GEOMETRY — SHEET 2 — Vector Product. Vector Algebra.

(Exercises on lectures in Week 3)

1. Write the equations of each of the following lines in the form $\mathbf{r} \wedge \mathbf{a} = \mathbf{b}$.

- (i) The line through the points $(1, 1, 1)$ and $(1, 2, 3)$.
- (ii) The line with equation $(x 1)/2 = y/3 = z + 1$.
- (iii) The intersection of the planes $x + y + z = 1$ and $x y z = 2$.

2. Let

$$
\mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}, \quad M = \begin{pmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{pmatrix}.
$$

Show that $\mathbf{a} \wedge \mathbf{b} = M\mathbf{b}$ and use the vector triple product to show that $M^3 = -|\mathbf{a}|^2 M$.

3. (i) Let A, B, C be three points in space with position vectors a, b, c from an origin O. Show that A, B and C are collinear if and only if

$$
\mathbf{a} \wedge \mathbf{b} + \mathbf{b} \wedge \mathbf{c} + \mathbf{c} \wedge \mathbf{a} = 0.
$$

(ii) Show that the equation of the plane containing three non-collinear points with position vectors \bf{a}, \bf{b}, \bf{c} is

$$
\mathbf{r} \cdot (\mathbf{a} \wedge \mathbf{b} + \mathbf{b} \wedge \mathbf{c} + \mathbf{c} \wedge \mathbf{a}) = [\mathbf{a}, \mathbf{b}, \mathbf{c}].
$$

Deduce that four points A, B, C, D with respective position vectors $\bf{a}, \bf{b}, \bf{c}, \bf{d}$ are coplanar if and only if

$$
[\mathbf{a}, \mathbf{b}, \mathbf{c}] - [\mathbf{b}, \mathbf{c}, \mathbf{d}] + [\mathbf{c}, \mathbf{d}, \mathbf{a}] - [\mathbf{d}, \mathbf{a}, \mathbf{b}] = 0.
$$

4. (i) Let A be a 3×3 matrix and $\mathbf{u}, \mathbf{v}, \mathbf{w}$ be three column vectors in \mathbb{R}^3 . Use the determinant product rule to show that

$$
[A\mathbf{u}, A\mathbf{v}, A\mathbf{w}] = \det A \times [\mathbf{u}, \mathbf{v}, \mathbf{w}].
$$

(ii) Let T be the tetrahedron with vertices $(0,0,0), (0,0,1), (0,1,0)$ and $(1,0,0)$. Let $0 < c < 1$. Show that the triangular intersection of T with the plane $z = c$ has area $(1 - c)^2/2$. Hence find the volume of T.

(iii) Deduce that the volume of the tetrahedron with vertices $0, u, v, w$ is given by $[[u, v, w]]/6$.

5. (i) Let **a** and **b** be independent vectors in \mathbb{R}^3 . Show that $|\mathbf{a}|^2 |\mathbf{b}|^2 - (\mathbf{a} \cdot \mathbf{b})^2 = |\mathbf{a} \wedge \mathbf{b}|^2 \neq 0$.

(ii) Using the fact that **a**, **b** and **a** \wedge **b** form a basis of \mathbb{R}^3 , or otherwise, show that the planes

 $\mathbf{r} \cdot \mathbf{a} = \alpha$, $\mathbf{r} \cdot \mathbf{b} = \beta$,

intersect in a line parallel to $\mathbf{a} \wedge \mathbf{b}$.

(iii) Under what conditions do the equations in (ii) and the equation $\mathbf{r} \cdot \mathbf{c} = \gamma$ (where $\mathbf{c} \neq \mathbf{0}$) have a unique common solution?

6. (Optional) Two non-parallel lines l_1 and l_2 in three-dimensional space have respective equations $\mathbf{r} \wedge \mathbf{a}_1 = \mathbf{b}_1$ and $\mathbf{r} \wedge \mathbf{a}_2 = \mathbf{b}_2.$

For $i = 1, 2$ let Π_i denote the plane of the form $\mathbf{r} \cdot (\mathbf{a}_1 \wedge \mathbf{a}_2) = k_i$ which contains l_i . Show that $k_1 = \mathbf{b}_1 \cdot \mathbf{a}_2$ and find $k₂$. Hence show that the least distance between the lines equals

$$
\frac{|\mathbf{a}_1\cdot \mathbf{b}_2+\mathbf{a}_2\cdot \mathbf{b}_1|}{|\mathbf{a}_1\wedge \mathbf{a}_2|}.
$$