
Computational Mathematics

Hilary Term Lecture 1: Programming
Andrew Thompson

Outline for Today:

● Schedule this term

● Review

● Introduction to programming

● Examples

2

Michaelmas Term Lecture 2

Outline for today:

- Arrays
- Logic
- Programming
- Functions

Arrays:

the foundation of

MATLAB

Basics

MATLAB is very good at dealing with arrays

A vector is a 1d array; a matrix a 2d array

Arrays with more dimensions are allowed, but uncommon

Construct a row vector like so:

>> a = [1 2 3 4]

a =

 1 2 3 4

Enter a 2-by-2 matrix like this

>> A = [1 2; 3 4]

A =

 1 2

 3 4

N.B. MATLAB is case sensitive, so a and A are different variables.

Arrays

Concatenation

Note that the semicolon was used to separate two rows of the matrix

The semicolon works as a concatenation operator

It can be used to concatenate two arrays in the up-down direction:

>> a

a =

 1 2 3 4

>> [a;a]

ans =

 1 2 3 4

 1 2 3 4

The space concatenates in the left-right direction:

>> [A A]

ans =

 1 2 1 2

 3 4 3 4

Ranges

Often we require a vector of equally spaced numbers

MATLAB has ranges to deal with this

Declare a range with startvalue:stopvalue

>> r = 1:10

r =

 1 2 3 4 5 6 7 8 9 10

Ranges need not have integral spacing: use startvalue:step:stopvalue

>> r = 1:0.2:2

r =

 1.0000 1.2000 1.4000 1.6000 1.8000 2.0000

r = 2:-0.2:1

 2.0000 1.8000 1.6000 1.4000 1.2000 1.0000

Array manipulation

Matrix transpose: transpose(a) or a.’

Complex conjugate: conj(a)

Hermitian transpose: a’

Inverse: inv(a)

Left matrix division (solve Ax=b) A\b

Right matrix division (solve xA=b) b/A

Determinant: det(a)

Left and right matrix division are much more efficient than using inv

Array arithmetic

For matrices * is interpreted as matrix multiplication

+ and - work for matrices

Addition of a matrix and a scalar is interpreted sensibly:

>> [1 2 3] + 1

ans =

 2 3 4

Elementwise operations

There are occasions when we wish operations to act on each element of a

matrix, rather than the whole matrix.

Example: computing the square of every element of a matrix squareMat:

squareMat^2 is not what is required.

To make an operator act elementwise, prefix it with a dot:

squareMat.^2

Another example: consider vectors x and y:

x./y + y.^2 -2*y.*x

Most of the mathematical functions covered work with arrays elementwise:

>> sin([0 pi/4 pi/3 pi/2 pi])

ans =

 0.0000 0.7071 0.8660 1.0000 0.0000

exp works elementwise: use expm for matrix exponentials

Array construction functions

MATLAB has many functions to construct common matrices:

eye(n) n-by-n identity matrix

zeros(m,n) m-by-n zero matrix

ones(m,n) m-by-n matrix of ones

rand(m,n) uniformly distributed m-by-n matrix

randn(m,n) N(0,1) distributed m-by-n matrix

diag(x) diagonal matrix formed using vector x

and some that are less common:

topeliz Topelitz matrix

hadamard Hadamard matrix

vander Vandermonde matrix

hilb Hilbert matrix

 magic magic square

Array access

Vectors are accessed using a single subscript between brackets:

>> v =[1 3 5];

>> v(3)

ans =

 5

>>v = v.’;

>> v(2)

ans =

 3

Matrix elements are accesed using the row and column number:

>> A = [1 2;3 4];

>> A(2,2)

ans =

4

Array access continued

The word end can be used to refer to the last element along a dimension:

>> x = 1:100;

>> x(end)

ans =

 100

Ranges can be used to access arrays:

>> x(1:5)

ans =

 1 2 3 4 5

A more complicated example:

>> A = [1 2 3;4 5 6;7 8 9];

>> A(2,1:end)

ans =

 4 5 6

Functions for array manipulation

repmat(A,m,n) concatenate A m times vertically, n times horizontally

reshape(A,m,n) reshape the elements of A into an m-by-n matrix

sort(A,dim) sort A along the dimension dim

flipud(A) flip A in the up-down direction

fliplr(A) flip A left-to-right

circshift(A,n) circularly shift elements of A down by an amount n

Functions that interrogate arrays

sum(A,dim) sum elements of A along dimension dim

prod(A,dim) form product of elements of A along dimension dim

size return vector of dimensions of A

length return length of vector

numel return number of elements of an array

nnz return number of elements not equal to

max return maximum of each column

Logic

We have met some variable classes already: string, integer, double precision

MATLAB has another for handling logic: the logical class

A logical variable can have the value true or false

Logical expressions

>> x = true

x =

 1

>> class(x)

ans =

 logical

True and false are also represented by 1 and 0:

>> x = logical(0); % sets x to false

Logical expressions: comparison

We can make logical comparisons in MATLAB

>> 2 > 1

ans =

 1

>> 1 == 0

ans =

 0

== is equal to

~= is not equal to

> greater than

< less than

>= greater than or equal to

<= less than or equal to

Array logic

All logical expressions covered so far work with arrays elementwise

The result is an array of logical values (0s or 1s); a logical array

Here we see arrays being compared:

>> A = [1 2;3 4]; B = [1 2;-3 4];

>> A == B

ans =

 1 1

 0 1

We may perform Boolean operations with logical arrays as well:

>> a = logical([1 0 0]); b = logical([0 1 0])

>> a | b

ans =

 1 1 0

Logical indexing: powerful expressions

We may use a logical array to index another array

Why is this useful?

Suppose we wish to find all numbers in a matrix fulfilling some criteria

e.g. all the positive entries

We write an expression whose result is a logical array:

>> z = [1 2 -1 0 -4 20 -2];

>> z > 0

ans =

 1 1 0 0 0 1 0

Use this array to index the original array:

>> index = z > 0;

>> z(index)

ans =

 1 2 20

It is usually much neater to write a single expression:

>> z(z>0)

ans =

 1 2 20

A more complicated example: return all the elements that are on the diagonal:

>> a = 1:16;

>> A = reshape(a,4,4); % create a 4-by-4 matrix

>> index = logical(eye(4))

>> A(index)

ans =

 1 6 11 16

What will the following return from a matrix X?

X((mod(X,2)==0) & (X > 0))

The find function returns indices of the nonzero elements of an array

This is useful to find the indices of elements that fulfil certain criteria

Using find

The find function

>> a = [1 0 5 0 -1]

>> find(a)

ans =

 1 3 5

Combine find with a logical expression:

>> find(a < 0)

ans =

 5

The M-file

We can write programs or scripts for MATLAB

At their simplest these are a list of statements one after another

Written in an M-file, using the .m extension

No special structure: simplest program is just a list of statements

A simple code:

Getting started

% simple.m

A = rand(2);

display(eig(A));

6

Loops

● “For” loop

● Typically, one knows how many terms

● Example: sum of n^2 for n=1..10

● “While” loop

● Use when it's not obvious how many terms are needed

● Example: find first 10 prime numbers

● Flow control: “if ... then ... else ...”

We can control whether certain parts of a program are executed

We can make execution conditional using an if statement

An example: compute a matrix inverse only if matrix is nonsingular:

Program flow: if statements

if (abs(det(A)) > eps)

 display(inv(A));

end

We can allow the program to follow one of two paths using the else keyword:

Example: display a warning if the matrix is singular:

if (abs(det(A)) > eps)

 display(inv(A));

else

display('matrix is singular to working precision')

end

The elseif keyword allows the program to follow one of several branches

Example: display a message about the size of a 2d array

The elseif keyword

% part of a program

x = min(size(A);

if (x==0)

display('A is empty');

elseif(x==1)

 display('A is a vector');

else

display('A is a matrix');

end

We used else here to catch all the other possible cases

N.B. spelling of elseif vs elsif as in some languages (Ruby, Perl)

7

Programming
● Why? Sometimes problems are too “hard” for a

sequential approach:

● Algorithms

● Repetition, encapsulation, “code reuse” (solve a low-level
problem once, make sure its correct, use it repeatedly
without worrying about the details)

● Example: convert your problem to linear algebra: Ax=b,
then call solver.

● Build bigger ideas on top of smaller ones, e.g. “isprime()”

● Its fun! Like Lego (well, some people think so).

● Many careers involve solving problems on
computers... and typically, this means programming.

8

Writing Functions

● Take some input, give back some output

● You already know how to write inline 'anonymous'
functions, e.g. f = @(x) x^2 - 4*x

● Matlab already has many built-in functions

● often implementations of mathematical functions y =
f(x)

● can be instructive to ask how these work (sometimes
you can read the source code, but unfortunately not
always)

● [Also symbolic functions: algebraic objects]

Function files

We may add to the many MATLAB built-in functions

Simply write a function and save in an M-file, e.g MyFunction

Call the function in the normal way

Writing your own functions

>> MyFunction

MATLAB searches for the function in the current directory and executes it

Functions are also written in a .m file

Functions all have the same structure

You can even look at the code for the built-in functions

A skeleton function:

Function structure

function [out1,out2,...] = functionName(arg1,arg2,...)

statements

out1 =

out2 =

end

First line is the function signature

Result/output variables are defined within the function

Function ends with an end (actually optional, but a good idea)

Example: some simple functions

Simple functions

function [] = proclaim()

display('MATLAB is awesome');

end

Call one function from another:

function [xout] = jukowski(xin)

xout = xin + 1./xin;

end

function [xout] = jukowski(xin)

xout = xin + 1./xin;

proclaim();

end

