1. (i) Show that the distinct points $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are collinear (i.e. lie on a line) in \mathbb{R}^{n} if and only if the vectors \mathbf{b} - a and $\mathbf{c}-\mathbf{a}$ are linearly dependent.
(ii) Show that the vectors $\mathbf{u}=(1,2,-3)$ and $\mathbf{v}=(6,3,4)$ are perpendicular in \mathbb{R}^{3}. Verify directly Pythagoras' Theorem for the right-angled triangles with vertices $\mathbf{0}, \mathbf{u}, \mathbf{v}$ and vertices $\mathbf{0}, \mathbf{u}, \mathbf{u}+\mathbf{v}$.
(iii) Let \mathbf{v}, \mathbf{w} be vectors in \mathbb{R}^{n}. Show that if $\mathbf{v} \cdot \mathbf{x}=\mathbf{w} \cdot \mathbf{x}$ for all \mathbf{x} in \mathbb{R}^{n} then $\mathbf{v}=\mathbf{w}$.
2. Consider the two lines in \mathbb{R}^{3} given parametrically by

$$
\mathbf{r}(\lambda)=(1,3,0)+\lambda(2,3,2), \quad \mathbf{s}(\mu)=(2,1,0)+\mu(0,2,1)
$$

Show that the shortest distance between these lines is $\sqrt{3 / 7}$ by solving the simultaneous equations

$$
(\mathbf{r}(\lambda)-\mathbf{s}(\mu)) \cdot(2,3,2)=0, \quad(\mathbf{r}(\lambda)-\mathbf{s}(\mu)) \cdot(0,2,1)=0 .
$$

What geometry do these equations encode? (Optional - requires knowledge of partial derivatives. The shortest distance could also be found by solving the equations

$$
\frac{\partial}{\partial \lambda}\left(|\mathbf{r}(\lambda)-\mathbf{s}(\mu)|^{2}\right)=0, \quad \frac{\partial}{\partial \mu}\left(|\mathbf{r}(\lambda)-\mathbf{s}(\mu)|^{2}\right)=0
$$

Determine these equations and explain why they are (essentially) the same as the previous two.)
3. Let $(x, y, z)=(s+t+2,3 s-2 t+1,4 s-3 t)$. Show that, as s, t vary, the point (x, y, z) ranges over a plane with equation $a x+b y+c z=d$ which you should determine.
4. Determine, in the form $\mathbf{r} \cdot \mathbf{n}=c$, the equations of each of the following planes in \mathbb{R}^{3};
(i) the plane containing the points $(1,0,0),(1,1,0),(0,1,1)$;
(ii) the plane containing the point $(2,1,0)$ and the line $x=y=z$;
(iii) the two planes containing the points $(1,0,1),(0,1,1)$ and which are tangential to the unit sphere, centre $\mathbf{0}$.
5. Given a vector $\mathbf{a} \in \mathbb{R}^{2}$ and a constant $0<\lambda<1$, define $\mathbf{b}=\mathbf{a} /\left(1-\lambda^{2}\right)$ and prove that

$$
\frac{|\mathbf{r}-\mathbf{a}|^{2}-\lambda^{2}|\mathbf{r}|^{2}}{1-\lambda^{2}}=|\mathbf{r}-\mathbf{b}|^{2}-\lambda^{2}|\mathbf{b}|^{2}
$$

Deduce Apollonius' Theorem which states that if O and A are fixed points in the plane, then the locus of all points X, such that $|A X|=\lambda|O X|$, is a circle. Find its centre and radius.
6. (Optional) A tetrahedron $A B C D$ has vertices with respective position vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}$ from an origin O inside the tetrahedron. The lines $A O, B O, C O, D O$ meet the opposite faces in E, F, G, H.
(i) Show that a point lies in the plane $B C D$ if and only if it has position vector $\lambda \mathbf{b}+\mu \mathbf{c}+\nu \mathbf{d}$ where $\lambda+\mu+\nu=1$.
(ii) There are $\alpha, \beta, \gamma, \delta$, not all zero, such that $\alpha \mathbf{a}+\beta \mathbf{b}+\gamma \mathbf{c}+\delta \mathbf{d}=\mathbf{0}$. Show that E has position vector

$$
\frac{-\alpha \mathbf{a}}{\beta+\gamma+\delta}
$$

(iii) Deduce that

$$
\frac{|A O|}{|A E|}+\frac{|B O|}{|B F|}+\frac{|C O|}{|C G|}+\frac{|D O|}{|D H|}=3
$$

