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Preface

These are notes for an 8-lecture first course in number theory, taught in Oxford

as a Part A short option course. The notes were comprehensively rewritten in 2017

by Ben Green, using the earlier notes developed by Alan Lauder, Tim Browning,

Andrew Cadwell, Roger Heath-Brown, Henri Johnston and Jennifer Balakrishnan.

Please address any comments and corrections to

kremnitzer@maths.ox.ac.uk

Synopsis. The ring of integers; congruences; ring of integers modulo n ; the Chi-

nese Remainder Theorem. Wilson’s Theorem; Fermat’s Little Theorem for prime

modulus; Euler’s phi-function. Euler’s generalisation of Fermat’s Little Theorem to

arbitrary modulus; primitive roots. Quadratic residues modulo primes. Quadratic

reciprocity. Factorisation of large integers; basic version of the RSA encryption

method.

Non-examinable topics are denoted with an asterisk.

Notation. If m,n are two positive integers, then I like to write (m,n) for the

highest common factor of m and n. This is pretty standard notation, and is almost

ubiquitous in research papers. Some authors write hcf(m,n) or gcd(m,n); you may

find this in past exam papers.

Although we will not use it in this course, I write [m,n] for the lowest common

multiple of m and n. Some authors use lcm(m,n) or, worse still, l.c.m.(m,n).
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CHAPTER 1

Some basics

We begin by going over a few basic facts about the ring of integers Z =

{. . . ,−2,−1, 0, 1, 2 . . . }. Most of these have already been covered in the Prelims

course Constructive Mathematics or the Part A course Rings and Modules.

1.1. Euclid’s algorithm

If a, b are integers then the highest common factor, denoted by (a, b) in this

course, is the largest positive integer d satisfying d|a and d|b.

Proposition 1.1 (Euclid’s algorithm). Suppose that a, b are integers. Then

there are integers m,n such that am+ bn = (a, b).

Proof. Replacing a by −a and b by −b and switching the role of a, b if necessary,

we may assume that a > b > 0. Now perform Euclid’s algorithm:

a = q1b+ r1

b = q2r1 + r2

r1 = q3r2 + r3

...

rk = qk+2rk+1 + 0,

where the quotients qi are nonnegative integers and the remainders ri are nonneg-

ative and satisfy ri+1 < ri. This last property guarantees that the algorithm does

terminate.

We claim that (a, b) = rk+1. Inducting up from the bottom, we have that rk+1

divides, in sequence, rk, rk−1, . . . , r1, b, a. Thus rk+1|(a, b). If d|a, b then, working

downwards from the top, d divides a, b, r1, . . . , rk+1. In particular (a, b)|rk+1. It

follows that (a, b) = rk+1.

3



4 1. SOME BASICS

Now we have, working up from the bottom,

(a, b) = rk+1

= rk−1 − qk+1rk

= rk−1 − qk+1(rk−2 − qkrk−1)

...

= ma+ nb

for some integers m,n.

The proof provides an algorithm for finding m,n. This has been covered in

the Prelims course Constructive Mathematics, and there are some examples on the

exercise sheets to refresh your memory.

1.2. Units, irreducibles and primes

The units in Z are 1 and −1. These are the only integers m which have a

multiplicative inverse, that is to say for which there is another integer n such that

mn = 1.

We say that an integer p is irreducible if it is not a unit, and if it has no factors

other than ±1,±p.
We say that an integer p is prime if it is not a unit and if it has the following

property: if p|ab then either p|a or p|b.

Proposition 1.2. An integer p is irreducible if and only if it is prime.

Proof. Suppose first that p is prime. We claim that p is irreducible. Suppose

not; then p = ab with neither a nor b a unit. Since p is prime, either p|a or p|b.
Suppose without loss of generality that p|a. Thus a = pc for some c ∈ Z. But then

p = ab = pbc, so p(1 − bc) = 0. It follows that 1 − bc = 0 (here we used the fact

that Z is an integral domain) and hence bc = 1, contrary to the supposition that b

was not a unit.

Now suppose that p is irreducible, and that p|ab. Suppose that p - a. Then the

highest common factor of a and p is 1. By Euclid’s algorithm, there are m,n such

that ma+ np = 1, and hence mab+ npb = b. Observe that p divides the left-hand

side, and hence p|b.

The reason for the strange-seeming nomenclature – using two different words for

the same thing – is that there are other rings (for example Z[
√
−5] = {a+ b

√
−5 :

a, b ∈ Z}) where the notions of prime and irreducible do not coincide. There is
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much more on this in the Part A course Rings and Modules. In this course we will

only be working over Z, so we use the word “prime” instead of irreducible.

Proposition 1.3. Every integer other than zero and the units may be factored

into primes in an essentially unique way.

Proof. By “essentially unique” we mean that the factorisations 15 = (−3)(−5) =

5 · 3 = 3 · 5 are all regarded as the same: more formally, factorisations are unique

up to reordering the primes and modifying them by the units ±1.

Let n be an integer. First we show that n can be written as a product of primes.

It may be that n is already irreducible. If not, we may split it as a product n = ab

of two integers a, b with 1 < |a|, |b| < |n|. This allows us to proceed by induction

on |n|.
Now we show that factorisations are unique. Suppose that

n = p1 . . . pk = q1 . . . qm.

We have p1|q1 . . . qm, and so p1 divides one of the qi. Relabelling, we may suppose

that p1|q1. Since p1, q1 are primes, we must have p1 = uq1, for some unit u, and

hence

p′2 . . . pk = q2 . . . qm

where p′2 = up2. Continuing inductively gives the result.

It is important to remark that the uniqueness of decomposition into primes,

which you have probably known since you were at primary school, is not obvious!

In fact, it fails in most rings (such as Z[
√
−5]).

1.3. GCD and LCM. Coprimality.

Let us recall the definitions. If a, b are integers then the greatest common divisor

(GCD) of a and b, written (a, b), is the greatest positive integer d such that d|a
and d|b. The lowest common multiple (LCM), written [a, b], is the least positive

integer d such that a|d and b|d. We say that a and b are coprime if (a, b) = 1, or

equivalently if there does not exist a prime p dividing both a and b. More generally,

we say that integers a1, . . . , ak are pairwise coprime if (ai, aj) = 1 for all i 6= j, or

equivalently if no prime p divides more than one of the ai.

Remark. One could say that a1, . . . , ak are coprime if there is no prime p dividing

all of a1, . . . , ak. This is a weaker condition than pairwise coprimality, and it will

not come up much in this course. (For example, 2, 5 and 10 are coprime, but not

pairwise coprime; and even worse example is 6, 10 and 15, which are coprime but

for which none of the pairs is coprime.)



6 1. SOME BASICS

Here are some facts about GCDs, LCMs and coprimality that come up repeat-

edly in the course. The proofs all follow straightforwardly from unique factorisation

into primes, and the details are left to the student.

Lemma 1.1. We have the following facts.

(i) Suppose that a, b are positive and that a = pα1
1 · · · p

αk

k and b = pβ1

1 · · · p
βk

k ,

where the pi are distinct primes. Then (a, b) = p
min(α1,β1)
1 · · · pmin(αk,βk)

k ,

and [a, b] = p
max(α1,β1)
1 · · · pmax(αk,βk)

k . In particular ab = [a, b](a, b).

(ii) Suppose that a, b are coprime and that b|ax. Then b|x.

(iii) Suppose that q1, . . . , qk are pairwise coprime. Then q1 · · · qk divides x if

and only if qi divides x for i = 1, . . . , k.

(iv) Suppose that a and b are both coprime to q. Then so is ab.

1.4. Linear diophantine equations

In this section we record the general result about solving the equation am+bn =

c in integers. (An equation to be solved in integers is called a Diophantine equation,

hence the title of the section.) First, we need a lemma which follows from the results

of the last section.

Proposition 1.4. Suppose that a, b, c are integers with a, b 6= 0. Then there is

a solution to the equation am+ bn = c in integers m,n if and only if (a, b)|c. Two

integers m′, n′ give another solution if and only if m′ = m+k b
(a,b) and n′ = n−k a

(a,b)

for some integer k.

Proof. It is obvious that if the equation is soluble then (a, b) divides c. Conversely,

by Euclid’s algorithm we see that if (a, b)|c then the equation does have a solution:

take a solution to au+ bv = (a, b) and set m = c
(a,b)u and n = c

(a,b)v.

For the last part, observe that if we write x = m′ − m and y = n − n′ then

am′ + bn′ = c if and only if ax = by. Dividing through by (a, b) gives a′x = b′y,

where a′ = a
(a,b) and b′ = b

(a,b) . Note that a′ and b′ are now coprime. If follows from

Lemma 1.1 (ii) that b′|x and that a′|y. Writing x = b′k1 and y = a′k2, it follows

immediately that k1 = k2, and this tells us that m′, n′ have the form claimed.

Conversely if m′, n′ do have this form then it is trivial to check that am′+ bn′ = c.

1.5. The infinitude of primes

Proposition 1.5. The are infinitely many primes.

Proof. Suppose that a complete list of primes is {p1, . . . , pk}. Consider the number

N := p1p2 · · · pk + 1. This must certainly have a prime factor. However, it is easy
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to see that none of the primes p1, . . . , pk divides N , which leaves a remainder of 1

upon division by any of these primes.





CHAPTER 2

Modular arithmetic and Z/qZ

2.1. Modular arithmetic

When divided by 4, the number 2019 leaves a remainder of 3. We usually write

this as 2019 ≡ 3(mod 4) and we say that 2019 is congruent to 3 mod 4.

Every square number is congruent to 0 or 1 mod 4 (there are two cases: either

n = 2k in which case n2 = 4k2, or n = 2k + 1, in which case n2 = 4(k2 + k) + 1).

Therefore every sum of two squares is congruent to 0, 1 or 2 mod 4, and it

follows that 2019 is not the sum of two squares.

To give another example, we have 365 ≡ 1(mod 7), which explains why April

26th is a Thursday this year, but will be a Friday next.

These are “modular arithmetic” arguments. The remainder does not have to

be the least remainder. Thus it is also OK to write 2019 ≡ 11(mod 4), and 2019 ≡
−1(mod 4).

Definition 2.1. Let q > 1 be an integer. Then we write a ≡ b(mod q) if and

only if q divides a− b.

We implicitly used some basic facts about modular arithmetic which we have

not proved carefully, namely the first part of the following lemma.

Lemma 2.1. Suppose that x ≡ a(mod q) and that y ≡ b(mod q). Then x + y ≡
a+ b(mod q) and xy ≡ ab(mod q).

Proof. The first part is rather easy and is left as an exercise. For the second part,

suppose that x ≡ a(mod q) and that y ≡ b(mod q). Then x = a+kq and y = b+k′q

for integers k, k′. It follows that

xy = (a+ kq)(b+ k′q) = ab+ q(kb+ k′a+ qkk′),

and so indeed xy ≡ ab(mod q).

Another very basic fact about modular arithmetic is cancellation.

Corollary 2.1. Suppose that ac ≡ bc(mod q), and that q is coprime to c. Then

a ≡ b(mod q).

9



10 2. MODULAR ARITHMETIC AND Z/qZ

Proof. The assumption implies that q|c(a − b). Applying Lemma 1.1 (ii) tells us

that q|a− b, and so a ≡ b(mod q).

Remark. For the avoidance of doubt, it should be very clearly pointed out that

the hypothesis that q is coprime to c is essential. For example, 2×5 ≡ 4×5(mod 10),

but of course 2 6≡ 4(mod 10).

2.2. The ring Z/qZ

The fact that “(mod q)” works well with regard to both addition and multipli-

cation is really asserting some properties of a natural ring homomorphism from the

integers Z to a ring called Z/qZ.

The relation ∼, defined by x ∼ y if and only if x ≡ y(mod q), is easily seen to be

an equivalence relation. The equivalence classes are precisely the sets x+qZ = {x+

kq : k ∈ Z}, that is to say the cosets of the subgroup qZ = {. . . ,−q, 0, q, 2q, . . . } ⊂
Z. For this introductory discussion (when the value of q is clear from context, and

there is no danger of confusion with other notations) we write x = x + qZ. Some

authors would write x(mod q) for the same thing.

A complete set of distinct equivalence classes is {0, 1, · · · , q − 1}; after q − 1 we

start to repeat, thus q = 0, q + 1 = 1, and so on, and also −1 = q − 1, −2 = q − 2,

and so on. We write Z/qZ for this set of equivalence classes.

Example. We have Z/3Z = {0, 1, 2} or, more formally, {0 + 3Z, 1 + 3Z, 2 + 3Z}.
Since 7 ≡ −2(mod 3), we have 7 = −2 or, more formally, 7 + 3Z = −2 + 3Z.

Lemma 2.1 implies that Z/qZ has the structure of a ring (with 1), with a well-

defined addition given by

(x+ qZ) + (y + qZ) = (x+ y) + qZ

and a well-defined multiplication given by

(x+ qZ)(y + qZ) = xy + qZ.

(the role of Lemma 2.1 here is that, for example, x+ qZ does not uniquely specify

x; we have x + qZ = a + qZ whenever x ≡ a(mod q).) The zero in this ring is

0 + qZ = qZ, and the multiplicative identity is 1 + qZ.

Moreover, the map π : Z → Z/qZ which sends x ∈ Z to x + qZ is a ring

homomorphism.

Example. We have (4 + 6Z)× (5 + 6Z) = 2 + 6Z.

Remark. Let us say a few words about the correct generality for this construc-

tion. It is an example of a more general construction of a quotient ring R/I, where
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R is a commutative ring with identity 1R and I is an ideal, that is to say a subset

of R closed under addition and taking inverses, and with the property that

(2.1) ri ∈ I whenever r ∈ R and i ∈ I.

In our example, R = Z and I is the ideal qZ = {. . . ,−2q,−q, 0, q, 2q, . . . }.
Note that I is a normal subgroup of R under +, and so the set of cosets

r + I ∈ R/I

is an (abelian) group under the addition

(r + I) + (s+ I) := (r + s) + I

for r, s ∈ R. One checks also that the multiplication

(r + I)× (s+ I) := (r × s) + I

is well-defined on the cosets in R/I by property (2.1). Thus R/I has the structure

of a commutative ring with identity 1R + I.

Note that there is a natural quotient homomorphism π : R → R/I given by

π(r) = r + I.

2.3. The multiplicative group. Inverses.

Let c be an integer. Whether or not c is coprime to q depends only on c(mod q).

Therefore it makes sense to define

(Z/qZ)× := {x+ qZ ∈ Z/qZ : (x, q) = 1} = {x : (x, q) = 1}.

This is called the multiplicative group of residues mod q. For example,

(Z/6Z)× = {1, 5}, (Z/12Z)× = {1, 5, 7, 11}, (Z/11Z)× = {1, 2, · · · , 10}.

Lemma 2.2. The multiplicative group (Z/qZ)× is indeed a group under multi-

plication.

Proof. There is an identity element, namely 1 + qZ.

We must check that (Z/qZ)× is closed under multiplication, and also that in-

verses exist. The former amounts to the statement that if a, b are coprime to q then

so is ab, which is Lemma 1.1 (iv).

To show the existence of inverses, suppose that c + qZ ∈ (Z/qZ)×. Then c is

coprime to q. By Euclid’s algorithm, there are integers m,n such that cm+qn = 1,

and so cm ≡ 1(mod q). Then m is coprime to q, and moreover (c+ qZ)(m+ qZ) =

1 + qZ and so m+ qZ is inverse to c.
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Remark. If x ∈ Z/qZ, then the inverse of x is usually denoted by x, although

we will not need this notation in the course. Obviously it is in conflict with the

notation we introduced in Section 2.2 for the elements of Z/qZ. For that reason,

the notation of that section is not normally used beyond an introductory course on

modular arithmetic. In our course, it is limited to this section and the last.

2.4. The Chinese Remainder Theorem.

Here is the Chinese remainder theorem as usually stated.

Theorem 2.1 (Chinese Remainder Theorem). Suppose that q1, q2, . . . , qk are

pairwise coprime positive integers (that is, (qi, qj) = 1 for all i 6= j). Suppose that

a1, . . . , ak are integers. Then there is an integer x such that x ≡ ai(mod qi) for

i = 1, 2, . . . , k. Moreover, x is unique (mod q1 · · · qk).

For example, there is an integer satisfying x ≡ 3(mod 7) and x ≡ 2(mod 5),

namely x = 17, and this is unique (mod 35) (that is, x′ also satisfies this condition

if and only if x′ ≡ x(mod 35)).

Remark. The result is, in general, false if the qi are not coprime. or example,

there is no integer x such that x ≡ 1(mod 4) and x ≡ 3(mod 8).

The following is a more grown-up statement of the Chinese remainder theorem,

equivalent to Theorem 2.1.

Theorem 2.2. Suppose that q1, . . . , qk are pairwise coprime. Then the map

ψ : Z/q1 · · · qkZ→ Z/q1Z× · · · × Z/qkZ

given by

ψ(x+ q1 · · · qkZ) = (x+ q1Z, . . . , x+ qkZ)

is a bijection.

Proof. First we should remark that the map ψ is well-defined. This is a conse-

quence of the fact that x ≡ y(mod q1 · · · qk) implies that x ≡ y(mod qi) for each

i.

The domain and range of ψ have the same cardinality q1 · · · qk. Hence, to show

that ψ is a bijection, it suffices to show that it is an injection. But if ψ(x) = ψ(y)

then qi|y−x for each i and hence, since the qi are pairwise coprime, q1 · · · qk|x− y,

which means that x ≡ y(mod q1 · · · qk).

In fact the proof gives rather more: Z/q1 · · · qkZ and Z/q1Z × · · · × Z/qkZ are

isomorphic as rings. This is because ψ is easily seen to be a ring isomorphism, and

hence, since it is bijective, is an isomorphism.
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Whilst the proof of the Chinese Remainder Theorem is quite straightforward, it

is nonconstructive: we are left with no clue as to how to actually solve the system of

congruences x ≡ ai(mod qi) described in Theorem 2.1. Here is a way to construct an

x explicitly (which also gives a second proof of the Chinese Remainder Theorem).

For each i ∈ {1, . . . , k}, write

Qi :=
q1q2 · · · qk

qi
= q1 · · · qi−1qi+1 · · · qk.

Since the qi are pairwise coprime, Qi is coprime to qi. Let mi be any integer

inverse to Qi in (Z/qiZ)×: thus miQi ≡ 1(mod qi). Note that such an mi can be

constructed via the Euclidean algorithm. Finally, set

x = a1m1Q1 + · · ·+ akmkQk.

Observe that all of the Qi except for Q1 are divisible by q1. Therefore

x ≡ aimiQi ≡ ai(mod qi).

Once again, we should remark that x is not unique. In fact it is easy to see that

y is another solution if and only if q1 . . . qk|y − x.

Let us conclude with an example.

Example. Find an integer x such that x ≡ 5(mod 11) and x ≡ 11(mod 31).

Solution. Here, q1 = 11 and q2 = 31; these are certainly coprime. With the

notation above, we have Q1 = 31 and Q2 = 11. To find an inverse for 31(mod 11),

first reduce mod 11; we need to find an inverse for 9(mod 11). The Euclidean

algorithm gives 1 = 5 · 9 − 4 · 11, and so such an inverse is 5. Set m1 = 5. To

find an inverse for 11(mod 31), we again use the Euclidean algorithm, finding that

1 = 5 · 31− 14 · 11, so that an inverse for 11(mod 31) is −14. Set m2 = −14.

Finally, take

x = 5 · 5 · 31 + 11 · (−14) · 11 = −919.

Adding 3 · 341 = 1023, we obtain the smallest positive solution

x = 104.

2.5. Fermat’s Little Theorem

Theorem 2.3. Let p be a prime, and suppose that a is not a multiple of p. Then

ap−1 ≡ 1(mod p).

Proof. Here is the traditional proof. Consider the numbers a, 2a, . . . , (p − 1)a

modulo p. These are mutually incongruent (mod p), as ia ≡ ja(mod p) implies

p|a(i − j), which implies that i ≡ j(mod p). None of these numbers is divisible

by p. It follows that they must be precisely 1, 2, . . . , p − 1 in some order. Taking
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products, we obtain

ap−1(p− 1)! = a(2a)(3a) · · · ((p− 1)a) ≡ 1 · 2 · · · (p− 1) = (p− 1)!.

By the cancellation lemma (Corollary 2.1), the result follows.

However, the result also follows from the well-known fact in finite group theory

that the order of any element x in a finite group G divides |G|, which itself follows

immediately from Lagrange’s theorem (that the order of a subgroup divides the

order of the group). Fermat’s Little Theorem corresponds to the case G = (Z/pZ)×,

a group of order p−1: if x+pZ ∈ (Z/pZ)×, then xp−1+pZ = (x+pZ)p−1 = 1+pZ.

Remark If xp−1 ≡ 1 (mod p) for some x ∈ Z it does not imply that p is prime:

for example, 2340 ≡ 1(mod 341), but 341 = 11 · 31. The number 341 is an example

of a pseudoprime to base 2: an odd number n satisfying 2n−1 ≡ 1(modn), but for

which n is not prime. Whilst there are infinitely many pseudoprimes, it is known

that they are far rarer than primes. Thus if one computes that 2n−1 ≡ 1(modn)

then one can be fairly sure that n is prime (and if one computes 2n−1 6= 1(modn),

where n is odd, then one can be certain that n is composite).

One might think that this is a completely useless observation, since 2n−1 will

generally be a huge number and very difficult to compute. However, it can be

computed efficiently (modn) by repeated squaring: find 2, 22, 22
2

, 22
3

, . . . (modn)

in turn (each is the square of the previous one, and may then be reduced mod

n), then multiply appropriate elements of this sequence together according to the

binary expansion of n− 1 to find 2n−1(modn).

2.6. Wilson’s Theorem

Theorem 2.4. Let p be an odd prime. Then (p− 1)! ≡ −1(mod p).

Proof. In the product (p − 1)! = 1 · 2 · · · (p − 1), group the elements in pairs, c

together with its inverse c = c−1(mod p). Each pair contributes 1(mod p) to the

product. Only two elements do not belong to a pair: 1 and −1 (because for these

values of c, c = c). Evidently the product of these two elements is −1.

Remark. Wilson’s theorem is basically a necessary and sufficient condition for

n to be prime, because one can quite easily show that (n − 1)! ≡ 0(modn) when

n > 4 is composite. However, it is not practically useful as a primality test.



CHAPTER 3

Primitive roots and the structure of (Z/qZ)×

3.1. The group (Z/qZ)× and Euler’s φ-function

We write (Z/qZ)× for the set of elements of Z/qZ which have multiplicative

inverses. This is a group under multiplication (but not under addition).

Definition 3.1 (Euler’s φ-function). We define φ(n) to be the number of pos-

itive integers less than or equal to n and coprime to n.

Lemma 3.1. We have #(Z/qZ)× = φ(q).

Proof. Every element of Z/qZ is congruent to precisely one element of {1, . . . , q},
and the elements of (Z/qZ)× correspond to the elements of this set which are

coprime to q.

Proposition 3.1. Suppose that q1, . . . , qk are pairwise coprime positive integers.

Then

(Z/q1Z)× × · · · (Z/qkZ)× ∼= (Z/q1 . . . qkZ)×

as groups.

Proof. The proof of the Chinese remainder theorem adapts almost immediately

to give this. Consider once again the map

ψ : Z/q1 · · · qkZ→ Z/q1Z× · · · × Z/qkZ

given by

ψ(x+ q1 · · · qkZ) = (x+ q1Z, . . . , x+ qkZ).

Note that the image of (Z/q1 · · · qkZ)× is precisely (Z/q1Z)××· · ·×(Z/qkZ)×, since

x is coprime to q1 · · · qk if and only if it is coprime to each qi. We have already

shown, in the proof of the Chinese Remainder Theorem, that ψ is a bijection, and so

it is also a bijection when restricted to (Z/q1 · · · qkZ)×. Since ψ is a ring homomor-

phism (and hence respects multiplication), it restricts to a group homomorphism

on (Z/q1 · · · qkZ)×. Since this homomorphism is bijective onto its image, it is in

fact an isomorphism.

15
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Corollary 3.1. The φ-function is multiplicative, that is to say φ(mn) =

φ(m)φ(n) if (m,n) = 1.

Proof. Simply apply Proposition 3.1 with m = q1 and n = q2.

Corollary 3.2. Suppose that n is a positive integer and that its prime factori-

sation is pa11 · · · p
ak
k . Then

φ(n) = pa1−11 (p1 − 1) · · · pak−1k (pk − 1) = n
∏
p|n

(1− 1

p
).

Proof. Follows immediately from the preceding corollary and the observation that

φ(pa) = pa−1(p−1), this being the number of integers 6 pa which are not multiples

of p.

3.2. The Fermat–Euler theorem

Fermat’s Little Theorem can be generalised to composite q, with an almost

identical proof.

Theorem 3.1 (Fermat–Euler). Suppose that q is a positive integer, and that a

is coprime to q. Then aφ(q) ≡ 1(mod q).

Proof. Let x1, . . . , xφ(q) be a complete set of residues coprime to q: that is, a set of

integers, mutually incongruent modulo q, and each coprime to q. Equivalently, the

xi+qZ are precisely the elements of (Z/qZ)×. Consider the integers ax1, . . . , axφ(q).

Each of these is coprime to q and these integers are multually incongruent modulo

q; if axi ≡ axj(mod q) then q|a(xi − xj), and so q|xi − xj . Note that here we used

Lemma 1.1 (ii) and (iv). Therefore ax1, . . . , axφ(q) is also a complete set of residues

coprime to q.

Taking products gives

φ(q)∏
i=1

xi ≡
φ(q)∏
i=1

(axi) ≡ aφ(q)
φ(q)∏
i=1

xi(mod q).

By the cancellation lemma, the result follows.

3.3. The order of an element

Suppose that q is a positive integer and that a is an integer coprime to q.

Then the order ordq(a) is defined to be the smallest positive integer n such that

an ≡ 1(mod q).

Note that ordq(a) depends only on a(mod q), and so we can define ordq as a

function on (Z/qZ)×.
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For example, we have ord7(2) = 3, because 23 ≡ 1(mod 7), but neither 2 nor 22

is ≡ 1(mod 7).

Here is the most basic property of the order.

Lemma 3.2. ordq(a) exists. If aN ≡ 1(mod q) then ordq(a)|N . In particular,

ordq(a)|φ(q).

Proof. Existence follows immediately from the Fermat–Euler theorem. Suppose

now that n = orda(q), and writeN = mn+r where 0 6 r < n. Since an ≡ 1(mod q),

we have ar ≡ (an)mar = amn+r = aN ≡ 1(mod q). However, n is supposed to be

the least positive integer with an ≡ 1(mod q), we must have r = 0. This implies

that n|N . The last part follows from the Fermat-Euler theorem.

We remark that the converse also holds, since if n = ordq(a) and n|N then

aN ≡ (an)N/n ≡ 1(mod q).

These statements are in fact consequences of Lagrange’s theorem in group the-

ory, which states that if H is a subgroup of a group G then #H|#G. Here, we

apply this with G = (Z/qZ)× and with H the subgroup generated by a, which has

#H = ordq(a).

We conclude with another simple property of the order.

Lemma 3.3. Suppose that ordq(a1) = n1 and ordq(a2) = n2 and that (n1, n2) =

1. Then ordq(a1a2) = n1n2.

Proof. Let N := ordq(a1a2). We have

(a1a2)n1n2 ≡ (an1
1 )n2(an2

2 )n1 ≡ 1(mod q),

and so N |n1n2 by Lemma 3.2. In the other direction, consider the equation

(a1a2)N ≡ 1(mod q). Raising both sides to the power n2 gives aNn2
1 ≡ 1(mod q)

and hence, by Lemma 3.2, n1|Nn2. Since n1 and n2 are coprime, it follows that

n1|N . Similarly n2|N , and hence (again using the fact that n1, n2 are coprime),

n1n2|N .

One of our main aims in this chapter is to prove the following result.

Proposition 3.2. Let p be a prime. Then there is an element g ∈ (Z/pZ)×

with ordp(g) = p− 1. Equivalently, (Z/pZ)× is a cyclic group.

Remarks. An element g with this property is called a primitive root modulo p.

For some reason, use of the letter g in this context is quite common. If a is an

integer whose reduction modulo p has this property then we also call g a primitive

root modulo p; in fact this usage is more common. If g is a primitive root then,
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by definition, a complete list of the elements of (Z/pZ)× is {1 + pZ, g + pZ, g2 +

pZ, . . . , gp−2 + pZ}. For example, working mod 11 we have {1, 2, 22, 23, . . . , 29} ≡
{1, 2, 4, 8, 5, 10, 9, 7, 3, 6}, so 2 is a primitive root modulo 11. Let us remark in

passing that it is an unsolved problem (Artin’s Conjecture) whethe 2 is a primitive

root for infinitely many primes p.

3.4. Polynomial equations modulo a prime

The results of this section, while not without interest in their own right, are

here because we need them to prove Proposition 3.2.

Everyone knows that quadratic equations over R have at most two roots, and

that over C they have exactly two (counted with multiplicity). In the residue ring

Z/qZ, the analogue of this can fail. For example, in Z/8Z the equation x2 − 1 = 0

has four distinct solutions, namely x = 1, 3, 5, 7.

When q = p is prime, things are much better behaved. This is because Z/pZ is

an integral domain, that is to say a ring with no zero divisors: if ab = 0 then a = 0

or b = 0. (In fact, Z/pZ is a field since, as we have shown, all non-zero elements

have multiplicative inverses.)

Proposition 3.3. Let f(X) ∈ R[X] be a polynomial of degree d > 0 over an

integral domain R. Then f has at most d roots in R.

Proof. If f has no roots we are done, so let’s suppose α ∈ R is a root.

By the division algorithm for polynomials f(X) = (X − α)q(X) + c for some

c ∈ R. (See Prelims for polynomials over the reals; the same works for a general

integral domain.) Thus 0 = (α− α)q(α) + c so c = 0. Now let β ∈ R be any other

root of f(x). Then 0 = f(β) = (α−β)q(β) and since α−β 6= 0 and R is an integral

domain, we deduce that q(β) = 0. But q is a polynomial of degree d− 1 and so by

induction has 6 d− 1 roots. Hence f has at most 1 + (d− 1) = d roots.

Lemma 3.4. Let p be a prime, and suppose that d|p− 1. Then there are exactly

d values of x ∈ Z/pZ such that xd ≡ 1(mod p).

Proof. The polynomial Xd − 1 is a factor of Xp−1 − 1:

Xp−1 − 1 = (Xd − 1)g(X)

where

g(X) = 1 +Xd +X2d + · · ·+X( p−1
d −1)d.

By Fermat’s Little Theorem, every x ∈ (Z/pZ)× is a root of the left hand side. By

Proposition 3.3, at most deg g = p− 1− d of these can be roots of g. The other d

values of x must therefore be roots of Xd − 1. By Proposition 3.3, this polynomial

cannot have more than these d roots.
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3.5. Existence of primitive roots

In this section we give the proof of Proposition 3.2. We first give a lemma that

will be used in the proof.

Lemma 3.5. Suppose that p is a prime. Let q be another prime and suppose that

qc|p− 1 for some integer c. Then there is some a ∈ (Z/pZ)× with ordp(a) = qc.

Proof. By Lemma 3.4, there are qc values of x ∈ (Z/pZ)× with xq
c ≡ 1(mod p).

If such an element x does not have ordp(x) = qc then, since ordp(x)|qc, we must

have ordp(x)|qc−1 and hence xq
c−1 ≡ 1(mod p). By Lemma 3.4 again, the number

of elements with this property is qc−1. Therefore there are qc − qc−1 > 0 elements

x with ordp(x) = qc.

Proof. [Proof of Proposition 3.2] Factor p−1 = qc11 . . . qckk as a product of primes. By

Lemma 3.5, there are elements ai ∈ (Z/pZ)× with ordp(ai) = qcii . Set a := a1 · · · ak.

By Lemma 3.3, ordp(a) = qc11 · · · q
ck
k = p− 1.

3.6. *The structure of (Z/qZ)×

I do not regard this section as examinable, but it is material that any number

theorist should be familiar with.

First observe that, to understand the structure of (Z/qZ)×, it is enough by

Proposition 3.1 to understand the case q = pr.

Lemma 3.6. Suppose that p is an odd prime. Then (Z/prZ)× is cyclic.

Proof. The case r = 1 is Proposition 3.2. Next we handle r = 2. Suppose that

g is a primitive root modulo p. Let n := ordp2(g). Then Lemma 3.2 implies that

n|p(p− 1). On the other hand, we certainly have gn ≡ 1(mod p) and so, since g is

a primitive root mod p, (p − 1)|n. If n = p(p − 1), we are done. The only other

possibility is that n = p− 1.

In this case, gp−1 = 1(mod p2). Consider g̃ := g + p. Note that g̃ is still a

primitive root modulo p. Then

g̃p−1 = (g + p)p−1 = gp−1 +

(
p− 1

1

)
pgp−2 + . . .

≡ gp−1 + p(p− 1)gp−2(mod p2)

≡ 1 + p(p− 1)gp−2(mod p2)

(the dots represent integers divisible by p2). Evidently p2 - p(p − 1)gp−2, and so

g̃p−1 6= 1(mod p2).

By the comments in the first paragraph, we must have ordp2(g̃) = p(p−1). This

completes the analysis of the case r = 2.



20 3. PRIMITIVE ROOTS AND THE STRUCTURE OF (Z/qZ)×

We remark that what we did here was essentially to find an appropriate “lift”

of a primitive root modulo p to a generator for (Z/p2Z)×; we began by taking an

arbitrary lift to Z, and then argued that either this, or this +p, works.

We claim that if ordp2(g) = p(p− 1) then ordpr (g) = pr−1(p− 1) for all r > 2.

Note that if gn ≡ 1(mod pr) then gn ≡ 1(mod p2), and so p(p− 1)| ordpr (g). Also,

ordpr (g)|pr−1(p− 1). Thus ordpr (g) = pe(r)(p− 1) for some e(r), 1 6 e(r) 6 r − 1.

We claim that e(r) = r − 1, to which end it suffices to show that we do not have

e(r) 6 r − 2, or in other words that

(3.1) gp
r−2(p−1) 6= 1(mod pr).

We will prove this by induction on r, the case r = 2 having already been established.

Suppose that we know (3.1) for some r > 2. Then, since gp
r−2(p−1) ≡ 1(mod pr−1),

we have

gp
r−2(p−1) = 1 + tpr−1

for some t with p - t. Then

gp
r−1(p−1) = (1 + tpr−1)p

= 1 + tpr +

(
p

2

)
t2p2(r−1) + . . .

by the binomial theorem. Note that 1 + tpr 6= 1(mod pr+1). We claim that all

further terms are divisible by pr+1. The term
(
p
2

)
t2p2(r−1) is divisible by p2r−1,

since p|
(
p
2

)
(here we used the fact that p 6= 2). When r > 2, 2r − 1 > r + 1. Each

subsequent term is divisible by p3(r−1). When r > 2, 3(r − 1) > r + 1.

This establishes the claim, and it follows that (3.1) also holds for r + 1. This

concludes the proof.

Note that we made crucial use of the fact that p 6= 2 in the above, at the point

where we noted that p|
(
p
2

)
. This is not true when p = 2, and indeed the situation is

different in that case. We have (Z/2Z)× = {1} and (Z/4Z)× = {1, 3}, isomorphic

to the cyclic group C2. However, the groups (Z/2rZ)×, r > 3, are not cyclic.

Lemma 3.7. The group (Z/2kZ)× is isomorphic to C2 × C2k−2 .

Proof. We first claim that

(3.2) ord2k(5) = 2k−2.

To prove this, we must show that 52
k−3 6= 1(mod 2k), to which end we use the

binomial theorem and the fact that 5 = 22 + 1 to compute that

52
k−3

= (22 + 1)2
k−3

= 1 + 2k−1 +
∑
i>2

(
2k−3

i

)
22i.
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We claim that this is ≡ 1+2k−1(mod 2k), and hence certainly not ≡ 1(mod 2k). To

show this, it suffices to show that each of the terms in the sum over i is divisible by

2k. Writing ν2(n) for the highest exponent of a power of two dividing n, we must

show that

(3.3) ν2
((2k−3

i

))
> k − 2i.

Now
(
2k−3

i

)
= 2k−3

i

(
2k−3−1
i−1

)
, and so

ν2
((2k−3

i

))
> k − 3− ν2(i).

Thus (3.3) follows if we can show that

(3.4) 2i > ν2(i) + 3.

This is trivially checked when i = 2, and for i > 3 we may use the very crude

inequality ν2(i) < i, which follows from the fact that 2i > i. Thus (3.4) holds, and

hence so does (3.3) and the claim (3.2).

Let 〈5〉 6 (Z/2kZ)× be the group generated by 5, thus

〈5〉 = {1, 5, 52, . . . , 52
k−2−1}.

We proved above that 52
k−3 ≡ 1+2k−1(mod 2k). Note that this is not −1(mod 2k),

and hence in fact −1 does not lie in 〈5〉: if −1 = 5n(mod 2k) then 1 = 52n(mod 2k)

and so 2n| ord2k(5) = 2k−2, and hence n|2k−3. It follows that the elements (−1)e5j ,

e = 0, 1, j = 0, 1, . . . , 2k−2−1, are all distinct. Since there are 2k−1 of these elements

we have

(Z/2kZ)× ∼= {±1} × 〈5〉.

Finally, we can characterise all q for which there is a primitive root (mod q),

that is to say for which (Z/qZ)× is cyclic.

Proposition 3.4. (Z/qZ)× is cyclic if and only if q is 2, 4, an odd prime power

or twice an odd prime power.

Proof. We use two facts from group theory: first, that a product G = Cn1
× · · · ×

Cnr
is not cyclic unless n1, . . . , nr are coprime. (In fact this is an if and only if, but

the direction we need is rather easy: every element in this group has order dividing

the lowest common multiple [n1, . . . , nr], which is strictly smaller than #G.) The

second fact from group theory that we shall use is that every subgroup of a cyclic

group is cyclic (note that the proof of this is extremely similar to the proof of

Lemma 3.2).
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Suppose first that q has two odd prime factors p1, p2. Then (Z/qZ)× is a product

of cyclic groups, two of which have orders pa1−11 (p1 − 1) and pa2−12 (p2 − 1), both of

which are even. Thus (Z/qZ)× is not cyclic in this case.

If q is divisible by 8 then it has a non-cyclic subgroup (Z/2kZ)×, and so is not

cyclic by the second group theory fact.

If q is divisible by 4 and an odd prime then it has a subgroup C2 × (Z/paZ)×,

a product of cyclic groups, both of even order.

In all other cases, (Z/qZ)× is cyclic by inspection.



CHAPTER 4

Quadratic Residues and reciprocity

4.1. Quadratic residues. Euler’s criterion

Let p be an odd prime, and let a ∈ (Z/pZ)×. We say that a is a quadratic residue

if there is some integer x such that x2 = a(mod p), and a quadratic nonresidue

otherwise.

Lemma 4.1. There are exactly (p−1)/2 quadratic residues and exactly (p−1)/2

quadratic nonresidues.

Proof. The map x 7→ x2 is 2–1 on (Z/pZ)×, because x and y map to the same

point if and only if x ≡ −y. The image of this map is precisely the set of quadratic

residues.

Lemma 4.2. We have the following statements.

(i) The product of two quadratic residues is a quadratic residue;

(ii) The product of a quadratic residue and a quadratic nonresidue is a qua-

dratic nonresidue;

(iii) The product of two quadratic nonresidues is a quadratic residue.

Proof. All of this follows from the observation that the quadratic residues are

a subgroup G of (Z/pZ)× of index 2. That they are a subgroup (closed under

products and inverses) is easily checked, in in fact this already confirms (i). That

they have index 2 follows from Lemma 4.1.

Since (Z/pZ)× is abelian, G is normal and hence there is a quotient homomor-

phism ψ : (Z/pZ)× → (Z/pZ)×/G, where the right-hand side is a group of order 2.

Of course this group is unique up to isomorphism, and it is traditional to identify

it with {−1, 1} ⊂ R, with the group operation being multiplication.

To spell it out, there is a (unique!) map ψ : (Z/pZ)× → {−1, 1} such that

ψ(ab) = ψ(a)ψ(b) and such that a is a quadratic residue if and only if ψ(a) = 1.

Note that the statement of this lemma is very concrete and, if you have trouble

thinking about quotient groups, you need not worry yourself any further. Moreover,

here is a sketch of a more hands-on proof. First note that (i) and (ii) are true

almost straight from the definition. For example if a1, a2 are quadratic residues

23
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and a3 is a nonresidue then we cannot have a1a3 = a2, since a2a
−1
1 is a quadratic

residue. Now fix some nonresidue a. The set {ax : x a quadratic residue} has size

(p− 1)/2 and consists entirely of quadratic nonresidues, by (ii). Therefore the set

{ax : x a quadratic nonresidue}, which is the complement of the preceding set, is

precisely the set of quadratic residues.

Proposition 4.1 (Euler’s criterion). Let p be an odd prime, and suppose that

a ∈ (Z/pZ)×. Then

a(p−1)/2 ≡

{
1(mod p) if a is a quadratic residue (mod p)

−1(mod p) if a is a quadratic nonresidue (mod p).

Proof. By Fermat’s Little Theorem, (a(p−1)/2)2 ≡ 1(mod p), and hence a(p−1)/2 ≡
±1(mod p). Since an equation of degree d < p has at most d roots, there are

at most (p − 1)/2 values of a satisfying each of these two conditions. Since all

p− 1 values of a ∈ (Z/pZ)× satisfy one of these conditions, there must be exactly

(p − 1)/2 values of a with a(p−1)/2 ≡ 1(mod p), and exactly (p − 1)/2 values of a

with a(p−1)/2 ≡ −1(mod p).

Suppose that a is a quadratic residue. Then a ≡ x2(mod p) for some x, and hence

a(p−1)/2 ≡ xp−1 ≡ 1(mod p), by Fermat’s Little Theorem. Therefore the (p− 1)/2

quadratic residues are precisely the (p − 1)/2 values of a for which a(p−1)/2 ≡
1(mod p).

Remark. In the notation of the proof of Lemma 4.2, we have

ψ(a) ≡ a(p−1)/2(mod p).

Note that the proof of Euler’s criterion made no use of Lemma 4.2. Therefore,

since it is obvious that (ab)(p−1)/2 ≡ a(p−1)/2b(p−1)/2(mod p), it may used to give

yet another proof of that lemma.

Here is a simply corollary of Euler’s criterion.

Corollary 4.1. Let p be an odd prime. Then −1 is a quadratic residue mod p

if and only if p ≡ 1(mod 4).

Proof. Immediate from Euler’s criterion.

4.2. The Legendre symbol. Statement of the reciprocity law

Suppose that p is a prime, and now let a ∈ Z. We define the Legendre symbol(
a
p

)
to equal 1 if (a, p) = 1 and if a(mod p) is a quadratic residue modulo p, −1 if

(a, p) = 1 and if a(mod p) is a quadratic nonresidue modulo p, and 0 if p|a.

For example,
(
23
7

)
= 1 because 23 ≡ 42(mod 7).
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Lemma 4.3. The Legendre symbol enjoys the following basic properties.

(i)
(

1
p

)
= 1;

(ii)
(
a+kp
p

)
=
(
a
p

)
for any k ∈ Z;

(iii)
(
ab
p

)
=
(
a
p

)(
b
p

)
.

Proof. We have basically proved all of this already. Part (i) is obvious because

1 = 12. Part (ii) follows immediately from the definition of the Legendre symbol,

which only cares about the value of a modulo p. Finally, (iii) is a consequence of

Lemma 4.2 when a and b are coprime to p. If one of a, b is divisible by p then both

sides of (iii) are zero.

The main aim of this chapter is to prove the following remarkable and famous

result of Gauss, called the Law of Quadratic Reciprocity.

Theorem 4.1. Let p, q be distinct odd primes. We have(
p

q

)(
q

p

)
=

{
−1 if p ≡ q ≡ 3(mod 4)

1 otherwise

We remark that a more succinct way to write this is(
p

q

)(
q

p

)
= (−1)(p−1)(q−1)/4,

and this is how you will often see the formula written in books.

We will also establish the following statement about the quadratic nature of 2

modulo an odd prime.

Proposition 4.2. The number 2 is a quadratic residue (mod p) if and only if

p ≡ ±1(mod 8).

The reciprocity law (Theorem 4.1), Proposition 4.2 and more elementary facts

about the Legendre symbol presented in Lemma 4.3 give a usable algorithm for

evaluating the Legendre symbol in practice. Rather than describe this formally in

generality, we give an illustrative example.

Example 4.1. Is 101 a quadratic residue modulo 163?

First note that 101 and 163 are both prime, and that not both of them are

3(mod 4). Therefore
(
101
163

)
=
(
163
101

)
. Reducing 163 modulo 101 shows that this

equals
(

62
101

)
=
(

2
101

) (
31
101

)
. We know that

(
2

101

)
= −1, since 101 ≡ 5(mod 8).

To evaluate
(

31
101

)
, we use reciprocity again to see that it equals

(
101
31

)
. Since

101 ≡ 8(mod 31), this is
(

8
31

)
, which equals

(
2
31

)3
=
(

2
31

)
, which equals 1 since

31 ≡ 7(mod 8). Putting all this together gives
(
101
163

)
= −1, and so 101 is not a

quadratic residue modulo 163.
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4.3. Gauss’s lemma

In this section we present Gauss’s lemma, from which Proposition 4.2 follows

quite easily, and which is the key technical ingredient in the proof of the reciprocity

law.

Proposition 4.3 (Gauss’s Lemma). Let p be an odd prime. Let I ⊂ (Z/pZ)×

be a set such that (Z/pZ)× is the disjoint union of I and −I = {−i : i ∈ I}. Let a

be an integer coprime to p. Then
(
a
p

)
= (−1)t, where t = #{j ∈ I : aj ∈ −I}.

Proof. Write

J− := {j ∈ I : aj ∈ −I}

and

J+ := {j ∈ I : aj ∈ I}.

Then J−, J+ are disjoint and their union is I .

We claim that −aJ− and aJ+ (where aX := {ax : x ∈ X}) are disjoint and that

their union is I. They are disjoint because −aj− ≡ aj+ implies −j− ≡ j+, which

is impossible since I and −I are disjoint. From the definitions, −aJ− and aJ+ are

both contained in I. Therefore the claim follows by computing cardinalities:

#(−aJ− ∪ aJ+) = #J− + #J+ = #(J− ∪ J+) = #I.

Thus the product of the elements of I, modulo p, is∏
j∈J−

(−aj−) ·
∏
j∈J+

(aj+) ≡ a(p−1)/2(−1)#J−
∏

j∈J−∪J+

j

≡ a(p−1)/2(−1)#J−
∏
j∈I

j.

Cancelling
∏
j∈I j (which is coprime to p) gives

a(p−1)/2(−1)#J− ≡ 1(mod p),

and so

a(p−1)/2 ≡ (−1)#J− .

The result now follows immediately from Euler’s criterion.

We remark that Gauss’s lemma is invariably applied with

I := {1, . . . , (p− 1)/2},

considered as a subset of Z/pZ (by a slight abuse of notation). When we speak

of “Gauss’s lemma” we will assume that this choice of I has been made, but we

wanted to illustrate the fact that the proof makes little use of the specific choice.

Using Gauss’s lemma, we prove Proposition 4.2.
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Proof. We compute the parity of

t = #{j ∈ I : 2j ∈ −I},

where I = {1, . . . , (p− 1)/2}. Write p = 8k + 2r + 1, r ∈ {0, 1, 2, 3}, so that

I = {1, . . . , 4k + r}

and

−I = {4k + r + 1, . . . , 8k + 2r}.

The elements j ∈ I with 2j ∈ −I are precisely

2k + r′, . . . , 4k + r,

where r′ is the least integer with 2r′ > r + 1. The quantity t is the parity of the

number of these elements, which is the same as the parity of u := #{r′, . . . , r + 2}
(by adding/removing an even number of elements from each end of the interval).

Splitting into cases, we see that

• When r = 0, r′ = 1, u = 2;

• When r = 1, r′ = 1, u = 3;

• When r = 2, r′ = 2, u = 3;

• When r = 3, r′ = 2, u = 4.

The result follows.

4.4. Proof of the reciprocity law

In this section we prove Theorem 4.1.

Proof. Let

E = {(x, y) ⊂ Z2 : 1 6 x 6
1

2
(p− 1), 1 6 y 6

1

2
(q − 1)}.

Divide E into the following four sets:

E1 := {(x, y) ∈ E : qx− py < −p
2
},

E2 := {(x, y) ∈ E : −p
2
< qx− py < 0},

E3 := {(x, y) ∈ E : 0 < qx− py < q

2
and

E4 := {(x, y) ∈ E : qx− py > q

2
}.

Obviously these sets are disjoint, and they do cover E since qx − py is never 0

for (x, y) ∈ E, and neither −p2 nor q
2 is an integer.

Write ti := #Ei.
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We claim that (
q

p

)
= (−1)t2 .

To see this, we use Gauss’s lemma, which tells us that
(
q
p

)
= (−1)t where

t = #{x ∈ {1, . . . , 1

2
(p− 1)} : qx ∈ {−1

2
(p− 1), . . . ,−1}(mod p)}.

= #{x ∈ {1, . . . , 1

2
(p− 1)} : ∃y ∈ Z,−p

2
< qx− py < 0}.

The value of y is unique. Moreover if y 6 0 then qx− py > 0, whilst if y > 1
2 (q+ 1)

then qx− py 6 1
2q(p− 1)− 1

2p(q + 1) < −p2 , so y ∈ {1, . . . , 12 (q − 1)}. Thus we in

fact have t = t2, thereby confirming the claim.

By a completely symmetric argument,(
p

q

)
= (−1)t3 .

We claim that t1 = t4. To see this, one notes that the map (x, y) 7→ ( 1
2 (p + 1) −

x, 12 (q+1)−y) is a bijection between these two sets. The proof is an easy calculation:

if x′ = 1
2 (p+ 1)− x and y′ = 1

2 (q + 1)− y then

qx− py < −p
2

⇐⇒ q
(1

2
(p+ 1)− x′

)
− p
(1

2
(q + 1)− y′

)
< −p

2

⇐⇒ − qx′ + py′ < −q
2

⇐⇒ qx′ − py′ > q

2
.

Putting all this together gives(
p

q

)(
q

p

)
= (−1)t2+t3 = (−1)t1+t2+t3+t4 = (−1)#E = (−1)

p−1
2

q−1
2 .

This concludes the proof.



CHAPTER 5

Factorisation and primality testing

5.1. Introduction

This is a very brief chapter on an interesting topic, about which much can be

said. I recommend the superb book Prime numbers: a computational perspective

by Crandall and Pomerance for more information. The basic point of this chapter

is that

• (we think) it is computationally hard to determine the factors of n, in

general;

• it is relatively easy to decide whether or not n is prime (but without

finding its factors).

We are not going to delve too deeply into the question of what “hard” and

“easy” mean in this context, but they are measured in terms of the number of

binary digits of n, which is roughly log2 n: this is the amount of space required to

store n on a computer.

Apropos the second point above, the following famous theorem was established

in 2005.

Theorem 5.1 (Agrawal, Kayal, Saxena). There is an algorithm to determine

whether or not n is prime in time polynomial in log n.

We will not describe this algorithm (though it is not extraordinarily difficult to

do so). We will describe an algorithm that, for practical purposes, is just as good.

By contrast the following is an unsolved problem.

Question 5.1. Is there a polynomial time algorithm to find a factor of n?

It is widely suspected that the answer is no, but low bounds for the running times

of possible algorithms are notoriously hard to come by. (Indeed this is basically

the P vs NP problem, although the factorisation problem itself is not central when

those issues are discussed, because it is suspected not to be NP-complete.)

5.2. Trial division and Fermat’s method

A very simple observation is that, to find a prime factor of n or prove that none

exists, we need only try dividing n by the primes less than or equal to
√
n. Indeed

29
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if d is a divisor of n then so is n/d, and one of these numbers is 6
√
n. Thus of n

has a divisor (other than 1 or n) then it has a divisor of size 6
√
n, and hence a

prime factor p 6
√
n.

This is very effective for small n (for n 6 400 one need only test for divisibility

by 2, 3, 5, 7, 11, 13, 17, 19, and one could even commit to memory the “hard” num-

bers 169, 289, 361, 221, 247, 323, which means one need only test for divisibility by

2, 3, 5, 7, 11). For large n this is a terribly inefficient procedure, even on a computer.

Fermat’s method. This is a reasonable method for finding the prime factors of

four digit numbers by hand, especially if one has a remembered a list of the 4-digit

squares. First, remove all the multiples of 2 from the number to be factored. Given

an odd number n, let m be the least integer >
√
n. Now test m2−n, (m+ 1)2−n,

(m+ 2)2 − n in turn until we find a j such that (m+ j)2 − n is a square, x2. Then

n = (m+ j)2 − x2 = (m+ j − x)(m+ j + x).

If n = ab (with a and b odd, and a 6 b without loss of generality) then this

procedure will find a and b, with j = 1
2 (a + b) − m and x = 1

2 (b − a). (Note

that m + j = 1
2 (a + b), which is >

√
n and hence > m by the AM–GM inequality

1
2 (a+ b) >

√
ab, and so j > 0.)

The procedure will be quite efficient if a ≈ b, but not if a is tiny and b is very

large. For the practical factoring of 4-digit numbers by hand, trial division for

primes p 6 19 (say) followed by the Fermat method if that is unsuccessful is a

sensible way to proceed.

Example 5.1. Take n = 6077. Then 77 <
√

6077 < 78 so we start to look at

m = 78, finding:

782 − 6077 = 7,

792 − 6077 = 164,

802 − 6077 = 323,

812 − 6077 = 484 = 222.

Therefore 6077 = 812 − 222 = 103× 59.

In lectures, we looked at n = 8927. Another example you might care to try is

n = 3869.

5.3. *More sophisticated methods and running times

Both trial division and the Fermat method run in exponential time (that is,

exponential in log2 n) in the worst cases. Subexponential-time factoring algorithms

are known. The first was the continued fraction algorithm. Nowadays many others
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are known, going by the names of the quadratic sieve, the number field sieve, and

the elliptic curve method.

We will give just a hint of how the first of these works, since it may be described

as a refinement of the Fermat method.

Let us try to factor n = 1649 using Fermat’s method. Then 40 <
√

1649 < 41,

and so we look at

412 − 1649 = 32 = 25,

422 − 1649 = 115 = 5 · 23,

432 − 1649 = 200 = 2352.

None of these is a square, and so Fermat’s method has not worked, at least after

only three steps (in fact one needs 17 steps to make it work).

Observe, however, that 32 × 200 = 28 · 52 = 802. It follows that (41 × 43)2 ≡
802(modn). Noting that 41× 43 ≡ 114(mod 1649), it follows that

n|(114− 80)(114 + 80) = 2× 17× 2× 97.

We have uncovered the factorisation of n, namely 17× 97.

Of course, it was rather lucky to simply notice that 32× 200 was a square. Can

we be more sophisticated? One feature of 32 and 200 is that they have only small

prime factors. It ought to be easier to multiply together numbers with only small

prime factors to give a square.

Indeed, if we have numbers

x1 = pa111 · · · pa1kk

...

xr = par11 · · · parkk

Then the problem of a subset of the xi whose product is a square is equivalent to

finding εi ∈ {0, 1} such that xε11 · · ·xεrr is a square, or equivalently

(ε1, . . . , εr)


a11 . . . a1k
...

...

ar1 . . . ark


has even entries. This may be viewed as a linear algebra problem (mod 2), or more

accurately over the field F2 with two elements. Standard linear algebra techniques

such as Gaussian elimination are then available.
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In our example we had r = 3, with x1 = 32 = 25, x2 = 115 = 5 · 23 and

x3 = 200 = 23 · 52. There are three primes in play, namely p1 = 2, p2 = 5 and

p3 = 23. The linear algebra problem to be solved is then

(ε1, ε2, ε3)

5 0 0

0 1 1

3 2 0

 ≡ 0(mod 2).

We were easily able to find the solution ε1 = ε3 = 1, ε2 = 0 by inspection, but

had this not been the case (or for a larger problem) we could have used more

sophisticated methods of linear algebra.

5.4. *The Miller–Rabin test

In this section we describe an efficient method for determining whether or not

a number n is prime. We will only describe the method when n ≡ 3(mod 4), in

which case the description and analysis are rather easier than when n ≡ 1(mod 4).

(If you are interested in reading up on the latter, see the book by Crandall and

Pomerance mentioned earlier, or for example The Miller–Rabin Test by K. Conrad,

http://www.math.uconn.edu/∼kconrad/blurbs/ugradnumthy/millerrabin.pdf.

Proposition 5.1. Suppose that n ≡ 3(mod 4). Then n is prime if and only if

the following is true: for every a ∈ (Z/nZ)×, a(n−1)/2 ≡ ±1(modn).

Proof. We have already shown the “only if” direction in proving Euler’s criterion.

(This bit does not use the fact that n ≡ 3(mod 4).) Conversely, we must show

that if n ≡ 3(mod 4) is composite then there is some a ∈ (Z/nZ)× with a(n−1)/2 6≡
1(modn).

Suppose first that n = pk is a prime power, k > 2. Consider a = 1 + p. Then

a(n−1)/2 = 1 + p
n− 1

2
+ p2m

for some integer m, by the binomial theorem. This certainly cannot be −1(mod pk)

(it’s not even −1(mod p)). It is also not 1(mod pk) since, though a(n−1)/2 − 1 is

divisible by p, it is not divisible by p2.

Now suppose that n is not a prime power, say n = pkn′ with (n′, p) = 1. By the

Chinese remainder theorem, there is a with a ≡ −1(mod pk) and a ≡ 1(modn′).

But then a(n−1)/2 ≡ −1(mod pk) (since (n−1)/2 is odd) and a(n−1)/2 ≡ 1(modn′).

Thus a(n−1)/2 6≡ ±1(modn′), because −1 6≡ 1(modn′) and −1 6≡ 1(mod pk).

Thus, to prove that n is composite, we need only find a “witness”: a value of a

such that a(n−1)/2 6≡ ±1(modn). At first sight, this could be quite hard. However,

a simple observation reveals that at least half of all a are witnesses.
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Lemma 5.1. Suppose that n ≡ 3(mod 4) and that n is composite. Then the set

S of all a with a(n−1)/2 ≡ ±1(modn) is a proper subgroup of (Z/nZ)×.

Proof. It is obvious that S is closed under multiplication and taking inverses and

hence is a subgroup. That it is a proper subgroup follows from Proposition 5.1.

In practice, one now tests for primality of n ≡ 3(mod 4) by picking a1, . . . , ak ∈
{1, . . . , n − 1} at random. If some ai has a factor in common with n then we

immediately see that n is composite; otherwise, the ai are random elements of

(Z/nZ)×, and so if a
(n−1)/2
j ≡ ±1(modn) for j = 1, . . . , k, then one can assert that

“n is prime with probability 1− 2−k”.

For a rigorous result, one must show that a(n−1)/2 ≡ ±1(modn) for a set of

a generating all of (Z/nZ)×. If one is happy to assume the Generalised Riemann

Hypothesis1 (GRH), the following result can be used to do the job in polynomial

time.

Theorem 5.2. Assume GRH. Then (Z/nZ)× is generated by the elements

1, 2, . . . , d2(log n)2e.

We remarked earlier that the computation of a(n−1)/2(modn) is not especially

expensive, and can be done by repeated squaring. Assuming GRH, the whole

algorithm works in polynomial time.

5.5. *Fermat numbers

There are many primality tests which work for numbers of a specific type.

Perhaps the most famous of these are the Mersenne Primes, primes of the form

Mp = 2p − 1 (exercise: if 2n − 1 is prime, then n is prime). It is usually the case

that the world record largest prime is a Mersenne Prime. The current record is

M74207281. It is easier to test a number of the form Mp for primality because of

the Lucas-Lehmer test. You can easily look up the statement of this test, but the

analysis (though not terribly difficult) is beyond the scope of this course.

We will illustrate the point that certain specific types of number are easier to

test for primality with a different example.

The kth Fermat number, Fk, is defined to be 22
k

+ 1.

Proposition 5.2 (Pepin’s test). Suppose that n = Fk, k > 1. Then n is prime

if and only if 3(n−1)/2 ≡ −1(modn).

Proof. Suppose first that the congruence holds. Then certainly 3n−1 ≡ 1(modn).

However, as we remarked earlier, conditions like this do not imply that n is prime

1The statement that all nontrivial zeros of all Dirichlet L-functions L(s, χ) lie on the line <s = 1
2

.
You can find a precise statement online in many places.
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(the smallest base 3 pseudoprime is 91: 390 ≡ 1(mod 91)). However, it does follow

that the order ordn(3) divides n−1. Moreover, since 3(n−1)/2 ≡ −1(modn), ordn(3)

does not divide (n− 1)/2. Since n− 1 is a power of two, it follows that ordn(3) =

n − 1. In particular, the order of the multiplicative group (Z/nZ)× is (at least)

n− 1, which implies that n is prime.

Conversely, suppose that n is prime. Evidently n ≡ 1(mod 4). By the reciprocity

law we have
(
3
n

)
=
(
n
3

)
. Moreover, n ≡ 2(mod 3); indeed the powers of two

alternate between 1 and 2(mod 3), with 22j ≡ 2(mod 3) and 22j+1 ≡ 1(mod 3).

Therefore
(
n
3

)
=
(
2
3

)
= −1. The claim now follows from Euler’s criterion.

This test does not provide a useful way of finding large explicit primes, for the

simple reason that it is speculated that Fk is composite for k > 5 (and this has

been checked for 5 6 k 6 32).



CHAPTER 6

Public key cryptography

6.1. Introduction

The RSA Public Key Cryptosystem, invented by Rivest, Shamir and Adleman

in 1977 allows messages to be sent securely without the need to exchange a “key”

secretly. (The algorithm was first discovered in 1974 by the mathematician Clifford

Cocks at GCHQ, but this was kept secret until 1997.)

Following tradition, let us suppose that we have two people named Alice and

Bob, and that Alice wants to send a message to Bob.

A malicious eavesdropper will appear later by the name of Eve.

6.2. Protocol – Bob

Bob chooses two large primes p and q and an integer e such that (e, φ(n)) = 1.

(Note that φ(n) = (p− 1)(q− 1), so this is equivalent to (e, p− 1) = (e, q− 1) = 1.)

Typically p, q have hundreds of digits each. It is best not to choose them to have

any particular structure (for example, choosing Mersenne Primes would be bad).

A sensible procedure would be to simply pick numbers at random within a certain

range [M, 2M ] until one finds two primes, testing each candidate using, say, the

Miller–Rabin test. It follows from the prime number theorem (not discussed in this

course) that a randomly selected integer from [M, 2M ] is prime with probability

∼ 1/ logM , which is quite large, so this is actually a very sensible way to proceed.

Bob forms the product n = pq and announces the numbers n and e publicly. He

does not publish the numbers p and q separately.

6.3. Protocol – Alice

Now we describe how Alice sends her message. Suppose the message is written

in English. First it must be converted to numerical form. This is done using a

suitable numerical substitution scheme such as A → 01, B → 02, etc. This string

of numerals is then split into chunks, each of which is a number < n. Each of these

chunks is then transmitted separately.

IfM is one of the chunks, it is transmitted as follows. Alice computesMe(modn)

(by which we mean Me, reduced modulo n to lie in {0, . . . , n− 1}) and sends this

to Bob.
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6.4. Decryption

Now Bob has the encrypted message Me(modn). How does he decrypt it? Since

Bob knows p and q, he can compute φ(n) = (p− 1)(q − 1). Since, by assumption,

e is coprime to φ(n), he can find d such that

de ≡ 1(modφ(n))

(by Euclid’s algorithm), say de = kφ(n) + 1. But then

(Me)d = (Mφ(n))kM.

By the Fermat–Euler theorem, this is ≡M(modn).

However, the unencrypted message M is known to be a natural number < n,

and so this allows it to be recovered uniquely.

There is an issue here if it happens that M is not coprime to n. However, since

n = pq with p and q large primes, this is exceptionally unlikely to happen.

6.5. Security

The decryption method we presented above depends on having the number d

to hand. To calculate this, we needed φ(n). Eve, the eavesdropper, could read the

message if she had φ(n).

However, knowledge of φ(n) is equivalent to knowledge of the factorisation n =

pq, which is widely believed to be hard. Indeed, since

p+ q = pq − (p− 1)(q − 1) + 1 = n− φ(n) + 1,

the factors p and q may be recovered as the roots of the quadratic equation

x2 − x(n− φ(n) + 1) + n = 0.


