Computational Mathematics

Michaelmas Term Lecture 2
Andrew Thompson

Outline for today:

- Arrays

- Logic

- Programming
- Functions


2

Michaelmas Term Lecture 2

Outline for today:

- Arrays
- Logic
- Programming
- Functions


N o e Sl |

oocnuooaEnn
ECDOONEDOO
SCDAIaySID 00

DDDOODDDOO
000N DOo
00QOAvvQnA
00dalllioedl




Arrays

MATLAB is very good at dealing with arrays
A vector is a 1d array; a matrix a 2d array
Arrays with more dimensions are allowed, but uncommon
Construct a row vector like so:
> a = [1 2 3 4]
a =

1 2 3 4
Enter a 2-by-2 matrix like this

>> A = [1 2; 3 4]

1 2
3 4

N.B. MATLAB is case sensitive, S0 a and A are different variables.


Arrays


Concatenation

Note that the semicolon was used to separate two rows of the matrix
The semicolon works as a concatenation operator

It can be used to concatenate two arrays in the up-down direction:

>> a
a =
1 2 3 4
>> [a;a]
ans =
1 2 3 4
1 2 3 4
The space concatenates in the left-right direction:

>> [A A]

ans =



Ranges

Often we require a vector of equally spaced numbers
MATLAB has ranges to deal with this
Declare a range with startvalue:stopvalue
> r = 1:10
r o=
1 2 3 4 5 6 7 8 9 10

Ranges need not have integral spacing: use startvalue:step:stopvalue

>> r = 1:0.2:2
r‘ =

1.0000 1.2000 1.4000 1.6000 1.8000 2.0000
r=2:-0.2:1
2.0000 1.8000 1.6000 1.4000 1.2000 1.0000



Array manipulation

Matrix transpose: transpose(a) ora.’
Complex conjugate: conj(a)

Hermitian transpose: a'

Inverse: inv(a)

Left matrix division (solve Ax=b) A\b

Right matrix division (solve xA=b) b/A
Determinant: det(a)
Left and right matrix division are much more efficient than using inv

Array arithmetic

For matrices * is interpreted as matrix multiplication
+ and - work for matrices
Addition of a matrix and a scalar is interpreted sensibly:
> [1 2 3] +1
ans =
2 3 4



Elementwise operations

There are occasions when we wish operations to act on each element of a
matrix, rather than the whole matrix.

Example: computing the square of every element of a matrix squareMat:
squareMat”2 is not what is required.

To make an operator act elementwise, prefix it with a dot:
squareMat.”2

Another example: consider vectors x and vy:
X./y + y.72 -2*%y.*X
Most of the mathematical functions covered work with arrays elementwise:
>> sin([0 pi/4 pi/3 pi/2 pi])
ans =
0.0000 0.7071 0.8660 1.0000 0.0000

exp works elementwise: use expm for matrix exponentials



Array construction functions

MATLAB has many functions to construct common matrices:

eye(n)
zeros(m,n)
ones(m,n)
rand(m,n)
randn(m,n)

diag(x)

n-by-n identity matrix

m-by-n zero matrix

m-by-n matrix of ones

uniformly distributed m-by-n matrix
N(0,1) distributed m-by-n matrix

diagonal matrix formed using vector x



Array access

Vectors are accessed using a single subscript between brackets:
>> v =[1 3 5];
>> v(3)

ans =

Matrix elements are accesed using the row and column number:
> A = [1 2;3 4];

>> A(2,2)

ans =

4



)

O

Array access continued

The word end can be used to refer to the last element along a dimension:
>> x = 1:100;
>> X(end)
ans =
100
Ranges can be used to access arrays:
>> X(1:5)
ans =
1 2 3 4 5
A more complicated example:
> A =112 3;45 6;7 8 9];
>> A(2,1:end)
ans =
4 5 6



Functions for array manipulation

repmat(A,m,n)
reshape(A,m,n)
sort(A,dim)
flipud(A)
fliplr(A)
circshift(A,n)

concatenate A m times vertically, n times horizontally
reshape the elements of A into an m-by-n matrix
sort A along the dimension dim

flip A in the up-down direction

flip A left-to-right

circularly shift elements of A down by an amount n

Functions that interrogate arrays

sum(A,dim)
prod(A,dim)
size
length
numel

nnz

max

sum elements of A along dimension dim

form product of elements of A along dimension dim
return vector of dimensions of A

return length of vector

return number of elements of an array

return number of elements not equal to

return maximum of each column



O

Logic
Logical expressions

We have met some variable classes already: string, integer, double precision
MATLAB has another for handling logic: the /ogical class

A logical variable can have the value true or false

>> X = true
X =

1
>> class(x)
ans =

logical

True and false are also represented by 1 and 0:

>> X = logical(0Q); % sets x to false



h__B N

Logical expressions: comparison

We can make /ogical comparisons in MATLAB

>> 2 > 1

ans =

== is equal to

~= is not equal to

> greater than
< less than
>= greater than or equal to

<= less than or equal to



Array logic

All logical expressions covered so far work with arrays elementwise
The result is an array of logical values (0s or 1s); a logical array
Here we see arrays being compared:

> A =[12;3 4]; B=1[12;-3 4];
>> A ==
ans =

1 1

0 1

We may perform Boolean operations with logical arrays as well:

>> a = logical([1 0 @]); b = logical([0 1 0O])
>a | b
ans =

1 1 0



O

Logical indexing: powerful expressions

We may use a logical array to index another array

Why is this useful?

Suppose we wish to find all numbers in a matrix fulfilling some criteria
e.g. all the positive entries

We write an expression whose result is a logical array:

>z =[12 -10 -4 20 -2];
>> 7z > 0
ans =

1 1 0 ¢) 0 1 ¢)

Use this array to index the original array:

>> index = z > 0;
>> z(1index)
ans =

1 2 20



It is usually much neater to write a single expression:

>> 7(z2>0)
ans =
1 2 20

A more complicated example: return all the elements that are on the diagonal:

>> g = 1:16;
>> A = reshape(a,4,4); % create a 4-by-4 matrix
>> jndex = logical(eye(4))
>> A(index)
ans =
1 6 11 16

What will the following return from a matrix X?

X((mod(X,2)==0) & (X > 0))



The find function

The find function returns indices of the nonzero elements of an array
This is useful to find the indices of elements that fulfil certain criteria
Using find

> a=[1050 -1]
>> find(a)
ans =

1 3 5

Combine find with a logical expression:

>> find(a < 0)
ans =
5



)

The M-file

Getting started

We can write programs or scripts for MATLAB

At their simplest these are a list of statements one after another
Written in an M-file, using the .m extension

No special structure: simplest program is just a list of statements

A simple code:

% simple.m

A = rand(2);
display(eig(A));



Loops

* “For” loop
 Typically, one knows how many terms

 Example: sum of n*2 for n=1..10

* “While” loop
* Use when it's not obvious how many terms are needed
 Example: find first 10 prime numbers

* Flow control: “If ... then ... else ...”



Program flow: 1f statements

We can control whether certain parts of a program are executed
We can make execution conditional using an 1f statement

An example: compute a matrix inverse only if matrix is nonsingular:

if (abs(det(A)) > eps)
display(inv(A));
end

We can allow the program to follow one of two paths using the else keyword:

Example: display a warning if the matrix is singular:

if (abs(det(A)) > eps)
display(inv(A));
else
display('matrix is singular to working precision')

end



2

A\

The elseif keyword

The elseif keyword allows the program to follow one of several branches
Example: display a message about the size of a 2d array

% part of a program
X = min(size(A);
if (x==0)

display('A is empty');
elseif (x==1)

display('A is a vector');
else

display('A is a matrix');
end

We used else here to catch all the other possible cases
N.B. spelling of elseif vs elsif as in some languages (Ruby, Perl)



NO 3




Programming

 Why? Sometimes problems are too “hard” for a
sequential approach:

* Algorithms

* Repetition, encapsulation, “code reuse” (solve a low-level
problem once, make sure its correct, use it repeatedly
without worrying about the details)

« Example: convert your problem to linear algebra: Ax=b,
then call solver.

* Build bigger ideas on top of smaller ones, e.g. “isprime()”
* |ts fun! Like Lego (well, some people think so).

* Many careers involve solving problems on
computers... and typically, this means programming.7



Writing Functions

» Take some input, give back some output

* You already know how to write inline ‘anonymous
functions, e.g. f = @(X) X*2 - 4*x

* Matlab already has many built-in functions
» often implementations of mathematical functions y =

f(x)
e can be instructive to ask how these work (sometimes
you can read the source code, but unfortunately not

always)
 [Also symbolic functions: algebraic objects]



Function files

Writing your own functions

We may add to the many MATLAB built-in functions
Simply write a function and save in an M-file, e.g MyFunction

Call the function in the normal way

>> MyFunction

MATLAB searches for the function in the current directory and executes it
Functions are also written in a .m file



Function structure

Functions all have the same structure
You can even look at the code for the built-in functions

A skeleton function:

function [outl,out2,...] = functionName(argl,arg2,...)
statements

outl =
out2 =

end

First line is the function signature
Result/output variables are defined within the function

Function ends with an end (actually optional, but a good idea)



)

O

Simple functions

Example: some simple functions

function [] = proclaim()
display('MATLAB is awesome');
end

function [xout] = jukowski(xin)
xout = xin + 1./xin;

end

Call one function from another:

function [xout] = jukowski(xin)
xout = xin + 1./Xxin;
proclaim();

end



