a subsequence pgniqiPN such

that gni ˚ f converges uniformly to some element of CpGq as iÑ 8.

Proof. For each j P N, Remark 3.2 gives us an open cover Uj of G such that if x, y P

U P Uj then |fpxq ´ fpyq| ă 1{j. Since G is compact apply Lemma 1.35 to get an open

neighbourhood of the identity Uj such that txUj : x P Gu refines Uj; and by compactness

again there is a finite cover tx1,jUj, . . . , xkpjq,jUju which refines txUj : x P Gu. By Lemma

5.3 (v) gn ˚ fpxq P r´}f}8, }f}8s. The interval r´}f}8, }f}8s is sequentially compact,
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meaning every sequence has a convergent subsequence. A countable product of sequentially

compact spaces is sequentially compact8 so there is a subsequence pniqi such that gni ˚fpxk,jq

converges, say to gpxk,jq, as iÑ 8 for all 1 ď k ď kpjq and j P N.

Suppose ε ą 0 and let j :“ r3ε´1s. For all 1 ď k ď kpjq let Mk be such that |gni ˚

fpxk,jq ´ gpxk,jq| ă ε{6 for all i ě Mk; let M :“ maxtMk : 1 ď k ď kpjqu and suppose that

i, i1 ěM .

For x P G there is some 1 ď k ď kpjq such that x P xk,jUj and hence for all y P G we have

y´1x, y´1xk,j P y
´1xk,jUj which is a subset of an element of Uj, so |fpy´1xq ´ fpy´1xk,jq| ă

1{j. Thus for g P CpGq with }g}1 ď 1 we have

|g ˚ fpxq ´ g ˚ fpxk,jq| “ |xg, λxp rfq ´ λxk,jp
rfqy|

ď }g}1}λxp rfq ´ λxk,jp
rfq}8 ď sup

yPG
|fpy´1xq ´ fpy´1xj,kq| ď

1

j
ď ε{3.

In particular this holds for g “ gni and g “ gni1 , so that

|gni ˚ fpxq ´ gni1 ˚ fpxq| ď |gni ˚ fpxq ´ gni ˚ fpxk,jq| ` |gni ˚ fpxk,jq ´ gpxk,jq|

` |gpxk,jq ´ gni1 ˚ fpxk,jq| ` |gni1 ˚ fpxk,jq ´ gni1 ˚ fpxq| ă ε.

Since x P G was arbitrary it follows that the sequence of functions pgni ˚ fqi is uniformly

Cauchy and so converges to a continuous function on G. The result is proved.

We say that V ď CpGq is invariant if λxpvq P V for all v P V .

Example 5.11. Suppose that V ď CpGq is invariant and finite dimensional. Then π : GÑ

UpV q;x ÞÑ pV Ñ V ; v ÞÑ λxpvqq is a finite dimensional unitary representation.

For any V ď CpGq write V K for the set of w P CpGq such that xv, wy “ 0 for all v P V .

Proposition 5.12. Suppose that G is a compact group and f P CpGq. Then there is an

invariant space W ď CpGq with dimW ď ε´2}f}22 such that if g P WK then }g ˚ f}2 ď ε}g}2.

Proof. Let V be the set of vectors of the form

h1 ` ¨ ¨ ¨ ` hn where n P N0, hi ˚ rf ˚ f “ λihi and λi ě ε2 for all 1 ď i ď n. (5.1)

This is an invariant space by Lemma 5.6 (iii). For v P V we shall write v “ h1 ` ¨ ¨ ¨ ` hn

to mean a decomposition as in (5.1) with the additional requirements that hi ı 0 (so

}hi}
2
2 ‰ 0 since hi is continuous), and λi ‰ λj for i ‰ j, which is possible since the map

T : CpGq Ñ CpGq;h ÞÑ h ˚ rf ˚ f is linear. (The zero vector is represented as a sum with no

terms.)

8The proof of this is just Cantor’s diagonal argument.
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In fact T is positive definite and so the his, which are eigenvectors with corresponding

eigenvalues λi, are perpendicular for different eigenvalues. In our language the relevant parts

of this follow since if hi ˚ rf ˚ f “ λihi and hj ˚ rf ˚ f “ λjhj, then

λixhi, hjy “ xλihi, hjy “ xhi ˚ rf ˚ f, hjy “ xhi, hj ˚ rf ˚ fy “ xhi, λjhjy “ λjxhi, hjy.

Applying this identity with j “ i for some hj ‰ 0 we see that λi is real. Then applying

it again with λi ‰ λj we have xhi, hjy “ 0. In particular, if v “ h1 ` ¨ ¨ ¨ ` hn in the way

discussed after (5.1) then

}v ˚ rf}22 “ xv ˚
rf ˚ f, vy “

n
ÿ

i“1

λi}hi}
2
2 ě ε2

n
ÿ

i“1

}hi}
2
2 “ ε2}v}22. (5.2)

If V contains n linearly independent vectors, then by the Gram-Schmidt process9 there are

orthonormal vectors v1, . . . , vn P V . For x P G, by Bessel’s inequality10

n
ÿ

i“1

|xvi, λxpfqy|
2
ď }λxpfq}

2
2 “ }f}

2
2.

Integrating against x and using (5.2) we have

nε2 ď
n
ÿ

i“1

ż

x

|vi ˚ rfpxq|
2
“

ż

x

n
ÿ

i“1

|xvi, λxpfqy|
2
ď

ż

x

}f}22 “ }f}
2
2.

It follows that dimV ď ε´2}f}22.

Write W :“ tk ˚ rf : k P V u, which is invariant by Lemma 5.6 (iii) and the fact V is

invariant. Let M :“ supt}g ˚ f}2 : g P WK and }g}2 ď 1u. We shall be done if we can show

that M2 ď ε2.

Claim. If h P V K then }h ˚ rf}2 ďM}h}2.

9Given e1, e2, . . . linearly independent, the Gram-Schmidt process in an inner product space defines

ui :“ ei ´
i´1
ÿ

k“1

xei, vkyvk and vi :“ ui{}un}.

It can be shown by induction that v1, v2, . . . is an orthonormal sequence.
10Bessel’s inequality is the fact that if v1, v2, . . . is an orthonormal sequence in an inner product space

then
řn

i“1 |xvi, vy|
2 ď }v}2 for all v. To prove it note that because the vis are orthonormal we have

›

›

›

›

›

n
ÿ

i“1

xvi, vyvi

›

›

›

›

›

2

“

n
ÿ

i“1

n
ÿ

j“1

xvi, vyxvj , vyxvi, vjy “
n
ÿ

i“1

|xvi, vy|
2.

Hence by the Cauchy-Schwarz inequality

˜

n
ÿ

i“1

|xvi, vy|
2

¸2

“

ˇ

ˇ

ˇ

ˇ

ˇ

C

v,
n
ÿ

i“1

xvi, vyvi

G
ˇ

ˇ

ˇ

ˇ

ˇ

2

ď }v}2

›

›

›

›

›

n
ÿ

i“1

xvi, vyvi

›

›

›

›

›

2

“ }v}2

˜

n
ÿ

i“1

|xvi, vy|
2

¸

.

Cancelling gives the inequality.

Page 39



Proof. First, h ˚ rf P WK: To see this, for v P V write v “ h1 ` ¨ ¨ ¨ ` hn to mean a

decomposition as in (5.1). Then

xh ˚ rf, v ˚ rfy “
n
ÿ

i“1

xh, hi ˚ rf ˚ fy “
n
ÿ

i“1

λixh, hiy “ 0.

Now let k P WK have }k}2 “ 1 such that }h ˚ rf}2 “ xh ˚ rf, ky “ xh, k ˚ fy ď }h}2}k ˚ f}2 ď

M}h}2 as claimed.

Let gn P W
K have }gn ˚ f}2 ÑM and }gn}2 ď 1. By Cauchy-Schwarz we have }gn}1 ď 1

and we may apply Proposition 5.10 to pass to a subsequence which converges uniformly.

Hence by relabelling we may now additionally assume that gn ˚ f Ñ h uniformly for some

h P CpGq. In particular, }gn ˚ f}2 Ñ }h}2 and xh, gn ˚ fy Ñ }h}22 and hence }h}2 “ M .

Moreover, if v P V then xgn ˚ f, vy “ xgn, v ˚ rfy “ 0, and the former converges to xh, vy,

whence h P V K.

Combining this with the claim above we have

}h ˚ rf ´M2gn}
2
2 “ }h ˚

rf}22 ´ 2M2 Rexh ˚ rf, gny `M
4
}gn}

2
2

ďM2
}h}22 ´ 2M2 Rexh, gn ˚ fy `M

4
Ñ 0.

Hence M2gn Ñ h˚ rf in }¨}2, and since convergence in }¨}2 is mapped to uniform convergence

by convolution operations we have M2gn ˚ f Ñ h ˚ rf ˚ f . Uniqueness of limits then ensures

M2h “ h ˚ rf ˚ f . If M2 ě ε2 then h P V , but then since h P V K we see h ” 0. In that case

M “ }h}2 “ 0 and certainly M2 ď ε2 as required. The result is proved.

Theorem 5.13 (The Peter-Weyl Theorem). Suppose that G is a compact topological group.

Then matrix coefficients are dense in CpGq with the uniform norm.

Proof. Suppose that f P CpGq and let ε ą 0. Remark 3.2 gives us an open cover Uj of G

such that if x, y P U P Uj then | rfpxq ´ rfpyq| ă ε{2. Since G is compact, by Lemma 1.35

there is an open neighbourhood of the identity U such that txU : x P Gu refines U , and by

Lemma 1.31 there is an open set V such that V 2 Ă U . By Theorem 3.3, there is g P CpGq

non-negative and not identically 0 such that supp g Ă V . By rescaling g we may assume

that
ş

g “ 1. The support of g˚g is contained in V 2 Ă U and by Fubini’s Theorem (Theorem

3.20) we therefore have
ş

g ˚ g “ 1. But then

|g ˚ g ˚ fpxq ´ fpxq| “

ˇ

ˇ

ˇ

ˇ

ż

y

g ˚ gpyqfpy´1xq ´ fpxq

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż

y

g ˚ gpyqp rfpx´1yq ´ rfpx´1qq

ˇ

ˇ

ˇ

ˇ

ď ε,

for all x P G and so }f ´ g ˚ g ˚ f}8 ď ε{2.

Let δ ă ε}g}´12 }
rf}´12 {2 for reasons which will be come clear shortly. By Proposition 5.12

there is a finite dimensional invariant space W ď CpGq such that }h ˚ g}2 ď δ}h}2 for all
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h P WK. Write πW : CpGq Ñ CpGq for the map projecting onto W . Then g ´ πW pgq P W
K

and so }g ˚ g ´ πW pgq ˚ g}2 ď δ}g ´ πW pgq}2 ď δ}g}22. By Lemma 5.6 (v) we have

}g ˚ g ˚ f ´ πW pgq ˚ g ˚ f}8 ď δ}g}2} rf}2.

By the triangle inequality we have }f ´πW pgq ˚g ˚f}8 ă ε. Finally, writing k :“ pg ˚fq„ we

have by definition; since λx is unitary; since W is invariant; since πW is self-adjoint (meaning

xπWv, wy “ xv, πWwy for all v, w P CpGq); and again since λx is unitary, that

πW pgq ˚ g ˚ fpxq “ xπW pgq, λxpkqy “ xλx´1pπW pgqq, ky

“ xπW pλx´1pπW pgqqq, ky

“ xλx´1pπW pgqq, πW pkqy

“ xπW pgq, λxpπW pkqqy “ xλxpπW pkqq, πW pgqy.

Hence πW pgq ˚ g ˚ fpxq is a matrix coefficient. Since ε ą 0 was arbitrary the result is

proved.

Remark 5.14. !4There are other important parts to the Peter-Weyl Theorem which we

have not included here.

6 The dual group

Suppose that G is a topological group. We write pG for the set of continuous homomorphisms

GÑ S1 (where S1 is as in Example 1.28), and call the elements of pG characters.

Remark 6.1. !4While characters are (by definition) elements of CpGq, they are not in CcpGq

unless G is compact.

We endow the set pG with the compact-open topology, that is the topology generated

by the sets γUpK, εq where γ P pG,

UpK, εq :“ tλ P pG : |λpxq ´ 1| ă ε for all x P Ku

and ε ą 0 and K is a compact subset of G.

Proposition 6.2. Suppose that G is a topological group. Then pG is a Hausdorff Abelian

topological group with multiplication and inversion defined by

pγ, γ1q ÞÑ px ÞÑ γpxqγ1pxqq and γ ÞÑ px ÞÑ γpxqq,

and identity the character taking the constant value 1. Moreover, pUpK, δqqK,δ as K ranges

compact subsets of G and δ ą 0 is a neighbourhood base of the identity.
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Proof. The fact that pG is an Abelian group is an easy check since S1 is an Abelian group

under multiplication and z´1 “ z when z P S1.

Since |γpxq ´ 1| “ |γpxq ´ 1| the inversion is certainly continuous. Now suppose that

γλ P µUpK, εq for some µ P pG. Since γλµ is continuous and K is compact |γλµ´1| achieves

its bounds on K and hence there is some δ ą 0 such that |pγλµqpxq ´ 1| ă ε ´ δ for all

x P K. But then if γ1 P γUpK, δ{2q and λ1 P λUpK, δ{2q we have

|pγ1λ1µqpxq ´ 1| ď |pγ1λ1µqpxq ´ pγλ1µqpxq| ` |pγλ1µqpxq ´ pγλµqpxq| ` |pγλµqpxq ´ 1|

ă δ{2` δ{2` ε´ δ “ ε.

It follows that γ1λ1 P µUpK, εq and so the preimage of γλ contains a neighbourhood of pγ, λq

in pGˆ pG i.e. multiplication is jointly continuous. Finally, the topology is Hausdorff since if

γ ‰ λ then there is some x P G such that γpxq ‰ λpxq; put ε :“ |γpxq ´ λpxq|{2 and note

that γUptxu, εq and λUptxu, εq are disjoint open sets containing γ and λ respectively.

We call the group pG endowed with the compact-open topology the dual group of G, so

that the above proposition tells us that if G is a topological group then its dual group is a

Hausdorff Abelian topological group.

We call the identity, denoted 1
pG, the trivial character.

Proposition 6.3. Suppose that G is a compact topological group. Then pG is discrete.

Proof. Suppose that γ ‰ 1
pG so there is x P G such that γpxq ‰ 1. Let y P G be such that

|γpyq ´ 1| is maximal (which exists since G is compact and x ÞÑ |γpxq ´ 1| is continuous)

and note that by assumption this is positive. If |γpyq ´ 1| ă 1 then we have

|γpy2q ´ 1| “ |γpyq2 ´ 1| “ |p2` pγpyq ´ 1qq||γpyq ´ 1|

ě p2´ |γpyq ´ 1|q|γpyq ´ 1| ą |γpyq ´ 1|.

This is a contradiction, whence γ R UpG, 1q and t1
pGu is open so the topology is discrete.

Example 6.4. Suppose that G is a finite cyclic group endowed with the discrete topology.

Since G is cyclic it is generated by some element x, and the map

φ : GÑ pG;xr ÞÑ pGÑ S1;xl ÞÑ expp2πirl{|G|qq

is a well-defined homeomorphic isomorphism. To see this note that φ is well-defined in the

sense that different representations of an element in the domain product the same image:

since xr “ xr
1

implies |G| � r ´ r1 and hence expp2πirl{|G|q “ expp2πir1l{|G|q; and φ

is well-defined in the sense that φpxrq as defined is genuinely an element of pG: xl “ xl
1

implies |G| � l ´ l1 and hence expp2πirl{G|q “ expp2πirl1{|G|q so that φpxrq is itself a
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well-defined function; it is continuous since G is discrete; and it is a homomorphism since

expp2πirpl ` l1q{|G|q “ expp2πirl{|G|q expp2πirl1{|G|q.

φ is a homomorphism since expp2πipr ` r1ql{|G|q “ expp2πirl{|G|q expp2πir1l{|G|q. φ is

injective since if expp2πirl{|G|q “ 1 for all l then |G| � r so xr “ 1G. φ is surjective since if

γ : G Ñ S1 is a homomorphism then γpxq|G| “ 1 so γpxq “ expp2πir{|G|q for some r P Z,

and γ “ φpxrq.

We conclude that φ : G Ñ pG is a bijective group homomorphism and hence φ´1 is a

group homomorphism. Since G is discrete φ is continuous. Since G is finite, G is compact

and so pG is discrete by Proposition 6.3 and hence φ´1 is continuous as required.

In particular G and pG are homeomorphically isomorphic.

Remark 6.5. Example 6.4 gives a class of topological groups that are homeomorphically

isomorphic to their duals. Since there are non-Abelian groups, and the dual group is always

Abelian (Proposition 6.2), there are many examples where a group and its dual are not even

isomorphic. Similarly, since there are non-Hausdorff topological groups and the dual group

is always Hausdorff (Proposition 6.2), there are many examples where a group and its dual

are not homeomorphic as topological spaces.

It will turn out that it is more natural to ask when a group and its double dual are

homeomorphically isomorphic and there will be a wide class of groups where this will hold.

Example 6.6. WhenG is a group with the indiscrete topology the only continuous functions

are constant and so pG is the trivial group with one character taking the constant value 1

(and there is only one topology on a set with one element) so that we have completely

determined the topological group pG.

Example 6.6 gave topological reasons for the dual group being trivial, but there can also

be algebraic reasons:

Example 6.7 (Non-Abelian finite simple groups). Suppose that G is a non-Abelian finite

simple11 topological group.

Suppose that γ : GÑ S1 is a homomorphism. Since G is non-Abelian there are elements

x, y P G with xy ‰ yx, but then xyx´1y´1 ‰ 1G while

γpxyx´1y´1q “ γpxqγpyqγpxq´1γpyq´1 “ 1

since S1 is Abelian. We conclude that the kernel of γ is non-trivial, but all kernels are

normal subgroups and since G is simple it follows that ker γ “ G i.e. γ is trivial. In other

words pG “ t1
pGu.

11A simple group is a group whose only normal subgroups are the trivial group and the whole group

e.g. An, the alternating group on n elements, when n ě 5. (The Abelian finite simple groups are the cyclic

groups of prime order and their dual groups are described in Example 6.4.)
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The topology on G and pG are quite closely related: if G is compact then pG is discrete

(Proposition 6.3), and the other way round we have the following:

Proposition 6.8. Suppose that G is a discrete topological group. Then pG is compact.

Proof. The set pG is a subset of the topological space M of functions G Ñ S1 endowed

with the product topology, which itself is compact by Tychonoff’s theorem. (c.f. the set F

considered in the proof of Theorem 4.11.). Since G is discrete the only compact sets in G

are finite and hence the topology on pG is the subspace topology induced by viewing it as

a subspace of M . It remains to check that pG is closed at which point it follows that it is

compact. To see it is closed, note that the sets tf : GÑ S1 : fpxyq “ fpxqfpyqu are closed

for each x, y P G, and hence

č

ttf : GÑ S1 : fpxyq “ fpxqfpyqu : x, y P Gu

is closed. This is the set of all homomorphisms G Ñ S1, but every homomorphism is

continuous since G is discrete and hence this set equals pG.

We can make use of the Haar integral we have developed to show that if G is a locally

compact topological group then the dual group is also locally compact. To do this we need

a lemma.

Lemma 6.9. Suppose that G is a locally compact topological group supporting a Haar integral
ş

, f0 P C
`
c pGq has

ş

f0 ‰ 0, and κ, δ ą 0. Then there is an open neighbourhood of the identity

Lδ,κ such that if
ˇ

ˇ

ş

f0γ
ˇ

ˇ ě κ
ş

f0 then |1´ γpyq| ă δ for all y P Lδ,κ.

Proof. By Lemma 4.3 there is an open neighbourhood of the identity Lδ,κ (which we may

assume is contained in U since U is a neighbourhood and so contains an open neighbourhood

of the identity) such that }λypf0q´f0}8 ă δκ{
ş

F for all y P Lδ,κ. (Note
ş

F ą 0 by Corollary

4.10.) For y P Lδ,κ, the support of λypf0q ´ f0 is contained in UK (since Lδ,κ Ă U) and so

ż

|λypf0q ´ f0| ď }λypf0q ´ f0}8

ż

F ă δκ.

Now, if y P Lδ,κ then

|1´ γpyq|κ ď

ˇ

ˇ

ˇ

ˇ

pγpyq ´ 1q

ż

f0γ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż

f0λy´1pγq ´

ż

f0γ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż

λypf0qγ ´

ż

f0γ

ˇ

ˇ

ˇ

ˇ

ď

ż

|λypf0q ´ f0| ă δκ.

Dividing by κ gives the claim.

Theorem 6.10. Suppose that G is a locally compact topological group. Then pG is locally

compact.
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Proof. Let
ş

be a left Haar integral on G (which exists by Theorem 4.11). Since
ş

is non-

trivial there is f0 P C
`
c pGq such that

ş

f0 ‰ 0 and we may rescale so that
ş

f0 “ 1. Write K

for a compact set containing the support of f0 and U for a compact neighbourhood of the

identity.

UK is compact by Lemma 1.29. Apply Corollary 3.11 to get a continuous compactly

supported F : GÑ r0, 1s such that F pxq “ 1 for all x P UK. Define

V :“ tγ P pG : |γpxq ´ 1| ď 1{4 for all x P Ku,

so that V certainly contains, UpK, 1{4q, an open neighbourhood of the identity.

As in the proof of Proposition 6.8 we write M for the set of maps G Ñ S1 endowed

with the product topology so that M is compact. As sets pG is contained in M , but the

compact-open topology on pG is not, in general, the same as that induced on pG as a subspace

of M . Our aim is to make use of the compactness on M to show that pG is locally compact

in the compact-open topology.

First we restrict to homomorphisms: write H for the set of homomorphisms G Ñ S1,

which is a closed subset of M since it is the intersection over all pairs x, y P G of the set of

f PM such that fpxyq “ fpxqfpyq. Write

C :“
č

δą0,xPLδ,3{4

tf P H : |fpxq ´ 1| ď δu

which is also closed as an intersection of closed sets. By Lemma 2.5 as sets we have C Ă pG

since the sets tz P S1 : |1´ z| ď δu form a neighbourhood base of the identity in S1, and if

f P C then f´1ptz P S1 : |1 ´ z| ď δuq Ą Lδ,3{4 which is a neighbourhood of the identity in

G.

If γ P V then
ˇ

ˇ1´
ş

f0γ
ˇ

ˇ ď
ş

f0|1´ γ| ď 1{4, so by the triangle inequality |
ş

f0γ| ě 3{4

and hence the claim tells us that γ P C. Thus (as sets) V Ă C Ă pG and so

V “
č

xPK

tf P C : |fpxq ´ 1| ď 1{4u,

which is again a closed subset of M .

Our aim is to show that V is compact in the compact-open topology on pG. This follows

if every cover of the form U “ tγUpKγ, δγq : γ P V u (where Kγ is compact and δγ ą 0) has

a finite subcover. Write Lγ :“ Lδγ{2,1{2 and note that by compactness of Kγ there is a finite

set Tγ such that Kγ Ă TγLγ. Write

Uγ :“ tf PM : |fpxq ´ 1| ă δγ{2 for all x P Tγu

which is an open set in M since Tγ is finite. Suppose that λ P pγUγq X V . Then since
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γ, λ P V , the triangle inequality gives

ˇ

ˇ

ˇ

ˇ

1´

ż

f0γλ

ˇ

ˇ

ˇ

ˇ

ď

ż

f0|1´ γλ| “

ż

f0|1´ γ ` γ ´ γλ|

ď

ż

f0|1´ γ| `

ż

f0|1´ λ| ď 1{2.

Hence
ˇ

ˇ

ş

f0γλ
ˇ

ˇ ě 1{2 by the triangle inequality again. The claim gives |1´ γpyqλpyq| ă δγ{2

for all y P Lγ. But γλ P Uγ so we also have |1 ´ γpzqλpzq| ă δγ{2 for all z P Tγ. Thus, if

x P Kγ then there is z P Tγ and y P Lγ such that x “ zy and

|1´ γpxqλpxq| ď |1´ γpzqλpzq| ` |γpzqλpzq ´ γpzyqλpzyq|

“ |1´ γpzqλpzq| ` |1´ γpyqλpyq| ă δγ.

We conclude that γUγ X V Ă γUpKγ, δγq X V . Finally tγUγ : γ P V u is a cover of V by sets

that are open in M . M is compact and V is closed as a subset of M so V is compact as a

subset of M , and hence tγUγ : γ P V u has a finite subcover which leads to a finite subcover

of our original cover U . The result is proved.

Remark 6.11. The above shows that the dual of a locally compact Hausdorff Abelian topo-

logical group is a locally compact Hausdorff Abelian topological group. Pontryagin duality

is a powerful strengthening of this in which a crucial part is showing that characters separate

points. This can be deduced from the Peter-Weyl Theorem.
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