Topological groups, 2021-2022

Tom Sanders

Course overview

Groups like the integers, the circle, and general linear groups (over R or C) share a number
of properties naturally captured by the notion of a topological group. Providing a unified
framework for these groups and properties was an important achievement of 20th century
mathematics, and in this course we shall develop this framework.

Highlights will include the existence and uniqueness of Haar integrals for locally compact
topological groups, the topology of dual groups, and the existence of characters in various
topological groups. Throughout, the course will use the tools of analysis to tie together the

topology and algebra, getting at superficially more algebraic facts by analytic means.

Course synopsis

[6 lectures] Definition of topological groups. Examples and non-examples. Quotient groups.
Subgroups. Compactness and local compactness. Non-functional separation axioms. The
Open Mapping Theorem.

[5 lectures] Complete regularity of topological groups. Continuous partitions of unity and
Fubini’s Theorem. Existence and uniqueness of Haar integrals.

[5 lectures] Peter-Weyl Theorem for compact topological groups. Dual groups of topological

groups. Local compactness of the dual of a locally compact topological group.

References

There are other notes on similar topics with a slightly different focus: [Fol95, [Kor08), Kral7,
Meg17] and [Rud90].

General prerequisites

The course is designed to be pretty self-contained. We assume basic familiarity with groups
as covered in Prelims Groups and Group Actions (see e.g. [Earl4]). We shall also assume
familiarity with Prelims Linear Algebra (see e.g. [May20]) and Part A: Metric Spaces and

Complex Analysis (see e.g. [McG19]) for material on metric and normed spaces.



Familiarity with topology is essential, though not much is required. What we use (and
more) is covered in Part A: Topology (see e.g. [DL18]), with the exception of Tychonoft’s
Theorem. This can be informally summarised as saying that a non-empty product of com-
pact spaces is compact, and there is no harm in taking it as a black box for the course.
Those interested in more detail may wish to consult Part C: Analytic Topology (see e.g.
[Knilg]).

The Axiom of Choice is sometimes formulated as saying that an arbitrary product of
non-empty sets is non-empty, and in this formulation it may be less surprising that it can
be used to prove Tychonoff’s Theorem. It turns out that the converse is also true, i.e.
Tychonoft’s Theorem (and the other axioms of set theory) can be used to prove the Axiom
of Choicdll

Finally no familiarity with functional analysis is assumed, though there are clear simi-

larities and parallels for those who do have some. See e.g. [Pril7] and [Whil9].

Teaching

A first draft of these notes is on the website, but they will be updated after each lecture

with any resulting changes. This document was compiled on 3™ May, 2022 at 10:13.
Lectures will be supplemented by some tutorial-style teaching where we can discuss the

course and also exercises from the sheets. Once I have a list of the MFoCS students attending

I shall be in touch to arrange these.

Contact details and feedback

Contact tom.sanders@maths.ox.ac.uk if you have any questions or feedback.

!Those unfamiliar and looking for a reference may wish to consult the notes [Ter10].
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1 Groups with topologies

We say a group G is written multiplicatively to mean that the binary operation of the

1. and

group is denoted G* — G;(z,y) — zy; with inversion denoted G — G;x — z~
identity denoted 1g. If G is Abelian then we say it is written additively to mean that
the binary operation of the group is denoted G* — G (z,y) — = + y and called addition;
with inversion denoted G — G;x — —x and called negation; and identity denoted 0.
/N Al groups written additively will be Abelian, but not all Abelian groups will be written
additively.

A group G that is also a topological space is called a topologized group. Without
any additional assumptions these are no more than their constituent parts: a group and a
topological space. When the group inversion G — G and the group operation G2 — G are
both continuous, where in the latter case G? has the product topology on G2, we say G is

a topological group.

Example 1.1 (Indiscrete groups). Any group G endowed with the indiscrete topology is a

topological group since any map into an indiscrete space is continuous.

Example 1.2 (Discrete groups). Any group G endowed with the discrete topology is a
topological group since the product of two copies of the discrete topology is discrete — so
both the topological spaces G and G? are discrete — and any map from a discrete space is

continuous.

The reals under addition may be endowed with the discrete or indiscrete topologies
to make them into a topological group as above. However, neither of these is the ‘usual’

topology on R which is generated by intervals without their endpoints.

Example 1.3 (The real line). The group R (the operation is addition) endowed with its
usual topology is a topological group. The reals are a metric space and so the topology is
completely determined by sequences. Hence the relevant continuity is just the algebra of
limits: in particular, if x,, — z¢ then —(z,,) = (=1)z,, — (—1)zo = —x¢; and if additionally

Yn — Yo, then x,, + y, — xo + yo.

Example 1.4 (Normed spaces). The additive group of a normed space X with the topology
induced by the norm is a topological group by essentially the same argument as in Example
since addition and scalar multiplication are continuous in the norm. In particular, R"

and C" are topological groups under addition.

Example 1.5. The non-zero complex numbers, C*, form a multiplicative group and with
the usual topology this is a topological group by the algebra of limits again: if x,, — zy in

C* then z,' — x, 1. and if additionally v, — vy then z,y, — ZoYo.
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There are more examples in Proposition and on the exercise sheets in Exercises [[.7]
& [[T1.3] and we shall see later in Propositions [1.27), & [2.15], that subgroups, product

groups, and quotient groups are naturally topological groups when the underlying groups

are topological groups and these constructions can be used to generate yet more examples.

Group notation

Remark 1.6. Suppose that G is a group written multiplicative and S,T < GG. We write
Sti={s':s5eS}and ST := {st:se S,teT}.

For n € Ny we define S™ inductively by SY := {15} and S"! := S"S, and S™ := (S~!)".
It will also be convenient to write xS := {z}S and Sz := S{z} for z € G.

If G is written additively then the above notation changes in the obvious way so we write
S + T instead of ST etc.

Remark 1.7. /NIn general SS~1 # S° and 2 # {s*:s€e S}
Remark 1.8. /NG™ denotes the n-fold Cartesian product G x - - - x G not the product defined
in Remark [1.6} the product is just G.
We say S < G is symmetric if S = S71.
Remark 1.9. If S and T are symmetric then S n T is symmetric.

Remark 1.10. We write (S) for the group generated by S, that is ({H < G : S < H}, the

intersection of all the subgroups of G' containing S.

Remark 1.11. If S is symmetric then (S) = (], _ S™ by the subgroup test.

TLENQ

Semitopological, quasitopological, and paratopological groups

Suppose that G is a topologized group written multiplicative. We say that the group oper-
ation on (G is separately continuous if the maps G — G;x — xy and G — G;x — yx are

continuous for all y € G.

Remark 1.12. The maps G — G%* x — (z,y) (and G — G%* x — (y,z)) are continuous for
all y € G and so is the group multiplication is continuous then is is separately continuous.
Sometimes we say that the group operation is jointly continuous when it is continuous to

emphasise the difference with separate continuity.

Remark 1.13. Separate continuity of the group operation is exactly equivalent to saying that

xzU and Uz are open (resp. closed) whenever U is open (resp. closed) and z € G.
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A topologized group G in which the group operation is separately continuous is called
a semitopological group. If additionally inversion is continuous then we call it a qua-
sitopological group. If the group operation is jointly continuous (but nothing is assumed
about inversion) then we call G a paratopological group.

Our purpose in introducing these structures is to understand exactly which topological
hypothesis lead to which conclusions in topological groups, but they are also studied in
their own right. For a much more detailed development including many examples and open
problems see [AT08, Chapters 1 & 2.

Remark 1.14. In view of Remark we have the following implications:

Topological

7 N\

Quasitopological Paratopological

N\ 7

Semitopological

Example gives a semitopological group that is neither quasitopological nor paratopo-
logical; Example gives a paratopological group that is not topological; and Example
gives a quasitopological group that is not topological. So none of the implications can
be reversed.

Since a quasitopological group that is also a paratopological group is a topological group
these examples also show that there can be no implication (in either direction) between the

properties of being quasitopological and paratopological.

Example 1.15 (Reals with the right order topology). The set {(a,®) : a € R} u {J, R} is

a topology on R, and R with the operation of addition is a paratopological group since

{(x,y):z+ye(a,0)} = U(a—b,oo) x (b, 00)

beR

so that the preimage of the open set (a, o) is open in the product topology. This paratopo-

logical group is not a topological group since (—o0, —a) is not open (for any a € R).

Example 1.16 (Groups with cofinite topologies). Since intersections and finite unions of
finite sets are finite, any set may be equipped with a topology in which the proper closed
sets are the finite sets — this is called the cofinite topology.

A group G equipped with the cofinite topology is a quasitopological group since U ! is
finite if U is finite (so inversion is continuous), and xU and Uz are finite if U is finite (so
multiplication is separately continuous).

If G is finite then the cofinite topology is the same as the discrete topology and G is a
topological group (as in Example . On the other hand, if G is infinite we shall see in
Remark that it is not a topological group.
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Example 1.17. Since intersections and finite unions of countable subsets of R that are
bounded below are, themselves, countable subsets of R that are bounded below, R may be
equipped with a topology in which the proper closed sets are the countable subsets of R
that are bounded below.

A translate of a set that is countable and bounded below is still countable and bounded
below, and hence R equipped with this topology is a semitopological group.

On the other hand, R\Nj is open, but —(R\Njy) = R\(—Ny) is not so inversion is not
continuous, and so this is not a quasitopological group. It is not a paratopological group
either as we shall see in Remark which are essentially the same reasons as in Example
1. 10l

There are a few key lemmas (Lemmas [1.18] [1.22] [1.24)]1.29] [1.31] and |[1.35]) which we

highlight in red because they each capture a crucial technique or idea.

Lemma 1.18 (Key Lemma I). Suppose that G is a topologized group in which inversion is
continuous. If U is a neighbourhood of 1 then U contains a symmetric open neighbourhood
of the identity; if K is a compact set then K is contained in a compact symmetric set; and

if S is symmetric then S is symmetric

Proof. 1f U is a neighbourhood of 15 then U contains an open neighbourhood V' of 14. Put
S :=V n V~! which is open and contains 1¢ (since 15" = 1¢) and moreover S = S~! so
that S is a symmetric open neighbourhood of 14 contained in U.

Since inversion is continuous and K is compact, the image of K, K~!, is compact and
since the union of compact sets is compact we conclude that K UK ! is a compact symmetric
set.

Finally, inversion is continuous and so the preimage of S under inversion (which is the

. = . . . =1 . . _
same as the image of S under inversion) is the set S = and is closed and contains S~™! = §.

It follows that S S . But S < (S )~! = S, and we conclude that S = S. O

Remark 1.19. In particular Lemma [1.18| applies to quasitopological groups.

Remark 1.20. If K is compact and 15 € K then there is a symmetric compact C' < K with
lg € C, namely C = {15}. /NTntersections of compact sets in topological groups are not

necessarily compact. See Exercise [[.4]

Example 1.21. The only sets in R with the right order topology (Example that
are symmetric and open are ¢ and R. Hence (—1,0) is a neighbourhood of the identity
that does not contain a symmetric neighbourhood of the identity; [1,00) is compact, but
(=0, —1] U [1,0) is not compact; and {1, —1} = (—o0, 1] which is not symmetric despite
{1,—1} being symmetric. In particular every conclusion of Lemma may fail if ‘topolo-

gized group with continuous inverse’ is replaced by ‘paratopological group’.
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Lemma 1.22 (Key Lemma II). Suppose that G is a semitopological group, U is open and
V is any set. Then UV and VU are open, and U is a neighbourhood of x if and only if
27U (or Uz™1) is a neighbourhood of the identity.

Proof. First, UV = | J,.,, Uv which is a union of open sets by the first part and hence open.
Similarly VU is a union of open sets and so open. Finally, if U is a neighbourhood of =
then there is an open set U, < U containing x. Hence 71U, is an open set containing 14
and contained in 71U, which is to say 2 !U is a neighbourhood of the identity. Similarly
if 271U is a neighbourhood of the identity then U is a neighbourhood of z, and the same

two arguments also work for Uz~*. O
A topological space X is Fréchet if every singleton in X is closed.

Lemma 1.23. Suppose that G is a semitopological group. Then G is Fréchet if and only if
{15} is closed.

Proof. This follows since {z} = x{ls} is closed if and only if {15} is closed — see Remark
INE O

Lemma 1.24 (Key Lemma III). Suppose that G is a semitopological group, S is a set and
V is an open neighbourhood of the identity. Then SV < SVV ™.

Proof. Let A := G\(SVV~!) and B := G\(AV). B is closed since AV is open by Lemma
[1.22] If z € SV and z € AV then there is some v € V such that zv™! € A, so zv™! ¢ SVV 1,
a contradiction. Hence SV < B and since B is closed SV < B. Now if x € B then by
definition x ¢ AV and so in particular z ¢ A (since 1g € V) and hence z € SVV ™! as

claimed. n
The next result is, perhaps, a little surprising.

Corollary 1.25. Suppose that G is a semitopological group and H < G. If H is a neigh-
bourhood in G then H is open in G; and if H is open in G then H is closed in G.

Proof. If H is a neighbourhood of some z € G then by Lemma there is an open set
U such that 27U is an open set containing the identity. Now H = HU is open, again by
Lemma [1.22

For the second part, if H is open then by Lemma Hc HH™' = H and so H is
closed. O

Remark 1.26. If U is a neighbourhood in a semitopological group G then by Corollary
(U is closed so U = (U) and hence (U) = (U). /N This need not be true if U is not a
neighbourhood, for example @ in R with its usual topology, has closure equal to R, but (Q)

is countable and so does not contain R.
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Proposition 1.27. Suppose that G is a topologized group and H < G is given the subspace
topology. If group inversion on G is continuous, then it is continuous on H ; if multiplication
is separately continuous on G, then it is separately continuous on H; and if multiplication is
jointly continuous on G then it is jointly continuous on H. In particular if G is a topological

(resp. paratopological, quasitopological, or semitopological) group then so is H.

Proof. Suppose U is an open set in H, and let W be an open subset of G such that U =
WnH. ThenU = (WnH) '=W1nH'=W'nH,but W isopenin G and so U™!
is open in H i.e. inversion is continuous; similarly, for x € H, 2U = x(W n H) = (zW)n H,
but W is open in G and so xzU is open in H (and similarly for Uzx), so multiplication is
separately continuous.

For joint continuity of multiplication, let V := {(z,y) € G? : zy € W} so that V n H? =
{(z,y) € H* : xy € U}. Since multiplication on G is jointly continuous, by definition of the
product topology there is a set S of products of open sets in G such that

V=|J{SxT:8xTes}.

Now (S xT)n H? = (Sn H) x (T n H), and so the preimage of U under multiplication
on H is open in the product of the subspace topology on H with itself. That is to say,

multiplication is jointly continuous on H and the result is proved. O]

Example 1.28. S' := {z € C* : |z|] = 1} is a subgroup of C* and so it is a topological
group. In this case it is closed, but in general we are not making the assumption that any

subgroups we are considering are (topologically) closed.

We now turn to a couple of key lemmas which (like Proposition [1.27)) make essential use

of joint continuity.

Lemma 1.29 (Key Lemma IV). Suppose that G is a paratopological group and Ky, ..., K,
are compact subsets of G. Then Ky --- K, is compact. In particular, if K is compact then

K" is compact for alﬂ n € Ny.

Proof. The (topological) product of two compact sets is compact so if K; - - - K, is compact
and K, is compact then (K- K, 1) x K, is compact. But then the continuous image of
a compact set is compact and so K;--- K, = (K - K,_1)K, is compact and the result

follows by induction on n. O]

Remark 1.30. Exercisel|l.2| gives an example of a quasitopological group where the conclusion

above does not hold.

2Note that K = {1¢} by definition and so is compact since it is finite.
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Lemma 1.31 (Key Lemma V). Suppose that G is a paratopological group and X is a
neighbourhood of z. Then there is an open neighbourhood of the identity V such that 2V? <

X. Moreover, if G is a topological group then V' may be taken to be symmetric.

Proof. Let U < X be an open neighbourhood of z. The map (z,y) — xy is continuous and
so {(z,y) : zy € U} is an open subset of G x GG. By definition of the product topology there

is a set S of products of open sets in G such that
{(z,y) : zy e U} :U{SXT:SXTES}.

Since z1g = z € U, there is some S x T € § such that (z,15) € S x T'. Thus S is an open
neighbourhood of z and T is an open neighbourhood of the identity, so by Lemma [1.22
V := (2718) n T is an open neighbourhood of the identity. Now 2V < S and V < T and so
2V? < U as required. Moreover, if G is a topological group so inversion is also continuous
then by Lemma V' contains a symmetric open neighbourhood of the identity, and the

conclusion follows by nesting. O

Example 1.32. Suppose G is a Fréchet semitopological group all of whose proper closed
sets are smaller than any of its non-empty open sets, meaning there is no injection from a
non-empty open set to a proper closed set. We claim G cannot satisfy the conclusion of

Lemma [[.37k

First, G\{1g} is open and non-empty i.e. there is some z € G. If G satisfied the conclusion

of Lemma then there would be a non-empty open set V' < G such that 2V? < G\{1¢}.

1

The map V — G;v — v~'z7! maps into the proper closed set G\V since 1 ¢ zV?, and is

an injection since G is a group. This contradicts our assumption and the claim is proved.

Remark 1.33. Example[I.16]shows that a group with the cofinite topology is a quasitopolog-
ical group, and since singletons are finite and so closed it is Fréchet. If the group is infinite
then this quasitopological group additionally satisfies the hypotheses of Example [1.32 since
the proper closed sets are finite, while the non-empty open sets are infinite. It follows that
such a group is not a paratopological group, and hence not a topological group as claimed
in Example [1.16

Example also applies to the semitopological group of reals endowed with the topol-
ogy from Example , since every singleton is closed (so the topology is Fréchet) and
every proper closed set there is countable, while every non-empty open set is uncountable.
This shows that they do not enjoy the conclusion of Lemma [1.31] and hence are not a

paratopological group as claimed in Example [1.17]

Lemma [1.31| can be used to establish some uniformity in open covers of compact sets. A
cover U is a refinement of a cover V of a set X if U is a cover of X and each set in U is

contained in some set in V.
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Remark 1.34. Refinements are transitive meaning that if ¥V is a refinement of V and V is a

refinement of ¢/ then W is a refinement of U.

Lemma 1.35 (Key Lemma VI). Suppose that G is a paratopological group and K < G™ is
compact for somen € N, and U is an open cover of K. Then there is an open neighbourhood
of the identity U < G such that {z1U x -+ x x,U : v € K} is a refinement of U. If G is a

topological group then U may be taken to be symmetric.

Proof. First, the structure of the product topology (and Lemma means that we can
pass to a refinement of & where for each x € K there are open neighbourhoods of the iden-
tity U, ..., U (our notation is a little clumsy here to make the z-dependence explicit)
such that xlUl(m) X o+ X xnU,SI) is in the refinement. The set ﬂ?zl Ul—(m) is an open neigh-
bourhood of the identity and so by Lemma there is a (symmetric if G is topological)
open neighbourhood of the identity U, such that U? < Ui(x) for all 1 <7 < n. In particular,
V= {xU, x -+ xx,U, : x € K} is an open cover of K and a refinement of U.

By compactness of K there is a finite set F' < K such that W := {2{Uy x -+ x 2/ Uy :
2’ € F}is a cover of K. Let U := (). Uy which is a finite intersection of (symmetric if G
is topological) open neighbourhoods of the identity and so a (symmetric if G is topological)
open neighbourhood of the identity. Since W is a cover of K, for each x € K there is some

2’ € F such that x € U,y x -+ x x/, Uy, and hence

U x - xx,U g;/lUI,U X e X l’;LUz’U

x’ '
c2)U2% x - x 2l U? < :EllUl( ) % o x ! UL

so that {z;U x -+ x 2,U : x € K} is a refinement of ¥ which in turn is a refinement of U

as required. O

Remark 1.36. The lemma above is not unrelated to the Generalised Tube Lemma from
topology (see e.g. [Mun00, Lemma 26.8]), which is also known as Wallace’s Theorem.

This proposition highlights an important interplay between compactness and the group

structure, and has content even in seemingly simple cases:

Corollary 1.37. Suppose that G is a topological group, A is a compact set and B is an open
set containing A. Then there is a symmetric open neighbourhood of the identity U such that

AU < B. In particular, every neighbourhood of x contains a closed neighbourhood of x.

Proof. Apply Lemma with n = 1 to the open cover {B} of A to get an open neigh-
bourhood of the identity, V', such that AV < B. By Lemma there is a symmetric
open neighbourhood of the identity U such that UU~! = U? < V, and so by Lemma
AU c AUU™' < AV < B as required.
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The last part follows immediately since the given neighbourhood contains an open neigh-
bourhood B of x. The set {z} is compact and so there is an open neighbourhood of the
identity U with U < B as required. O

Remark 1.38. The reals with the right order topology (Example , the open neighbour-
hood (0,0) of 1 does not contain a closed neighbourhood of 1 since all non-empty closed
sets in this topology contain arbitrarily large negative numbers, so ‘topological’ may not be
weakened to ‘paratopological’.

In an infinite group with the cofinite topology (Example the only closed neigh-
bourhood is the whole group, and so there are neighbourhoods not containing a closed

neighbourhood, and so ‘topological” may not be weakened to ‘quasitopological’.

A topological space is said to be Hausdorff if for any x # y there are disjoint open sets
U and V such that x e U and y e V.

Remark 1.39. A topological space has unique limits (for nets) if and only if it is Hausdorff,

so this is a pretty uncontroversial axiom to want.

Remark 1.40. A subspace of a Hausdorff topological space is Hausdorff, so if H is a subgroup
of a Hausdorff topological (resp. paratopological, quasitopological, semitopological) group G
then H is a Hausdorff topological (resp. paratopological, quasitopological, semitopological)

group when equipped with the subspace topology.

Corollary 1.41. Suppose that G is a topological group. Then G is Hausdorff if and only if
{1c} is closed (equivalentlif| if and only if G is Fréchet).

Proof. First, if G is Hausdorff then for each x # 14 there is an open set U, containing x
and not containing 1¢. Hence G\{1¢} = |, Uz is open as required.

Conversely, if {15} is closed then G is Fréchet and so for all = # y, {z} is closed and {y}
is compact (since it is finite) so G is Hausdorff by Corollary . O

Example 1.42. An infinite group with the cofinite topology (Example|1.16]) is a quasitopo-
logical group that is Fréchet but not Hausdorff, and Exercise gives an example of a
paratopological group that is Fréchet but not Hausdorff.

Compact subsets of Hausdorff topological spaces are closed, and for non-Hausdorff topo-

logical groups the situation can be recovered by the next lemma.

Lemma 1.43. Suppose that G is a topological group and K is a compact subset of G. Then
K is compact.

3By Lemma
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Proof. Suppose U is an open cover of K then by for each € K there is an open neighbour-
hood of x in U, call it U,. By Corollary applied to the compact set {z} in the open set
U, there is an open neighbourhood of , call it V,, such that V, c U,. The set {V, : v € K}
is an open cover of K and so by compactness has a finite subcover, say K < V,, u---uV,,
and hence K < Uz, - U U,,. Thus U has a finite subcover of K, and the result is

proved. O

Remark 1.44. R with the right order topology (Example has {0} as a compact subset
(since it is finite), but {0} = (—c0,0] which is not compact since the open cover {(a, ) :
a € R} has no finite subcover. In particular, we cannot relax the requirement that G' be a
topological group to paratopological group in Lemma [T.43]

Exercise |[.3] gives an example to show that we cannot relax the hypothesis to quasitopo-

logical group either.

A topological space X is locally compact if every point has a compact neighbourhood.

Example 1.45. Q is a subgroup of R (with its usual topology) and so by Proposition [L.27]
is a topological group with the subspace topology. However, while R is locally compact, Q
is not locally compact. In particular, unlike the property of being Hausdorff (as covered in

Remark [1.40)) local compactness is not in general preserved on passing to subgroups.

Remark 1.46. We shall mostly be interested in locally compact Hausdorff topologies; there
is a theorem of Ellis [EII57, Theorem 2| which says that any locally compact Hausdorff
semitopological group is a topological group, and in fact any locally compact paratopological

group is a topological group.

Example 1.47 (Cofinite topologies on infinite groups, revisited). Suppose that G is a group
with the cofinite topology and ¥/ is an open cover of G. Then there is a non-empty set Uy € U.
Since U is finite we may write U = {z1,..., 2}, and since U is a cover of G let U; e U
have x; € U;. Then U,,...,U,, is a finite subcover of U. It follows that G is compact, and
hence if G is infinite then G is a compact, and a fortior:i locally compact, quasitopological
group (Example that is not a topological group.

We shall think of locally compact topological groups as groups that are ‘locally’ not too
large — every point has a neighbourhood that is compact — but it might otherwise be large,

for example any group with the discrete topology is locally compact.

Lemma 1.48. Suppose that G is a locally compact quasitopological group and K is a com-
pact set. Then there is a symmetric open neighbourhood of the identity containing K and

contained in a compact set.
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Proof. Since G is locally compact there is a compact neighbourhood of the identity L; let
V' be an open neighbourhood of of the identity contained in L. The set {zV : z € K} is
an open cover of K and so there are z1,...,x,, € K such that K < z;V v ---u 2,V let
To = 1.

The result hinges on the fact that the finite union of open (resp. symmetric or compact)
sets is open (resp. symmetric or compact). Since left multiplication and inversion are both
assumed continuous, and the continuous image of a compact set is compact, z;L and (z; L)~
are both compact; by Lemma[l.22)z;V and (2;V)~! are open; and 2,V U (z;V)~! is symmetric
by design. It follows that ", (2;V) u (2;V)~! is a symmetric open neighbourhood of the

identity containing K and contained in a compact set. The result is proved. O

Remark 1.49. As it happens (see Remark [1.46]) a locally compact paratopological group is
necessarily a topological group (though this is by no means immediate), and a fortior: a

quasitopological group.

A topological space X is o-compact if X is a countable union of compact sets. We

think of o-compact spaces as ‘globally’ not too large.

Example 1.50. Since QQ is a countable union of finite sets, any topology on Q is o-compact.
In particular, Q with its subspace topology (as described in Example [1.45) is o-compact

but not locally compact.

Corollary 1.51. Suppose that G is a locally compact topological group. Then there is a

o-compact, locally compact open subgroup of G.

Proof. Apply Lemma to get a symmetric open neighbourhood of the identity S con-
tained in a compact set L. Then (S) is a subgroup of G (Remark which is locally
compact and open by Corollary . It is contained in UneNo
able union of compact (by Lemma sets. The result is proved. O

L™, and the latter is a count-

The topological group of isometries of a metric space

A map f: X — Y is an isometry if X and Y are metric spaces with metrics dx and dy

respectively and dy (f(x), f(y)) = dx(x,y) for all x,y € X.

Remark 1.52. Isometries are necessarily injective, but in general need not be surjective.
Surjective isometries are exactly the isometries with an isometric inverse and are sometimes

called global isometries though we shall not use this terminology.
For a metric space X we write Iso(X) for the set of surjective isometries X — X.

Remark 1.53. Suppose that X is a topological space, Y is a set and F is a set of functions

Y — X. We say that I has the topology of pointwise convergence if it has the subspace
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topology it receives when considered as a subset of the set XY — the set of all functions
Y — X — with the product topology. Equivalently this is the weakest topology on X such
that the maps XY — X; f — f(y) are continuous for all y € Y.

If B is a base for the topology on X then a base for the topology of pointwise convergence

on F'is given by the sets
{feF: f(y)eUforall 1 <i<n}whereneNyy,...,y, €Y, and By,...,B, € B,

and the reason for the name of the topology is that f, — f if and only if f,(y) — f(y) in
X forallyeV.

Proposition 1.54. Suppose that X is a metric space. Then Iso(X) is a group under com-

position and a topological group when endowed with the topology of pointwise convergence.

Proof. Iso(X) is a subset of the group of bijections X — X, and by the subgroup test is
a group under composition. Write d for the metric on X so that for fy € XX, ¢ > 0 and

x1,...,T, € X the sets
U(fore,xn,...,xn) = {fe XY d(f(z), fo(x;)) < e forall 1 <i<n}

form a base for the topology of pointwise convergence on Iso(X).

For £, g, fo, g0 € XX and z € X we have

d(go f(x),g00 fo(z)) < d(go f(z),90 folx)) +d(go fo(z),g0° fo(x))
= d(f(z), fo(x)) + d(g(fo(x)), go(fo(x))),

and hence

U(go; €/2, fo(x1), .-, fo(xn)) o U(fo;€/2,21,...,x,) € U(goo fo;€,x1,. .., Zp).

It follows that multiplication is jointly continuous. Furthermore,

d(g™'(2), 90" () = d(g™ (90(g5 ' ())), 95" (2))
= d(g(g~ (9090 " (£)))), 995" (x))) = d(go(g5 " (x)), 9(g0" (),
and so U(gylse,21,...,2,)" = Ulgoi€, 95 (w1), ..., 95 (x,)) and inversion is continuous.
O

Example 1.55 (Groups of unitary maps with the strong operator topology). Given an inner
product space V, it is in particular a normed space with norm |v| := (v,v)"/?, and hence a
metric space with metric d(z,y) := |z —y|. We write U(V') for the set of unitary maps from
V to itself, that is the set of surjective maps ¢ : V' — V with {(¢(v), ¢p(w)) = (v, w) for all
v,we V. U(V) < Iso(V) where the second V is the set V' with the metric d, and consider
U(V) a topological group with topology inherited from Iso(V).
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Remark 1.56. The space B(V') of bounded linear maps V' — V contains U(V'), and the
topology of pointwise convergence on B(V') is called the strong operator topology.
ACompOSition of maps in B(V) is not jointly continuous in the strong operator topol-
ogy, despite the fact that it is when restricted to U(V).

2 The structure-preserving maps

The structure-preserving maps that are of primary interest to us are continuous group

homomorphisms.

Example 2.1. The map 6 : R — S'; 2 +— exp(2miz) is a (surjective) continuous homomor-

phism.

Example 2.2. Suppose that G is a group and 6 : G — G is the identity map. If the domain
is endowed with the discrete topology then 6 is a continuous homomorphism whatever the
topology on the codomain, and if the codomain is endowed with the indiscrete topology

then similarly.
This example may seem trivial but leads to a number of counter-examples.

Example 2.3. Suppose that 6 : Q — Q is the identity map, with the domain discrete and
the codomain the usual subspace topology inherited from R (as in Example|1.45)). Then the
domain is locally compact but the codomain is not, so local compactness is not preserved by

surjective continuous group homomorphisms. (This may be compare with Corollary [2.14])

Example 2.4. Suppose that  : R — R is the identity map, with the domain the usual
topology on R and the codomain the indiscrete topology. Then the domain is Hausdorff
and the codomain is not, so being Hausdorff is not preserved by surjective continuous group
homomorphisms.

By way of contrast, surjective continuous maps take compact sets to compact sets so

there is no analogous example with ‘compact’ in place of ‘Hausdorff’.
The group structure makes checking continuity and openness a little easier:

Lemma 2.5. Suppose that G and H are semitopological groups and B = (B;)s s a neigh-
bourhood basdY of the identity in H. Then a homomorphism 0 : G — H is continuous if
(and only if) 0~(B;) is a neighbourhood of the identity for all i € I; and a homomorphism
0 : H — G is open if (and only if) 0(B;) is a neighbourhood of the identity for all i€ I.

1A neighbourhood base of a point x in a topological space X is a family B = (B;);er of neighbourhoods

of = such that if U is an open set containing x then there is some ¢ € I such that B; c U.
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Proof. Suppose that U < H is open and 6(y) € U. By Lemma there is an open
neighbourhood of the identity V, such that 6(y)V, < U. Since B is a neighbourhood base
of the identity there is i € I such that B; < V,, and hence 6~1(B;) < 6~(V,,) so y6~'(B;)
6='(U) (using that 6 is a homomorphism) and hence §~!(U) contains a neighbourhood of
y i.e. 071(U) is open. In the other direction, since B; is a neighbourhood of the identity it
contains an open neighbourhood of the identity which has an open set as a preimage and the
identity in this preimage (since homomorphisms map the identity to the identity), whence
it is an open neighbourhood of the identity and §~'(B;) is a neighbourhood of the identity.

Now suppose that U < H is open and x € 8(U) so that there is some y € U such that
x = 0(y). Since U is open, by Lemma there is an open neighbourhood of the identity
V, such that yV,  U. Since B is a neighbourhood base of the identity there is 7 € I such
that B; < V, and hence z6(B;) = 0(yB;) < 6(U) (using that 6 is a homomorphism). But
x6(B;) is open by hypothesis, so §(U) is open as required. In the other direction since B; is
a neighbourhood of the identity it contains an open set containing the identity which has an
open image containing the identity (since homomorphisms map the identity to the identity),

and hence the image of B; is a neighbourhood of the identity. O]

A map 6 : G — H is a homeomorphic isomorphism if it is both an isomorphism of

the groups and a homeomorphism of the topological spaces.

Example 2.6 (Opposite groups). Suppose that G is a topologized group with continuous
group inversion. Write G°" for the opposite group, that is the group and topological
space with the same base set, topology, identity, and inversion as GG, but with multiplication
(z,y) — yx. Then inversion is a homeomorphic isomorphism G — G°".

Since the map G? — G?;(z,y) — (y,x) is continuous, G°F is a quasitopological (resp.

topological) group if G is quasitopological (resp. topological).

Example 2.7 (Conjugation). Suppose that G is a group. The map G x G — G} (a,z) —
axa~ ' is a left action of G on G — it is called conjugation. If G is a semitopological group

then for fixed a this map is a homeomorphic isomorphism of G.

Example 2.8. /N There are topological groups that are isomorphic as groups and homeo-
morphic as topological spaces but which are not homeomorphically isomorphic.

Let A be the group (Z/47) x (Z/2Z), N be a subgroup of A isomorphic to (Z/27Z) x
(Z)27), and K a subgroup isomorphic to Z/4Z. Since A is Abelian, N (resp. K) is normal
in A, and the topology {&, A, N, A\N} (resp. {J, A, K, A\K}) makes A into a topological
group which we denote G (resp. H).

G and H are isomorphic as groups by the identity map. Since A/N and A/K are
partitions of A into sets of the same size, there is a bijection G — H that maps each set in

A/N to aset in A/K. Such a map is a homeomorphism.
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On the other hand, if there were a homeomorphic isomorphism 6 : G — H then the
preimage of K would be either N or G\N, but it must be the former since the identity is
mapped to the identity by a group homomorphism. Thus 6 restricts to a bijective homomor-
phism between N and K, but these are not isomorphic as groups since the latter contains

an element of order 4, while the former does not.

Some useful examples of topological groups and homomorphisms between them arise

through products.

Proposition 2.9. Suppose that (G;)ic; is a family of topologized groups. Then the direct

product of the groups, [ [..; Gi, with the product topology is a topologized group and the pro-

iel
jection maps p; - | [..; Gi — Gy & — x; for each j € I are continuous open homomorphisms.
Moreover, if inversion is continuous on all of the G;s then it is continuous on the product;
if multiplication is separately continuous on all the G;s then it is separately continuous on
the product; and if multiplication s jointly continuous on all of the G;s then it is jointly

continuous on the product.

Proof. The first part is just combines the usual results concerning product groups and
topologies. The key to the ‘moreover’ parts is recalling the fact that the open sets in

[ [,c; G:i are unions of sets of the form

Ui =G, forallie I\J
H U; where (2.1)
iel U; is open in G; for all i € J

where J ranges all finite subsets of I. If []..; U; is as in (2.1)) then ([,.; Us) ™' = [1,c; Ui
is also open if inversion is continuous on all GG; and hence inversion is continuous. Separate

and joint continuity are similar. O]

Remark 2.10. We call the topologized group above the topological direct product of the
groups (G} )ier-
Remark 2.11. Given topologized groups Gy, ..., G, we write G| x --- x GG, for Hie{l,...,n} G;

as usual, so for example this gives our intended meaning to S* x S* in Exercise [IL5]|

Quotient groups

Suppose that G is a topologized group and H < G. Then the quotient topology on G/H
is the strongest topology (meaning finest topology, or the topology having the most open

sets) making the quotient map ¢ : G — G/H;x — xH continuous.

Remark 2.12. For G a topologized group and H < G, U < G/H is open if and only if ( JU

is open in G.
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Proposition 2.13. Suppose that G is a semitopological group and H < G. Then the quotient
map (into G/H with the quotient topology) is open.

Proof. If U is open in G then UH is open by Lemma|1.22, But | J¢(U) = UH, and so ¢(U)
is open in G/H by definition. O

Corollary 2.14. Suppose that G is a compact (resp. locally compact) topologized group,
and H < G. Then G/H with the quotient topology is compact (resp. locally compact).

Proof. For compact G this follows since the quotient map is continuous and the continuous
image of a compact set is compact. Suppose G is locally compact and write ¢ for the
quotient map. Let xH € G/H. Since G is locally compact there is an open set U containing
x and contained in a compact set K. Since ¢ is open, ¢(U) is an open set containing xH
and contained in ¢(K). The latter is compact since ¢ is continuous and so G/H is locally

compact as claimed. O

Proposition 2.15. Suppose that G is a topologized group and H is a normal subgroup of
G. If group inversion on G is continuous, then it is continuous on G/H ; if multiplication is
separately continuous on G, then it is separately continuous on G/H; and if multiplication
is jointly continuous on G then it is jointly continuous on G/H. In particular if G is
a topological (resp. paratopological, quasitopological, or semitopological) group then so is

G/H.

Proof. Suppose that U < G/H is open. First suppose inversion is continuous on G. Then

LJU_1 :L_J{(xH)_1 :xH e U} =U{x_1H:xH€U} = {x_l ZZEEUU} = <UU>_1

and so U™! is open in G/H by definition since | JU is open in G. Secondly, suppose multi-

plication on G is separately continuous. For x € GG,

U(mH)_lU = U{(x_lH)(yH) cyHeU} = U{x_lyH cyHeU} = I_IUU,

and so (xH)~'U is open in G/H and hence left multiplication by zH is continuous. Similarly
right multiplication is continuous and we are done.

Finally suppose multiplication on G is jointly continuous. Define
W :={(zH,wH) € (G/H)*: (zH)(wH) e U} and V := {(z,w) eG?:zwe UU} :

Suppose that (zH,yH) € W. Then zy € («H)(yH) < | JU so (x,y) € V and since V is open
there are open sets S, T < G such that r € S, ye T, and SxT c V. If se Sandte T,
then st € | JU, and since the latter is a union of cosets of H we have (st)H < | JU. Since
H is normal we have (sH)(tH) = (st)H < |JU, and so SH x TH c V.

By Lemma [1.22] SH and TH are open sets, and so the sets S’ := {sH : s € S} and
T':={tH : t € T} are open in G/H; xH € S and yH € T"; and S’ x T" < W. It follows

that W is open, and multiplication on G/H is jointly continuous. The result is proved. [J
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Example 2.16. The topological group R has a (normal) subgroup Z and R/Z is a topolog-
ical group — it is the reals modulo 1. Moreover, the map R/Z — S'; x + nZ — exp(2miz) is
a homeomorphic isomorphism.

/\ The notation R/Z is sometimes (though not in these notes) used to refer to a different
space: the adjunction space in which all the integers in R are identified but the rest of R
remains the same. In other language this is a countably infinite bouquet of circles all

connected at the point Z.

Example 2.17. The group Q is a subgroup of R with its usual topology, and so R/Q is a
topological group. If U < R/Q is open then | JU is open in R and so if it is non-empty it
contains an interval /. However, | JU is a union of cosets of Q@ so | JU = | JU+Q > [+Q =
R. It follows that R/Q is indiscrete.

/N\Note that the quotient map ¢ : R — R/Q is not closed since e.g. ¢({0}) = {Q} is not
closed in R/Q. This is by way of contrast with the fact that every quotient map between

topological groups is open.
Topological closure preserves algebraic structure in a useful way:

Lemma 2.18. Suppose that G is a quasitopological group and H < G. Then H is a subgroup
of G. If G is compact then so is H; if G is locally compact then so is H; and if H is normal
then so is H.

Proof. Suppose that z € H and y € H. If 2y € H', then there is an open set U ¢ H' such
that zy € U. The set 271U is an open neighbourhood of y and so there is some h € H
such that h € 27U and hence (since x € H, and H is a group) U n H # & which is a
contradiction. We conclude that H < Hy ' for all y € H. The set Hy ' is closed and
hence contains the closure of H and so - < H. Since inversion is continuous we have that
H ' '=Hand His a group.

Closed subsets of compact sets are compact so if G is compact then so is H; and if G is
locally compact then G has a compact neighbourhood of the identity N and hence N n H
is a compact neighbourhood of the identity in H and so H is locally compact.

Finally, assume that H is normal. Conjugation is continuous and hence a~'Ha is closed
for all a € G, and contains a ' Ha = H. Hence it contains the closure of H and so applying

1 1

the map = — azxa™! we get aHa ' < H i.e. H is normal. L]

Remark 2.19. R with the right order topology (Example has {0} as a subgroup, but
m = (—00, 0] which is not a subgroup so that ‘quasitopological group’ may not be replaced
by ‘paratopological group’, and hence certainly may not be relaxed to ‘semitopological
group’, in Lemma [2.18]

Paratopological groups in which the closure of every subgroup is a subgroup have been
studied in [FT14].
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Corollary 2.20. Suppose that G is a topological (resp. quasitopological) group and H is a
normal subgroup of G. Then G/H is a Hausdorff (resp. Fréchet) topological (resp. qua-
sitopological) group.

Proof. This is immediate from Lemma [2.18 Proposition [2.15] and Corollary (resp.
Lemma [1.23)) for the topological (resp. quasitopological) case. ]

The open mapping theorem

Example shows that there are continuous bijective group homomorphisms that are not
homeomorphic isomorphisms. This is by contrast with the purely algebraic situation where
any bijective group homomorphism is a group isomorphism (i.e. has an inverse that is a
homomorphism), but in alignment with the topological situation where continuous bijections
need not be homeomorphisms. With a few mild conditions on the topology we can recover

with algebraic situation:

Theorem 2.21. Suppose that G is a o-compact semitopological group, H is a locally compact
Hausdorff topological group, and 7 : G — H 1is a continuous bijective homomorphism. Then

T 1is a homeomorphic isomorphism.

Proof. Since the inverse of a bijective group homomorphism is a group homomorphism, it
suffices to show that 7(C') is closed whenever C' is closed in G. Let K, be compact in G
such that G = | J,,c, Kn-

Claim. There is some n € N such that 7(K,) is a neighbourhood.

Proof. For those familiar with the Baire Category Theorem this is particularly straightfor-
ward. We shall proceed directly by what is essentially the proof of the BCT for locally
compact Hausdorff spaces.

Since H is Hausdorff and the sets 7(K,) are compact (as the continuous image of compact
sets), they are closed. We construct a nested sequence of closed neighbourhoods inductively:
Let Uy be a compact (and so closed since H is Hausdorff) neighbourhood in H, and for n € N
let U, < n(K,)¢ n U,_1 be a closed neighbourhood.

This is possible since (by the inductive hypothesis) U,_; is a neighbourhood and so
contains an open neighbourhood V,,_;. But then 7 (K,)¢ n V,_; is open and non-empty
since otherwise 7(K,,) contains a neighbourhood. It follows that 7(K,)¢ n U,_; contains an
open neighbourhood and so it contains a closed neighbourhood by Corollary [1.37]

Now by the finite intersection property of the compact space Uy, the set ), U, is non-

empty. This contradicts surjectivity of 7 since G' = | J K, and the claim is proved. [

TLENO

Claim. If X c H is compact then 7=Y(X) is compact.
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Proof. By the previous claim 7(K,) contains a neighbourhood (and hence so does z7(K,)
by Lemma and the set {x7(K,) : x € H} covers X, so by compactness of X there are
elements 1, ..., 2, such that X < (J", z;7(K,,) and hence 7~ *(X) < (J~, 7 *(z;) K, (by
injectivity of 7). 771 (z;) K, is compact by Lemma and since a finite union of compact
sets is compact it follows that 7—!(X) is contained in a compact set. Finally, X is closed so

771(X) is closed and a closed subset of a compact set is compact as required. [

Finally, suppose that C' ¢ G is closed, and y is a limit point of 7(C). H is locally
compact so y has a compact neighbourhood X. Now 7!(X) is compact and so 771 (X) nC

is compact. But then X n 7(C) is compact since 7 is continuous, and hence closed since H
is Hausdorff. But by design y € X n7(C) = X n7(C) < n(C). O

Remark 2.22. The Open Mapping Theorem in functional analysis is the result that if A :
X — Y is a surjective continuous linear operator between Banach spaces X and Y then A

is an open mapping.

Remark 2.23. As with the proof of the Baire Category Theorem our argument used the

axiom of dependent choices.

3 Complex-valued functions on topological groups

For a topological space X we write C'(X) for the set of continuous functions X — C.

Remark 3.1. C(X) is closed under pointwise addition and multiplication of functions and
contains the constant functions, so it is a C-algebra.

AQuotientS of continuous functions behave a little differently: if f, g € C'(X) then the
support of g is open and there is a continuous function A : supp g — C such that f = gh,

but in general this needE] not have a continuous extension to the whole of X.

Remark 3.2. Suppose that f e C(X). By the triangle inequality if A := {z € C: |z| < ¢/2}
and f(x), f(y) € z + A then |f(z) — f(y)| < € and hence U := {f~}(z + A) : z € C} is an
open cover of X such that if U e U and z,y € U then |f(z) — f(y)| <e.

The next result will provide a supply of continuous functions.

Theorem 3.3. Suppose that G is a topological group, A is a compact set and B is an open
set containing A. Then there is a continuous function g : G — [0,1] such that g(x) = 0
on for all x € A and g(x) = 1 for all x ¢ B. Similarly, there is a continuous function
f:G —[0,1] such that f(x) =1 for all x € A and supp f < B.

®Consider, for example, the functions f(z) = z and g(x) = 2% in C(R). Then h(x) = 1/z for all z € supp g

but h has no continuous extension to R.
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Proof. The proof of this theorem is really a more sophisticated version of the proof of
Corollary . As in the proof there we apply Lemma to the open cover {B} to get
a symmetric open neighbourhood of the identity V' such that AV < B. We may apply
Lemma twice to get a symmetric open neighbourhood of the identity V such thatﬂ
V3 © V, and continue iteratively in this manner producing symmetric open neighbourhoods
V: with V+1 c V; for all i € Ny. In particular, note that V;,; < V; since all the V;s are
neighbourhoods of the identity.

We shall ‘divide up the space between A and B’ in a way that will be indexed by
dyadic rationals, that is rationals whose denominator is a power of 2. For i € Ny we write
D; :={q€e[0,1] : 2'g € Z}, so D := | J;—, D; is the set of dyadic rationals in [0,1]. Note,
in particular, that Dy € Dy < ... and every element of D;,1\D; can be written uniquely
in the form = (q + ¢') where ¢ < ¢’ are consecutive elements of D;. Furthermore, in any two
consecutive elements of D;,q, one of them will be an element of D; and one of D;,1\D;.

For each g € D we define an open set U, such that if ¢ < ¢’ are consecutive elements of
D; for some i then U,V; < U,. We proceed inductively on i € Ny. First, Dy = {0, 1}; let
Uy := AVy which is open by Lemma [1.22| and U; := B which is open by definition of B.
Then by Lemmam UyVy = AVpV, < AVOVO YWy € AV < B = U; as required.

Suppose U, has been defined with the required property for all ¢ € D;. For ¢ < ¢

consecutive elements of D; we define U1 Ligtq) *= U,Vi41 which is open by Lemma [1.22, and
q+q)Vz+1 < U, ‘/’L+1VL+1‘/’L+1 < UV' < Uy. Now,

if ¢ < ¢ are consecutive elements of Dz+1 then either ¢ € D;, ¢" := ¢ + 2° € D; and

furthermore by Lemma [1.24] we have U 1

¢ =3%(q+qd)ordeD;, ¢ =q—2"€D;and ¢ = (¢’ + ¢"). In either case, by design
we have VqVQH c Uy.

We now forget about the V;s: for each ¢ € D we have an open set U, such that (by
nesting) whenever ¢ < ¢ are elements of D we have ﬁq < Uy. Moreover, A < U, and
U, < B. Define a function g : G — [0, 1] by

gx):=inf{ge D:xeU,} if x € Uy and g(x) = 1 if x ¢ Uj.

First note that this is well-defined and really does map into [0,1]. Then, since U; € B we
have g(z) = 1 for all ¢ B; and since A < U, for all z € A we have g(z) = 0 for z € A.

It remains to establish that g is continuous. Since all open subsets of [0, 1] are (possibly
empty) unions of finite intersections of sets of the form [0, «) and (a, 1] for a € (0, 1), we
shall show that ¢ is continuous by showing that preimages of sets of this form are open,
and we shall do this by showing that every point in the preimage is contained in an open
neighbourhood.

First, if z € g71([0, a)) then g(z) < a and so z € U; and by the approximation property
for infima there is some ¢ € D such that g(z) < ¢ < a. But then g(z) < ¢ < aforall z € U,,

6Since 1¢ € Vy we certainly have Vi < (V2)2.
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and so ¢~ '([0, «)) contains the open neighbourhood U, of z as required.

Secondly, if z € g~ '((c,1]) then since D is dense in [0,1] there are ¢,¢ € D with
a < q<q < g(x). Hence = ¢ Uy, but Fq < Uy by nesting and so x € ch. Moreover, if
2 € U, then z ¢ U, and so (either z ¢ U; and g(z) =1 > a or) g(z) = ¢ > o and g~*((a, 1])
contains the open neighbourhood ch of x as required.

The first part is proved. For the second put f := 1 — g which is continuous and maps
into [0, 1]. By design f(x) =1 for all x € A and supp f < B. O

Remark 3.4. The above result goes by the name ‘complete regularity of topological groups’
and is a slight variant of a purely topological result called Urysohn’s Lemma and the proof
is very similar. In particular, our argument used the axiom of dependent choice which is

often used in proofs of Urysohn’s Lemma.

Remark 3.5. /N Theorem does not assume that G is not indiscrete so that there may
not be any non-constant continuous functions. Exercise asks for a proof of this and also

examples to show how things differ for quasitopological and paratopological groups.

Compactly supported continuous functions

Given a topological space X the support of a (not necessarily continuous) function f :
X — C, denoted supp f, is the set of x € X such that f(z) # 0; f is said to be compactly

supported if its support is contained in a compact set.

Remark 3.6. /\ As we have defined it the support of a function that is compactly supported

need not actually be a compact set it is simply contained in one.
We write C.(X) for the subset of functions in C'(X) that are compactly supported.

Remark 3.7. The set C.(X) is a subalgebra of C'(X) since the union of two compact sets
is compact and the support of the sum of two functions is contained in the union of their
supports, and the support of the product of two functions is the intersection of their supports

which is certainly contained in a compact set if one is. More than this, the function

[flloo = sup {[f(2)] : 2 € X}

is a norm on C.(X). It is well-defined since every continuous (complex-valued) function on
a compact set is bounded, and the axioms of a norm are easily checked. As a normed space
C.(X) is, itself, a topological group (recall Example [1.4)).

/N\In general | - |l is mot a norm on C'(X) since we are not assuming the elements of
C(X) are bounded.

Aln general C,(X) is not complete despite the fact that the uniform limit of continuous

functions is continuous since this limit function may not be compactly supported.
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Remark 3.8. By way of contrast with the warning in Remark , if f,g € C.(X) and
supp f < supp g then there is h € C.(X) such that f = gh.

Proposition 3.9. Suppose that G is a semitopological group and C.(G) contains a function

that is not identically zero. Then G s locally compact.

Proof. Suppose that f € C.(G) is not identically zero. Then supp f is open (since f is
continuous), non-empty and contained in a compact set K (since f is compactly supported).
It follows that K is a compact neighbourhood of some point x € G, and by Lemma [1.22
yx 1K is then a compact neighbourhood of y for y € G as required. m

We shall be interested in the case when the functions in C,.(X) can ‘tell apart’ the points
of X: we say that a set A < C.(X) separates points if for all z,y € X with x # y there
is f € A such that f(z) # f(y).

Remark 3.10. In particular, if G is a semitopological group and C,.(G) itself separates points
then G is Hausdorff and (in view of Proposition locally compact, and so (recall Remark

1.46|) G is a topological group.
For us Theorem 3.3 will be crucial in providing a supply of compactly supported functions

in locally compact topological groups.

Corollary 3.11. Suppose that G is a locally compact topological group and K < G 1is
compact. Then there is a continuous compactly supported f : G — [0, 1] such that f(x) =1
forallz e K.

Proof. Since G is locally compact it contains a compact neighbourhood of the identity L;
let H < L be an open neighbourhood of the identity, and C' = H a closed neighbourhood of
the identity (possible by Corollary . K H is open by Lemma and apply Theorem
3.3 to get a continuous f: G — [0,1] with f(z) = 1for all z € K and supp f « KH < KL
which is compact by Lemma [1.29] O]

Furthermore, we can produce continuous partitions of unity:

Corollary 3.12. Suppose that G is a locally compact topological group, F : G — [0,1] is
continuous, K s a compact set containing the support of F, and U is an open cover of
K. Then there is some n € N and continuous compactly supported functions fi,..., fn :

G — [0,1] such that F = f; + -+ + f,; and for each 1 < i < n there is U; € U such that
supp f; < U;.

Proof. Since U is an open cover of K, for each x € K there is an open neighbourhood of z,
call it U, € U, and by Corollary there is a closed neighbourhood V, < U, of x. Since

each V, is a neighbourhood and {V, : x € K} is a cover of K, compactness tells us that there
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are elements x4, ...,x, such that K <V, u--- UV, . By Lemmaf is compact and so
for each i the set V,, n K is a closed subset of a compact set and so compact. Apply Theorem
3.3[to V,, n K < U,, to get a continuous function g; : G — [0, 1] such that g;(x) = 1 for all
reV, N K and supp g; < U,,.

Since the sets V,,,...,V,, are closed, K c Vey - UV, . and so since the g;s are

non-negative we have
suppF c K< (Vo n K) v+ (Ve 0 K) € supp(gr + -+ + gn)-

Thus (see Remark there is h € C.(G) such that F' = h(g; + - - - + g,) and since F' maps
into [0,1] and g1(x) 4+ - -+ + gn(x) = 1 on the support of F, we conclude that h maps into
[0,1]; for 1 <i < n put f; = g;h.

It remains to check the properties of the f;s. First, f; is a continuous function G — [0, 1]
by design of h and g;. Secondly, F' = f; + --- + f, by design. Finally, supp f; < suppg; <
U., € U. Moreover, since the f;s are non-negative supp f; < K so f; has compact support.

The result is proved. O

Integrals of continuous functions

We say that a complex-valued function f from a set X is non-negative if f(z) > 0 for all
xr € X; we say a linear functional S from a complex vector space of complex-valued functions
V is non-negative if { f > 0 whenever f is non-negative.

Our motivating example of an integral is the Riemann integral:

Example 3.13. The set R of Riemann integrable functions R — C has some basic properties
often established in first courses on analysis e.g. [Gre20]. In particular, R is a complex vector

space under point-wise addition and scalar multiplication of functions, and
o0
J:R—>(C;fr—>f f(x)dx
—

is a non-negative linear map. Furthermore, C.(R) is a subspace of R, and { restricted to

C.(R) is non-trivial (meaning not identically zero).

Remark 3.14. /\We are only concerned with proper integrals, and though the integral in
S appears to be improper we are restricting attention to compactly supported functions so

the integrals are, in fact, proper.

Remark 3.15. Non-triviality of § when restricted to C.(R) is important; see Exercise [[IL.7

for a contrasting situation.

Given a topological space X if f, g € C.(X) are both real-valued then we write f > g if
f — g is non-negative, and CF(X) for the set of f € C.(G) such that f = 0, where 0 is the

constant 0 function.
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Remark 3.16. The functions C - R;z — Rez, C —> R;z — Im 2z, R — Ro; x — max{z, 0}
and R — Rog;z — max{—z,0} are continuous and so any f € C.(X) can be written as
f=fi—fo+ifs—ify for fi, fo, f5, f1 € CF(X), and this decomposition is unique. We
shall frequently have call to understand elements of C.(X) through this linear combination
of elements of C'}(X).

Remark 3.17. If f,g € C.(X) are real-valued with f > g and { is a non-negative linear
functional C.(X) — C then § f = {g; and if f € C.(G) then |§ f| < §|f].

Remark 3.18. The decomposition in Remark can be used to show that if { is a non-
negative linear functional then S_f = {f for all fe C.(X).

Remark 3.19. We think of non-negative linear functionals as integrals and in fact the Riesz-
Markov-Kakutani Representation Theorem actually tells us that every non-negative linear

map C.(X) — C arises as an integral against a suitably well-behaved measure on X.

Given F': X xY — C and x € X we write Sy F(z,y) for the functional {: C.(Y) — C
applied to the function Y — C;y — F(z,y) (assuming this function is continuous and
compactly supported), and similarly for y € Y and { F(z,y). It will be crucial for us that

the order of integration can be interchanged and this is what the next result concerns:

Theorem 3.20 (Fubini’s Theorem for continuous compactly supported functions). Suppose
that G is a locally compact topological groups, § and S/ are non-negative linear functionals
C.(G) - C, and F € C.(G x G). Then the map x — S; F(z,y) is continuous and compactly
supported, so that § S; F(x,y) exists. Similarly y — §_F(x,y) is continuous and compactly

supported, so that S; SI F(z,y) exists and moreover

LLme):LLF(w,y»

Proof. In view of the decomposition in Remark and linearity of { and S/ it is enough to
establish the result for /' non-negative.

Since F' € CF (G x G) has support contained in a compact set K, and since the coordinate
projection maps G x G — G are continuous (and the union of two compact sets is compact)
there is a compact set L such that K < L x L. It follows that the maps = — F(z,y) for
y € G and y — F(z,y) for z € G are continuous and have support in the compact set L.

We also need an auxiliary ‘dominating function” which is a compactly supported con-
tinuous function on whose support all of the ‘action” happens. For those familiar with the
theory of integration, the Dominated Convergence Theorem may come to mind. Concretely,
by Corollary there is a continuous function f : G — [0,1] with f(z) = 1 for all x € L
supported in a compact set M.

For € > 0 (by Remark3.2)) let & be an open cover of G x H such that |F(z,y)—F(z',y)| <
e for all (z,y),(2',y) € U e U. M x M is compact and so by Lemma there is a
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symmetric open neighbourhood of the identity U in G such that U’ := {aU x yU : x,y € M}
is a refinement of U (as a cover of M x M not of G x ). First, the support of S; F(x,y) is
contained in the (compact) set L and if 2’ € zU then by design and non-negativity of S' we

have

jﬁwnn:fm%wﬂw<fwmm+@ﬂw:£me+gff

y y y

Since U is symmetric we have x € 2’U and similarly S; F(z,y) < S; F(2',y) + €e{ f and
hence |S; F(x'y) — S; F(z,y)| < el f. Since ¢ is arbitrary (and {' f does not depend on
€) it follows that = — S; F(z,y) is continuous (and compactly supported) and similarly for
y—§, Flz,y).

By Corollary applied to f supported on the compact set M with the open cover
{zU : x € M}, there are continuous compactly supported fi,..., f, : G — [0, 1] such that
fi+-+ fo=f and supp f; < x;U for some z; € M. Now, F(x,y) = F(x,y)f(z)f(y) and
F=fit et fuso

F(z,y) = 2 Z F(z,y)fi(x)f;(y) for all z,y € G.
i=1j=1
By design of U’ and U, for 1 <i,j < n there is A\;; > 0 such that |F(z,y) — \; ;| < € for all
(x,y) € supp f; x supp f;. We conclude that

ZZ)\HL y) — ef(2)f(y) ZZ Nijfi(@) f5(y) + ef (x) f(y)-

i=17=1

Since § and {  are non-negative linear functionals, we conclude that

/F(x,y)—ZiMinffj <ejfff

ffff

JJ .T}y ZZAZ]fflff]
1
The result is proved by the triangle inequality since e is arbitrary (and § f and {' f do not

and

1=1j5=

depend on ). O

Remark 3.21. /ATt is not enough to assume that F' : G x G — C is such that the maps
G - Ciz — S; F(z,y) and G — C;y — { F(z,y) are well-defined, continuous, and

compactly supported. Exercise [[11.4] asks for an example.

4 The Haar integral

We now turn to one of the most beautiful aspects of the theory of topological groups. This

describes the way the topology and the algebra naturally conspire to produce an integral.
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Given a topological group G and a function f € C(G) we write
Me(f)(2) = f(z7'2) for all 2,z € G.

Remark 4.1. \.(f) € C(G) for all f € C(G) and x € G (since left multiplication is continuous
and the composition of continuous functions is continuous), and A is a left action meaning
Aay(f) = Aa(Ny(f)) for all z,y € G and A\, (f) = f, and the maps A, are linear on the
vector space C(G).

/N Without inversion this is naturally a right action.

Remark 4.2. For a topological group G, A restricts to an action on the space C.(G) and this

action is isometric with respect to | - | @.e. [|Az(f)[e0 = [ f]o for all z € G.

Lemma 4.3. Suppose that G is a topological group and f € C.(G). Then G — C.(G);x —

A (f) is continuous.

Proof. Let U < C.(G) be open and x € G have \,(f) € U. Since U is open there is € > 0
such that A\/(f) € U whenever ||Ay(f) — Aa(f)]0 < €.

Let K be a compact set containing the support of f. As in Remark let U be an
open cover of G such that |f(z) — f(y)| < efor all z,y € U e U. Then {U~!: U e U} is an
open cover of K1, Since inversion is continuous and K is compact, K~ ! is compact and
so by Lemma there is a symmetric open neighbourhood of the identity V' such that
{yV :ye K} refines {U™' : U € U} (as a cover of K1), and hence {V~ly:ye K} is a
refinement of U (as a cover of K).

Suppose that v € V and y € G is such that \,(f)(y) — f(y) # 0. Then either f(y) # 0
so y € K, but then V~ly is a subset of an element of & and so |\,(f)(y) — f(y)] < € or
Mo(f)(y) # 0 so vty € K, but then V(v™'y) = V! (v71y) is a subset of an element of U
and so again |\, (f)(y) — f(y)| < e. Since A\,(f) — f is continuous and compactly supported
it attains its bounds so | A,(f) — f|o < €. Finally, since X is an action, the map A, is linear,
and this action is isometric (Remark we have

H)‘xv(f) - )‘x(f)HOO = H)‘x(/\v(f) - f)HOO = ”)‘v(f) - fHOO < €.

By Lemma [1.22| V' is an open neighbourhood of = and by design it is contained in the
preimage of U. Since z was an arbitrary element of the preimage of U it follows this

preimage is open as required. L]

Given a topological group G we say that { : C.(G) — C is a (left) Haar integral on G

if { is a non-trivial (meaning not identically zero) non-negative linear map with

J)\x(f) = ff for all x € G and f € C.(G).

We sometimes call this last property (left) translation invariance.
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Remark 4.4. Our definition of Haar integral requires C.(G) to be non-trivial and hence (c.f.
Proposition for G to support a Haar integral it must be locally compact. It will turn
out in Theorem that this is enough to guarantee that there is a Haar integral.

Remark 4.5. There is an analogous notion of right Haar integral which we shall not pursue

here.

Example 4.6 (The Riemann Integral). The map { in Example restricted to C,(R) is
a Haar integral. The only property not already recorded is translation invariance, and this

is straightforward.

Example 4.7. If G is a discrete group then it supports a left Haar integral:

f:a(G) ~Cif e Y fla).

ze@
Remark 4.8. See Exercise for a partial converse.

The integral of a non-negative continuous function that is not identically 0 is positive,
and this already follows from the axioms of a Haar integral. To establish this we begin with

a lemma on the comparability of functions:

Lemma 4.9. Suppose that G is a topological group, f,g € CH(G) and f is not identically

zero. Then there isn €N, ¢q,...,¢, =0 and yy,...,y, € G such that
g(x) < Z cidy (f)(2) for all x € G.
i=1

Proof. Since f # 0 there is some o € G such that f(z¢) > 0 and hence (by Lemma [1.22)
an open neighbourhood of the identity U such that f(zoy) > f(x¢)/2 for all y € U. Let K
be compact containing the support of g. Then {zU : z € K} is an open cover of K and so

there are elements x4, ..., z, such that z,U, ..., z,U covers K. But then
9(x) < 2f (o) Mgl Y fxor; x) = 2f (20) Mgl Y Aport () () for all w € G,
i=1 i=1

and the result is proved. O

Corollary 4.10. Suppose that G is a topological group, § is a left Haar integral on G, and
feCHQG) has§ f =0. Then f=0.

Proof. Suppose that g € CJf (G) so by Lemmal[d.9|we have g < 37| ¢; Ay, (f) foreq, ..., ¢, =0

and vy, ..., yn € G. Then by linearity, non-negativity, and translation invariance of the Haar

Since g = 0, non-negativity of the Haar integral implies { g > 0, and hence {g = 0.
Now, in view of Remark we have that {h = 0 for all h € C.(G) i.e. { is identically

0 contradicting the non-triviality of the Haar integral. The lemma follows. O

integral
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Existence of a Haar Integral
Our first main aim is to establish the following.

Theorem 4.11 (Existence of a Haar integral). Suppose that G is a locally compact topolog-
ical group. Then there is a left Haar integral on G.

We begin by defining a sort of approximation: for f, ¢ € CF(G) with ¢ not identically 0

put

(f;0) :=inf{20j:neN;cl,...,cn>O;y1,...,yneG; and f < ch)\yj1(gb)}. (4.1)
j=1

=1

We think of this as a sort of ‘covering number’ and begin with some basic properties:
Lemma 4.12. Suppose that f, g, 0,19 € CHG) with ¢ and ¢ are not identically 0. Then
(i) (f; ) is well-defined;
(ii) (¢:¢) < 1;
(iir) (f;¢) < (g;¢) whenever f < g;
(w) (f +9:0) < (f;0) + (9:9);
(v) (nf; @) = u(f; @) for p=0;
(vi) (Xa(f);¢) = (f;9) for all x € G;

(vir) (f;9) < (f;0)(9;).

Proof. Lemma shows that the set on the right of (4.1)) is non-empty; it has 0 as a lower
bound. follows immediately. For i note that ¢ < 1')\181(¢) so that (¢;¢) < 1. ,
, , and are all immediate. Finally, for suppose ¢y, ..., ¢, = 0 are such that
<20 A, 1(6), so that by [(iii)| [(iv)} [(v)} and [(vi)|we have (f;) < 277_; ¢j(¢;4). The
O

result follows on taking infima.

To make use of (-;-) we need to fix a non-zero reference function f, € CF(G) and for
¢ € CF(G) not identically zero we put

(f; )
(fo; 0)

where the inequality follows from Lemma [(viD)]
Many of the properties of Lemma translate into properties of I,. In particular, we
have I4(f1 + fa) < Is(f1) + Is(f2); for suitable ¢ we also have the following converse.

< (fa fO)v (42)

Iy(f) =

7As it happens it is easy to prove equality here but we do not need it.
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Lemma 4.13. Suppose that G is a locally compact topological group, fi,fo € CH(G) and
€ > 0. Then there is a symmetric open neighbourhood of the identity V' such that if ¢ €
CH(Q) is not identically 0 and has support in V' then Is(f1) + 1s(f2) < Is(fi + f2) + €.

Proof. Let K be a compact closed set containing the support of both f; and fy (possible
since the union of two compact sets is compact and the closure of a compact set is compact
by Lemma and apply Corollary to get F' : G — [0,1] continuous, compactly
supported, and with F(z) =1 for all z € K.

For j € {1,2} let g; be continuous such that (f; + fo + €F')g; = f; (possible in view of
Remark and use that supp f; ¢ K < supp F). By Remark (and the fact that the
intersection of two open covers is an open cover) there is an open cover U of G such that if
x,y € U € U then |g;(z) — g;(y)| < e for j € {1,2}. K is compact; apply Lemma [1.35] to &
to get a symmetric open neighbourhood of the identity V' such that {yV : y € K} refines U
(as a cover of K).

Now suppose that ¢ € CF(G) is not identically 0 and has support in V', and that
c1,-..,¢, = 0and y,...,y, € G are such that

f1(@) + fo(x) + eF(z) < ) i) for all € G.
i—1
If ¢(y;x)g;(x) # 0 then v € K and y; ' € 2V (using V = V1), by 2V is a subset of a set in
U so g;(x) < g;(y; ") + € and hence

n n

filz) < Z cio(yir)gi(x) < Z ci(gi(yi ") + €)p(y;) for all x € G, j € {1,2}.

i=1 =1

By Lemma .12 [W)|[GGid)} [(iv)[[(v)] & we have

(f5: 9) Zcz gj yZ ) +¢€) for all j € {1,2},

i=1

but g1 (y™1) + g2(y™) < 1 for all y € G, so

n

(f1:0) + (f2:0) < D (1 + 2e).

i=1

Taking infima and then applying Lemma and and the inequality in (4.2]) we
get

Io(fi) + Is(f2) < (1 +2€)I5(f1 + fo + €F)
< (1 + 26)([¢(f1 + fQ) + 6[¢(F))
< Lg(fi + fa) + (2(f1 + f25 fo) + (F fo) + 2€(F; fo))e.

The result follows since € > 0 was arbitrary and F', fi, fo and fy do not depend on e. [
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With these lemmas we can turn to the main argument.

Proof of Theorem[{.11. By Corollary (applied with K = {1g}) there is fo € CHG)
with fo # 0. Write F' for the set of functions I : Cf(G) — Rsg with I(f) < (f; fo) for

all f € CH(G) endowed with the product topology i.e. the weakest topology such that the
maps F' — [0, (f; fo)]; I — I(f) are continuous for all f € CF(G). Since the closed interval

[0, (f; fo)] is compact, F' is a product of compact spaces and so compact. Let X be the set
of I € F such that

I(fo) =1 (4.3)
I(pf) = pI(f) for all p =0, f € CH(Q), (4.4)

and
I\(f)) =I(f) for all z € G, f € CF(Q). (4.5)

The set X is closed as an intersection of the preimage of closed sets. Moreover, by Lemma
I, € X for any ¢ € CF(G) that is not identically zero: the fact that I(f) € [0, (f; fo)]
follows from the inequality in ; by design; by and by .

This almost gives us a Haar integral (on non-negative functions) except that in general
the elements of X are not additive, meaning we do not in general have I(f+f") = I(f)+I(f').
To get this we introduce some further sets: for € > 0 and f, f' € C} (G) define

B(f, fi€) :={l e X [I(f+ f)) = I(f) = I(f)] < ¢}.

As with X, the sets B(f, f’;€) are closed. We shall show that any finite intersection of
such sets is non-empty: For any fi, f1, fo, fo, - fu, [L € CH(G) and €,...,¢, > 0, by
Lemma there are symmetric open neighbourhoods of the identity V4, ..., V), such that
if ¢ € CF(G) is not identically 0 and is supported in V; then

Lo (fi + 17) = 1(fi) = Lo (fD)] < €. (4.6)

Since G is locally compact by Lemma there is a symmetric open neighbourhood of the
identity H contained in a compact set L; set V := H n (), V; which is also a symmetric
open neighbourhood of the identity and by Theorem there is ¢ € C*(G) that is not
identically 0 with support contained in V', and hence in the compact set L which is to say
it has compact support. I, enjoys for all 1 <1 < n, and we noted before that I, € X,
hence I, € (i, B(fi, f{,€;). We conclude that {B(f, f';¢) : f, f' € C(G),e > 0} is a set of
closed subsets of I’ with the finite intersection property, but F' is compact and so there is
some [ in all of these sets. Such an I is additive since |[I(f + f') — I(f) — I(f')| < € for all
f.f and € > 0. It remains to define { : C.(G) — C by putting

Jf 1= I(f1) = I(f2) +iI(fs) —il(fs) where f = fi— fo+ifs —ifs for fi, fo, f3, fa € O (G).
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This decomposition of functions in C.(G) is unique (noted in Remark and so this is
well-defined. Moreover, | is linear since I is additive and enjoys ; it is non-negative since
I is non-negative (and 7(0) = 0); it is translation invariant by (4.]); and it is non-trivial by
(4.3). The result is proved. O

Uniqueness of the Haar integral

Our second main aim is to establish the following result.

Theorem 4.14 (Uniqueness of the Haar Integral). Suppose that G is a locally compact
topological group and § and S/ are left Haar integrals on G. Then there is some X > 0 such
that § = AT’

For this we introduce a little more notation: Given a topological group G and f € C.(G)

~

we write f(z) = f(z™1).

Remark 4.15. 7 is a conjugate-linear multiplicative involution’® on C,(G), since complex

1

conjugation and z — x~! are both continuous (and continuous images of compact sets are

compact).

Proof of Theorem [{.14. Suppose that fo, f1 € CF(G) are not identically 0 and write K for a
compact set containing the support of fy and f; (which exists since finite unions of compact
sets are compact). By Lemma there is a symmetric open neighbourhood of the identity,
H |, contained in a compact set L.

First, by Corollary there is a continuous compactly supported function F : G —
[0,1] with F(z) = 1 for all z € KL (this set is compact by Lemma [1.29] and hence the
corollary applies).

Now, suppose € > 0 and use Remark (and the fact that intersections of open covers
are open covers) to get an open cover U of G such that if x,y € U € U then |f;(x)— fi(y)]| < €
for i € {0,1}. By Lemma applied to U and the compact set KL there is a symmetric
open neighbourhood of the identity V' such that {#V : x € KL} is a refinement of U (as
a cover of KL), and by Theorem there is a continuous function h : G — [0, 1] that is
not identically zero and is supported in V' n H, and in particular supported in L so it has
compact support.

For x € (G, translation invariance of S/ (and Remark ) tells us that

L W) = f W - | Tiaty) = f W) = [

For i € {0,1}, the map z — S; fi(@)h(y~z) = fi(z) S/Z is continuous and is supported in K

and so is compactly supported and §_ Sly fi(x)h(y~'z) exists and equals § f; S/Z (by linearity
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of ). On the other hand the map (z,y) — fi(z)h(y 'z) is continuous and supported on
K x L and so is compactly supported and hence by Fubini’s Theorem (Theorem [3.20)),

y — §_ fi(x)h(y ') exists, and (using translation invariance of {) we have

[a[7-] f Fi(@)h(y ) = j [ sty - f e

Since {yV :y e K} refines U (as a cover of K'L) we have |f;(yz) — fi(y)| < € for x € V and
y € KL; and for x € H and f;(yz) # 0 or f;(y) # 0 we have y € KH whence F(y) = 1. Tt
follows that

fiw)h(z) — eF(y)h(z) < filyx)h(z) < fily)h(z) + eF(y)h(z) for all z,y € G,

and so by non-negativity and linearity of { and { we have

J;Lfi(y)h(x) - L/LEF(y)h J ffz yx)h J ff’ (z) + LLGF(y)h(x)

It follows (using linearity of {) that | {" f; S —{ fi { h| e (" F { h, and hence by the triangle
inequality (and division, which is valid since { fo, { f1 # 0 by Corollary m as fo and f; are

not identically zero) that
! 1 1
4 Fl—++—].
TRAvIRY| <Sfo+Sf1)

Since € was arbitrary (and in particular fy, fi, and F' do not depend on it) it follows that
' f/§ f is a constant A for all f e Cf(G) not identically zero. This constant must be non-
zero since |’ is non-trivial, and it must be positive since {" and { are non-negative. The result
follows from the usual decomposition (Remark , and the fact that {0, S' 0=0. O

PRl 15 Th|_

§fo §n

ReAs
fo S|

_l’_

5 The Peter-Weyl Theroem

Suppose that G is a topological group, and for an inner product space V' recall the definition
of U(V) from Example A finite dimensional unitary representation of G is a
continuous homomorphism G — U(V') for some finite dimensional complex inner product
space V.

A function f : G — C is said to be a matrix coefficient if there is a finite dimensional
unitary representation 7 : G — U(V), and elements v,w € V' such that f(z) = (n(z)v,w)
for all x € G.

Example 5.1. Suppose that 7 : G — U(V) is a finite dimensional unitary representation

of a topological group G and ey, ...,e, is an orthonormal basis for V. If we write A, ; :=
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(m(z)e;, e;) and suppose that A € C" is the vector for v € V written w.r.t. the basis ey, ..., e,
(i.e. A; = {(v,€;)), then N\A — the matrix A pre-multiplied by the row vector A — is 7(z)v

written w.r.t. the basis ey, ..., e,. This is the reason for the terminology ‘matrix coefficient’.

Remark 5.2. All matrix coefficients are continuous, since continuity of 7 : G — U(V') and
the definition of the topology on U(V') means that z — w(x)v is continuous for all v e V,
and the projections v — (v, w) are continuous for all w € V', so the resulting composition is

also continuous.

Lemma 5.3. Suppose that G is a compact topological group. Then there is a unique left
Haar integral § on G with §1 =1 such that

(frg) = f 17 for all f,g < C(G)

is an inner product on C(G) and for each x € G, N\, is unitary w.r.t. this inner product.
Furthermore, | fla := (f, Y)Y and | f|1 := | f| define norms on C(G) and

[l < 12 < 1 flleo for all f e C(G).

Proof. By Theorem m there is a left Haar integral S/ on (. Since G is compact the
constant function 1 is compactly supported and so by Corollary , S/ 1 > 0. Diving by
this positive constant we get a left Haar integral { with {1 = 1. Now suppose that |’ is
another left Haar integral with {"1 = 1. By Theorem {" = \{ for some A\ > 0, but since
{1=1={1we conclude that A = 1 and § = {' giving the claimed uniqueness.

Linearity in the first argument and conjugate-symmetry of (-, -) follow from linearity
of the Haar integral and Remark respectively. (f, f) = 0 for all f € C(G) since | is
non-negative and ¢, - is then positive definite by Corollary .

The Haar integral is left-invariant so

() = f 17 = j Ae(f7) = j Ae()Nlg) for all f,g € C(C),

and the first part is proved.

For any inner product f +— {f, f)¥?is a norm, so || - | is a norm. Absolute homogeneity
of | - |1 follows from the fact that the modulus of a complex number is multiplicative and §
is linear, and the triangle inequality follows from, non-negativity, linearity and the triangle
inequality for the modulus of a complex number. | f[; = 0 by non-negativity of §{, and finally
|- |1 is positive definite by Corollary [4.10]

Since G is compact the constant functions 1 and | f||% are both in C(G). By the Cauchy-

Schwarz inequality (which holds for all inner products) we have

17l = f 1= 1D < 1l 12 = |l for all f € C(G):
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and by non-negativity of { we have

1713 = f P < f\fnzo _ /]2 for all f € C(G).
The result is proved. [

Remark 5.4. For the remainder of this section we write { for the unique Haar integral in
Lemma [5.3] and use the notation {-,-), | - |2 and || - |; as in this lemma.

Remark 5.5. Convergence in | - || is called convergence in L., or uniform convergence;
convergence in |- |5 is called convergence in Lo; and convergence in |- |; is called convergence
n Ll.

The second inequality in Lemma tells us that uniform convergence implies conver-

gence in Lo, and the first that convergence in Ly implies convergence in L;.

For f, g € C(G) we define their convolution to be the function
oo fegla) = [ False) = @),
y

Lemma 5.6 (Basic properties of convolution). Suppose that G is a compact topological

group. Then
(i) C(G) — C(G)ig — g+ f is well-defined and linear for all f € C(G);
(it) hx (g« f) = (hxg)=« [ forall f,g,he C(G);
(iii) Au(g* [) = Xa(g) = [ for allz e G, f,ge C(G);
(iv) (g = [,y =g, h+ > for all f,g,h e C(G) (recall J from just before Remark[4.13);
(0) | floo < min{[Ay [ fllo, [Bll2, | Fl} for all £,he C(G).

Proof. By the first part of Fubini’s Theorem (Theorem the function g+ f € C'(G) since
(z,y) — g(x)f(z~'y) is continuous and compactly supported. Since {_is linear, g — g = f
is well-defined and linear giving .

For we apply A, to the integrand z — ¢(2)f(z 'y 'z) using that SZ is a left Haar
integral; then Fubini’s Theorem (Theorem since (z,y) — h(y)g(y~12)f(z " x) is con-

tinuous; and finally linearity of Sy to see that

bl D) = |

Y

_ L hy) f (2 f(=) — J (L h(y)g(ylz)) f(z"'2) = (heg) = f(2)

hy) f g(2)f(="y )

as claimed.
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For [[ii) note that Mg = f)(x) = g+ f(t7'2) = (@ A1a(F) = (oM A(F)) =
(9), A (f)) = Mi(g) = f(z) since A; is unitary w.r.t. {-,-) by Lemma .
For |(iv)| since the function (z,y) — g(z)f(zy)h(y) is continuous and compactly sup-

ported, by Fubini’s Theorem (Theorem D and linearity of Sy; and then Remark [3.18 we

have

{g=f hy= JJ f@y)h(y)

- [t f a0 - | g<x>fyh<y> Fyi2) = (g, b+ 1,

Finally, follows on the one hand since

as required.

e @) < | WO DI < [ 1L =

and on the other since |h « f(z)| = |[(h, A\a(f)] < [R[2|Xa(F)2 = |R]2]f]o. The result is
proved. O

Remark 5.7. As usual, in view of the associativity in there is no ambiguity in omitting

parentheses when writing expressions like h = g = f.

Remark 5.8. The linearity of the maps in|(i)|and inequality mean that convolution maps

convergence in L; to uniform convergence c.f. Remark [5.5

Before beginning our main argument we need one more tool which will deal with the

fact our inner product spaces are not in general complete.

Remark 5.9. A complete inner product space is called a Hilbert space and the results of this
section are usually developed with respect to these. /NTn particular, a unitary represen-
tation is usually a continuous group homomorphism 7 : G — U(H) for a complex Hilbert
space H, not merely a complex inner product space. Every finite dimensional complex inner
product space is complete and so a Hilbert space, and so our definition at the start of the

section is not at variance with this, but in general care is warranted.

Proposition 5.10. Suppose that G is a compact topological group G, f € C(G) and (gn)nen
is a sequence of elements of C(G) with |g,|1 < 1. Then there is a subsequence (gn,)ien Such

that g, = f converges uniformly to some element of C(G) as i — .

Proof. For each j € N, Remark gives us an open cover U; of G such that if z,y €
U € U; then |f(z) — f(y)| < 1/j. Since G is compact apply Lemma to get an open
neighbourhood of the identity U; such that {zU; : € G} refines U;; and by compactness
again there is a finite cover {xy;Uj, ..., xy;) ,;U;} which refines {xU; : v € G}. By Lemma
g * F(@) € [=1fl [ floc]- The interval [—[f]e, | £].-] is sequentially compact,

Page 37



meaning every sequence has a convergent subsequence. A countable product of sequentially
compact spaces is sequentially compactﬁ so there is a subsequence (n;); such that g,  f(zx ;)
converges, say to g(zy;), as i — oo for all 1 <k < k(j) and j € N.

Suppose € > 0 and let j := [3¢7!]. For all 1 < k < k(j) let M}, be such that |g,, *
f(xrj) — g(xr,;)| < €/6 for all i = My; let M := max{M;, : 1 < k < k(j)} and suppose that
i,i' > M.

For z € G there is some 1 < k < k(j) such that « € z;, ;U; and hence for all y € G we have
y~ 'z, ytag; € y~lay;U; which is a subset of an element of U;, so | f(y~'z) — f(y tag,)| <

1/j. Thus for g € C(G) with ||g|l; < 1 we have

~

|g * f(l‘) —g* f(‘rk,]” = |<ga )‘m(f) - )\Z‘k,](f)>|

~ ~ ) B 1
< lgliliAe(£) = Aa; (Do < sup[f(y o) = fly )| < 7 < €/3.
ye
In particular this holds for g = g,, and g = gy,,, so that
(9ne * f(2) = gnyy * F(@)] < gn * F(2) = gy # (@) + 1gns * f2r) — g(204)]
+19(xr5) = Gny = f(@r))] + g0y = [an;) — gny = f2)] <€

Since x € G was arbitrary it follows that the sequence of functions (g,, * f); is uniformly

Cauchy and so converges to a continuous function on G. The result is proved. O]
We say that V' < C(G) is invariant if A\, (v) € V for all v e V.

Example 5.11. Suppose that V < C(G) is invariant and finite dimensional. Then 7: G —

UWV);z— (V- V;v— A (v)) is a finite dimensional unitary representation.
For any V < C(G) write V* for the set of w € C(G) such that (v,w) =0 for all v e V.

Proposition 5.12. Suppose that G is a compact group and f € C(G). Then there is an
invariant space W < C(G) with dim W < €7 2| f||2 such that if g € W then g+ f|2 < €| g2

Proof. Let V be the set of vectors of the form
hi+ -+ hy, where n € No, h; s f + f = Nih; and A; = €2 for all 1 < i < n. (5.1)

This is an invariant space by Lemma . For v € V we shall write v = hy +--- + h,,
to mean a decomposition as in (5.1) with the additional requirements that h; # 0 (so
|hil3 # O since h; is continuous), and \; # A; for ¢ # j, which is possible since the map
T :C(G) — C(G);h — h+ [+ f is lincar. (The zero vector is represented as a sum with no

terms.)

8The proof of this is just Cantor’s diagonal argument.
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In fact T is positive definite and so the h;s, which are eigenvectors with corresponding
eigenvalues )\;, are perpendicular for different eigenvalues. In our language the relevant parts
of this follow since if h; = f * f = \ih; and h; = f = f = A;h;, then

)\i<hia hj> = <)\ihia hj> = <hz’ * f* / hj> = <hz’> hj * ]?* f> = <hi7 )‘jhj> = )‘_j<hi7 hj>-

Applying this identity with j = 4 for some h; # 0 we see that ); is real. Then applying
it again with A\; # A; we have (h;, h;) = 0. In particular, if v = hy + --- + h,, in the way
discussed after (5.1)) then

3

lox F15 = Cvx [ e frop = D M[hil3 = € ) [hil3 = €[o3. (5.2)
i=1

i=1

If V' contains n linearly independent vectors, then by the Gram-Schmidt processﬂ there are

orthonormal vectors vy,...,v, € V. For x € G, by Bessel’s inequalityﬂ

Z [vi A (PP < A ()12 = [ f2-

Integrating against x and using (5.2)) we have

w23 [ oo J = [ i ntnr < [ 1918 = 13

=17 i=1

It follows that dim V < e~ 2|| f]3.

Write W := {k+ f : k € V}, which is invariant by Lemma and the fact V' is
invariant. Let M := sup{|g = f|2: g € W+ and |g| < 1}. We shall be done if we can show
that M? < €2.

Claim. If h e V* then ||h+ f|y < M|h|s.

9Given e, e, ... linearly independent, the Gram-Schmidt process in an inner product space defines

i—1
- Z {ei, vy and v; = u;/|up |-
k=1
It can be shown by induction that vy, vs,... is an orthonormal sequence.

10Bessel’s inequality is the fact that if vy, vs,... is an orthonormal sequence in an inner product space

then Y7 | [(v;,v)[? < |[v|? for all v. To prove it note that because the v;s are orthonormal we have

n 2
Z (i, v)v;
i=1

= Z Z (v, v (v, V) 4,05 = Z (v, 032

Hence by the Cauchy-Schwarz inequality

n 2 n
(Z |<Uz"v>|2> = Kv, Z (v, v)0;

Cancelling gives the inequality.

< v)? 5 VYU

2 n
= [lv|® (Z |<vi7v>|2> :
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Proof. First, h = f e W+t: To see this, for v € V write v = hy + --- + h,, to mean a
decomposition as in (5.1)). Then

<h*ﬁv*f>=Z<h,hi*f*f>=2)\i<h,hi>=0.

Now let k € W have |k|, = 1 such that [h = fllo = (hx f.k) = Chyks f) < |hlok = f]2 <
M]||h|y as claimed. O

Let g, € W+ have |g, * f|o — M and |g,]> < 1. By Cauchy-Schwarz we have |g,[; <1
and we may apply Proposition to pass to a subsequence which converges uniformly.
Hence by relabelling we may now additionally assume that g, * f — h uniformly for some
h € C(G). In particular, |g, * flla — |kl and {h, g, = f> — ||k]|3 and hence |h[s = M.
Moreover, if v € V then (g, * f,v) = {gn,v * f» = 0, and the former converges to (h,v),
whence h e V*.

Combining this with the claim above we have

|hx f = Mgu[3 = |1+ f13 = 2M° ReCh = £, o) + M| gal3
< M?|h|5 — 2M?* Relh, g, = f) + M* — 0.

Hence M2g, — h+f in ||- |, and since convergence in | -||; is mapped to uniform convergence
by convolution operations we have M?2g, = f — h * f* f. Uniqueness of limits then ensures
M2h =h«f«f. If M®> > ¢ then h e V, but then since h € VL we see h = 0. In that case
M = |hllz = 0 and certainly M? < €? as required. The result is proved. O

Theorem 5.13 (The Peter-Weyl Theorem). Suppose that G is a compact topological group.

Then matriz coefficients are dense in C(G) with the uniform norm.

Proof. Suppose that f € C(G) and let € > 0. Remark gives us an open cover U; of G
such that if z,y € U € U; then 1f(z) = f(y)| < ¢/2. Since G is compact, by Lemma m
there is an open neighbourhood of the identity U such that {zU : x € G} refines U, and by
Lemma there is an open set V such that V2 < U. By Theorem [3.3] there is g € C(G)
non-negative and not identically 0 such that suppg < V. By rescaling ¢ we may assume
that { g = 1. The support of g+ g is contained in V? < U and by Fubini’s Theorem (Theorem
3.20) we therefore have { g+ g = 1. But then

g g+ f(x) = f@)] =

j g+ 9T '0) — F ()

|9+t - ”(wl))\ <e
Y
for all z € G and so ||[f — g+ g * f|o < €/2.

Let 0 < €||g|5 [ f]5*/2 for reasons which will be come clear shortly. By Proposition m

there is a finite dimensional invariant space W < C(G) such that |h = g|2 < J§|h]2 for all

Page 40



h e W. Write my : C(G) — C(G) for the map projecting onto W. Then g — my(g) € W+
and 5o [g * g — mw(g) * gla < 8|g — mw(9)]2 < d[g[3. By Lemma we have

lg g% F—mw(g) =g+ Flo < 6lgla] flo-

By the triangle inequality we have |f —mw (g) = g* f[» < €. Finally, writing k := (g= f)~ we
have by definition; since A, is unitary; since W is invariant; since 7y is self-adjoint (meaning

(v, w)y = (v, Tyyw) for all v,w € C(G)); and again since A, is unitary, that

mw(g) = g = f(x) = (mw(9), Au(k)) = Qa1 (T (9)), k)
= (mw (A1 (mw (9))), k)
= QA1 (mw (9)), mw (k))
= (mw(9), Ae(mw (K))) = a(mw (K)), T (9))-

Hence mw(g) = g = f(x) is a matrix coefficient. Since ¢ > 0 was arbitrary the result is

proved. O]

Remark 5.14. /N\There are other important parts to the Peter-Weyl Theorem which we

have not included here.

6 The dual group

Suppose that G is a topological group. We write G for the set of continuous homomorphisms
G — S' (where S! is as in Example , and call the elements of G characters.

Remark 6.1. /\'While characters are (by definition) elements of C(G), they are not in C.(G)

unless GG is compact.

We endow the set G with the compact-open topology, that is the topology generated
by the sets yU (K, €) where v € G,

U(K,e) = {AeG:|\=z)—1] <eforall ze K}
and € > 0 and K is a compact subset of G.

Proposition 6.2. Suppose that G is a topological group. Then G is a Hausdorff Abelian

topological group with multiplication and inversion defined by

(7:7) = (2 = y(2)y () and v — (z — y(2)),

and identity the character taking the constant value 1. Moreover, (U(K,J))ks as K ranges
compact subsets of G and § > 0 is a neighbourhood base of the identity.
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Proof. The fact that G is an Abelian group is an easy check since S! is an Abelian group

1

under multiplication and z=! = Z when z € S*.

Since |y(z) — 1| = |y(x) — 1| the inversion is certainly continuous. Now suppose that
YA € pU(K, €) for some p € G. Since YATL is continuous and K is compact |YATi — 1| achieves
its bounds on K and hence there is some § > 0 such that |(yAm)(z) — 1] < € — ¢ for all

x € K. But then if v € yU(K,/2) and N € \U(K, §/2) we have

((YNE) () = 1] < |('AE)(2) = (N ()] + (WX ) () — (VA ()] + [(vAm) () — 1
<0/24+0/24+€e—d=ce.

It follows that v'\ € uU (K, €) and so the preimage of vy contains a neighbourhood of (v, \)
in G xG ie. multiplication is jointly continuous. Finally, the topology is Hausdorff since if
v # A then there is some x € G such that y(x) # A(x); put € := |y(x) — A(x)|/2 and note
that YU ({z}, €) and AU ({x}, €) are disjoint open sets containing v and A respectively. [

We call the group G endowed with the compact-open topology the dual group of GG, so
that the above proposition tells us that if G is a topological group then its dual group is a
Hausdorff Abelian topological group.

We call the identity, denoted 14, the trivial character.

Proposition 6.3. Suppose that G is a compact topological group. Then G is discrete.

Proof. Suppose that v # 15 so there is € G such that y(z) # 1. Let y € G be such that
|7(y) — 1| is maximal (which exists since G is compact and = — |y(x) — 1| is continuous)

and note that by assumption this is positive. If |y(y) — 1| < 1 then we have

(W) =1 = v (@)? =1 =2+ (v(y) — )7 (y) — 1]
> (2 - |v(y) = 1DIv(y) — 1] > [v(y) — 1.

This is a contradiction, whence v ¢ U(G, 1) and {14} is open so the topology is discrete. [

Example 6.4. Suppose that G is a finite cyclic group endowed with the discrete topology.

Since G is cyclic it is generated by some element x, and the map
¢:G— Gia" — (G — St — exp(2mirl/|G)))

is a well-defined homeomorphic isomorphism. To see this note that ¢ is well-defined in the
sense that different representations of an element in the domain product the same image:
since 27 = 2" implies |G| | 7 — 7' and hence exp(2mirl/|G|) = exp(27ir'l/|G|); and ¢
is well-defined in the sense that ¢(x") as defined is genuinely an element of G: ot = 2’

implies |G| | | — I’ and hence exp(2mirl/G|) = exp(2mirl’/|G|) so that ¢(z") is itself a
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well-defined function; it is continuous since G is discrete; and it is a homomorphism since
exp(2mir(l +1")/|G|) = exp(2mirl/|G|) exp(2mirl’ /|G]).

¢ is a homomorphism since exp(27i(r + 1')l/|G|) = exp(2mirl/|G|) exp(2mir'l/|G]). ¢ is
injective since if exp(2mirl/|G|) = 1 for all [ then |G| | r so 2" = 1. ¢ is surjective since if
v : G — S'is a homomorphism then v(z)!¢! = 1 so y(x) = exp(27ir/|G|) for some r € Z,
and v = ¢(z").

We conclude that ¢ : G — Gis a bijective group homomorphism and hence ¢~! is a
group homomorphism. Since G is discrete ¢ is continuous. Since G is finite, GG is compact
and so G is discrete by Proposition and hence ¢! is continuous as required.

In particular G and G are homeomorphically isomorphic.

Remark 6.5. Example gives a class of topological groups that are homeomorphically
isomorphic to their duals. Since there are non-Abelian groups, and the dual group is always
Abelian (Proposition , there are many examples where a group and its dual are not even
isomorphic. Similarly, since there are non-Hausdorff topological groups and the dual group
is always Hausdorff (Proposition , there are many examples where a group and its dual
are not homeomorphic as topological spaces.

It will turn out that it is more natural to ask when a group and its double dual are

homeomorphically isomorphic and there will be a wide class of groups where this will hold.

Example 6.6. When G is a group with the indiscrete topology the only continuous functions
are constant and so G is the trivial group with one character taking the constant value 1
(and there is only one topology on a set with one element) so that we have completely

determined the topological group G.

Example gave topological reasons for the dual group being trivial, but there can also

be algebraic reasons:

Example 6.7 (Non-Abelian finite simple groups). Suppose that G is a non-Abelian finite
simpldﬂ topological group.
Suppose that v : G — S' is a homomorphism. Since G is non-Abelian there are elements

r,y € G with zy # yz, but then zyr~ty~! # 15 while

Yayay™) = (@) (y)r(e) Iy =1

since S' is Abelian. We conclude that the kernel of ~ is non-trivial, but all kernels are
normal subgroups and since G is simple it follows that kerv = G i.e. v is trivial. In other
words G = {1a}-

A simple group is a group whose only normal subgroups are the trivial group and the whole group
e.g. Ap, the alternating group on n elements, when n > 5. (The Abelian finite simple groups are the cyclic

groups of prime order and their dual groups are described in Example )
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The topology on G and G are quite closely related: if G' is compact then G is discrete
(Proposition , and the other way round we have the following:

Proposition 6.8. Suppose that G is a discrete topological group. Then G is compact.

Proof. The set G is a subset of the topological space M of functions G — S! endowed
with the product topology, which itself is compact by Tychonoff’s theorem. (c.f. the set F
considered in the proof of Theorem |4.11]). Since G is discrete the only compact sets in G
are finite and hence the topology on G is the subspace topology induced by viewing it as
a subspace of M. It remains to check that G is closed at which point it follows that it is
compact. To see it is closed, note that the sets {f : G — S*: f(zy) = f(z)f(y)} are closed

for each x,y € GG, and hence

({{f:G— 8" fay) = f@)fW)} 2.y e G

is closed. This is the set of all homomorphisms G — S!, but every homomorphism is

continuous since G is discrete and hence this set equals G. O]

We can make use of the Haar integral we have developed to show that if G is a locally
compact topological group then the dual group is also locally compact. To do this we need

a lemma.

Lemma 6.9. Suppose that G is a locally compact topological group supporting a Haar integral
§, foe CHG) has§ fo # 0, and k,5 > 0. Then there is an open neighbourhood of the identity
Ls,. such that if |§ foy| = k§ fo then |1 —~(y)| <6 for all y € L.

Proof. By Lemma there is an open neighbourhood of the identity Ls, (which we may
assume is contained in U since U is a neighbourhood and so contains an open neighbourhood
of the identity) such that | A, (fo)— folew < dk/§ F forally € Ls .. (Note § F' > 0 by Corollary
4.10l) For y € Ls,,, the support of A\,(fy) — fo is contained in UK (since Ls, < U) and so

f|>‘y(f0) — fol < [IA,(fo) — fO’ooJF < k.

=Uh%4ﬂ—fﬁv
U fo fo“Y

Dividing by x gives the claim. O]

Now, if y € Ls,, then

u—wwm<kww—0jﬁv

J|/\ (fo) = fo| < 0k.

Theorem 6.10. Suppose that G is a locally compact topological group. Then G is locally

compact.
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Proof. Let § be a left Haar integral on G (which exists by Theorem . Since { is non-
trivial there is fo € C./(G) such that { fo # 0 and we may rescale so that { fo = 1. Write K
for a compact set containing the support of fy and U for a compact neighbourhood of the
identity:.

UK is compact by Lemma [1.29] Apply Corollary to get a continuous compactly
supported F': G — [0, 1] such that F'(z) =1 for all x € UK. Define

Vi={yeG:|y(x)—1] <1/4for all z € K},

so that V' certainly contains, U(K,1/4), an open neighbourhood of the identity.

As in the proof of Proposition we write M for the set of maps G — S! endowed
with the product topology so that M is compact. As sets G is contained in M , but the
compact-open topology on G is not, in general, the same as that induced on G asa subspace
of M. Our aim is to make use of the compactness on M to show that G is locally compact
in the compact-open topology.

First we restrict to homomorphisms: write H for the set of homomorphisms G — S?!,

which is a closed subset of M since it is the intersection over all pairs x,y € G of the set of

f € M such that f(xy) = f(x)f(y). Write

Ci= (]| {feH:|f(x)-1<0d}

6>0,x€L573/4

which is also closed as an intersection of closed sets. By Lemma [2.5] as sets we have C' < G
since the sets {z € S' : |1 — z| < 6} form a neighbourhood base of the identity in S', and if
feC then f~'({z e S': |1 -z <d}) D Lss/4 which is a neighbourhood of the identity in
G.

If v € V then ‘1 - Sfov} < § foll —~| < 1/4, so by the triangle inequality | { foy| = 3/4
and hence the claim tells us that v € C. Thus (as sets) V < C' < G and so

V= {feC:|f@) -1 <1/4},

which is again a closed subset of M.

Our aim is to show that V' is compact in the compact-open topology on G. This follows
if every cover of the form U = {yU(K,,0,) : 7€ V} (where K, is compact and 6, > 0) has
a finite subcover. Write L., := L;. »1/2 and note that by compactness of K, there is a finite
set T, such that K, < T, L,. Write

Uy:={feM:|f(x)-1] <é,/2forall z e T}

which is an open set in M since T, is finite. Suppose that A € (yU,) n V. Then since
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v, A € V', the triangle inequality gives
‘1 - Jf(ﬁ/\‘ < Jf0|1 =7l = Jfo|1 —F+7 -7
< th>|1 -7l + Jf0|1 — Al <12

Hence ]S fo¥A| = 1/2 by the triangle inequality again. The claim gives |1 —~(y)A(y)| < ,/2
for all y € L,. But 3\ € U, so we also have |1 —v(2)A(2)| < d,/2 for all z € T,. Thus, if
x € K, then there is z € T, and y € L, such that z = zy and

1= (@)A@)] < 1 =7(2)AE)] + ()M =) =129 (=)

= [1=v(2)A2)] + [T = v(¥)AY)| < 6.

We conclude that yU, n'V < yU (K., 0,) n' V. Finally {yU, : 7€ V} is a cover of V' by sets
that are open in M. M is compact and V' is closed as a subset of M so V' is compact as a
subset of M, and hence {yU, : v € V'} has a finite subcover which leads to a finite subcover

of our original cover Y. The result is proved. [

Remark 6.11. The above shows that the dual of a locally compact Hausdorff Abelian topo-
logical group is a locally compact Hausdorff Abelian topological group. Pontryagin duality
is a powerful strengthening of this in which a crucial part is showing that characters separate

points. This can be deduced from the Peter-Weyl Theorem.
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