GEOMETRY – SHEET 6 – Parametrized Surfaces

(Exercises on lectures in Week 7)

1. Planar parabolic co-ordinates u, v are defined by

$$
x = \frac{u^2 - v^2}{2}, \qquad y = uv.
$$

(i) Show that $x + iy = (u + iv)^2/2$. Deduce that as u, v vary over the positive numbers then (x, y) varies over the upper half-plane $y > 0$.

(ii) Sketch the curves $u = \text{const.}$ and $v = \text{const.}$ Show that these curves intersect at right angles.

- **2.** Consider the hyperboloid of one sheet with equation $x^2 + y^2 = z^2 + 1$.
- (i) Show that this hyperboloid can be parametrized as

$$
\mathbf{r}(\theta,\lambda) = (\cos\theta,\sin\theta,0) + \lambda(\sin\theta,-\cos\theta,1) \qquad 0 \leq \theta < 2\pi, \lambda \in \mathbb{R}.
$$

- (ii) Determine a normal vector at $\mathbf{r}(\theta, \lambda)$ by working out $\mathbf{r}_{\theta} \wedge \mathbf{r}_{\lambda}$.
- (iii) Determine a normal vector at $\mathbf{r}(\theta, \lambda)$ by working the gradient vector of $f(x, y, z) = x^2 + y^2 z^2$ at $\mathbf{r}(\theta, \lambda)$.
- (iv) What is the tangent plane to the hyperboloid at $\mathbf{r}(\theta, \lambda)$?

3. (i) What is the shortest distance between $(0, 1/\sqrt{2}, 1/\sqrt{2})$ and $(1/2, 0, \sqrt{3}/2)$ as measured on the unit sphere $x^2 + y^2 + z^2 = 1$?

(ii) Let $\gamma(t) = (\cos \theta(t), \sin \theta(t), z(t))$, where $a \leq t \leq b$, be a parametrized curve in the cylinder $x^2 + y^2 = 1$. Show that the curve γ has arc length

$$
\int_a^b \sqrt{\dot{\theta}^2 + \dot{z}^2} \, \mathrm{d}t.
$$

Deduce that the map $(\theta, z) \to (\cos \theta, \sin \theta, z)$ from \mathbb{R}^2 to the cylinder is an isometry (when distances are measured on the cylinder).

Find the shortest distance from $(1, 0, 0)$ to $(0, 1, 1)$ when measured on the cylinder.

4. Let S denote the unit sphere $x^2 + y^2 + z^2 = 1$. Every point $P = (r \cos \alpha, r \sin \alpha)$ in \mathbb{R}^2 can be identified with a point Q on S by drawing a line from $(r \cos \alpha, r \sin \alpha, 0)$ to the sphere's north pole $N = (0, 0, 1)$; this line intersects the sphere at two points Q and N. We define a map f from \mathbb{R}^2 to the sphere S by setting $f(P) = Q$.

(i) Show that

$$
Q=\left(\frac{2r\cos\alpha}{1+r^2},\frac{2r\sin\alpha}{1+r^2},\frac{r^2-1}{1+r^2}\right)
$$

 $\ddot{}$

(ii) What are the spherical polar co-ordinates θ , ϕ of the point Q?

5. (i) Let $\mathbf{r}(u, v)$ be a parametrized surface with unit normal $\mathbf{n}(u, v)$. By differentiating $\mathbf{n} \cdot \mathbf{n} = 1$, show that \mathbf{n}_u and n_v are tangent vectors to the surface. Deduce that

$$
\mathbf{n}_u \wedge \mathbf{n}_v = K(u, v) \mathbf{r}_u \wedge \mathbf{r}_v
$$

for some scalar function $K(u, v)$.

(ii) When $\mathbf{r}(u, v)$ is the sphere of radius R centred at 0, so that $\mathbf{r} = R\mathbf{n}$, what is $K(u, v)$?

(iii) Let $0 < a < b$. Consider the following parametrization of a torus

$$
\mathbf{r}(\theta,\phi) = ((b + a\cos\theta)\cos\phi, (b + a\cos\theta)\sin\phi, a\sin\theta).
$$

Determine $\mathbf{n}(\theta, \phi) = \mathbf{r}_{\theta} \wedge \mathbf{r}_{\phi} / |\mathbf{r}_{\theta} \wedge \mathbf{r}_{\phi}|$ and hence find $K(\theta, \phi)$. Where is $K(\theta, \phi)$ positive, where negative?

6. (*Optional*) Suppose that two planar co-ordinate systems (x, y) and (X, Y) are related by

$$
\left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \left(\begin{array}{c} X \\ Y \end{array}\right),
$$

where $ad \neq bc$ and let $f(x, y) = F(X, Y)$. Show that Laplace's equation is invariant – that is

$$
F_{XX} + F_{YY} = 0 \iff f_{xx} + f_{yy} = 0
$$

– if and only if the above 2×2 matrix can be written as λA where $\lambda > 0$ and A is an orthogonal matrix.