Let $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, \mathbf{e}_4$ denote the standard basis of \mathbb{R}^4 . Suppose for a contradiction that \wedge is a vector product on \mathbb{R}^4 with properties (a)–(d) as described in lectures.

As $\mathbf{e}_1 \wedge \mathbf{e}_2$ must be perpendicular to \mathbf{e}_1 and \mathbf{e}_2 and $\mathbf{e}_1 \wedge \mathbf{e}_3$ must be perpendicular to e_1 and e_3 then

$$
\mathbf{e}_1\wedge\mathbf{e}_2=\alpha\mathbf{e}_3+\beta\mathbf{e}_4,\qquad \mathbf{e}_1\wedge\mathbf{e}_3=\gamma\mathbf{e}_2+\delta\mathbf{e}_4
$$

for some $\alpha, \beta, \gamma, \delta$. Further by (d) we know

$$
\alpha^{2} + \beta^{2} = 1 = \gamma^{2} + \delta^{2}.
$$

Now the vector product

$$
\mathbf{e}_{1}\wedge\left(\frac{\mathbf{e}_{2}+\mathbf{e}_{3}}{\sqrt{2}}\right)=\frac{\gamma\mathbf{e}_{2}+\alpha\mathbf{e}_{3}+(\beta+\delta)\mathbf{e}_{4}}{\sqrt{2}}
$$

must be of unit size by (d) and perpendicular to $e_2 + e_3$. It follows from the latter that

$$
\gamma + \alpha = 0
$$

and also that

$$
\gamma^2 + \alpha^2 + (\beta + \delta)^2 = 2.
$$

As we already know that $\alpha^2 + \beta^2 = 1 = \gamma^2 + \delta^2$ then it follows that $\beta \delta = 0$. Case (i): $\beta = 0$. Then $\alpha = \pm 1$ and $\gamma = \mp 1$. It then follows that $\delta = 0$ as well. Case (ii): $\delta = 0$. Then $\gamma = \pm 1$ and $\alpha = \mp 1$. It then follows that $\beta = 0$ as well. So in any case we have $\beta = \delta = 0$.

We now consider $\mathbf{e}_1 \wedge \mathbf{e}_4$. We likewise have

$$
\mathbf{e}_1 \wedge \mathbf{e}_4 = A\mathbf{e}_2 + B\mathbf{e}_3
$$

for some A, B with $A^2 + B^2 = 1$ and then

$$
\mathbf{e}_1 \wedge \left(\frac{\mathbf{e}_2 + \mathbf{e}_4}{\sqrt{2}}\right) = \frac{A\mathbf{e}_2 + (\alpha + B)\mathbf{e}_3}{\sqrt{2}}.
$$

As this is perpendicular to $\mathbf{e}_2 + \mathbf{e}_4$ then $A = 0$ and then $B^2 = 1$. We have then

$$
\mathbf{e}_1 \wedge \mathbf{e}_2 = \alpha \mathbf{e}_3, \qquad \mathbf{e}_1 \wedge \mathbf{e}_4 = B \mathbf{e}_3
$$

with $\alpha^2 = B^2 = 1$. And so

$$
\mathbf{e}_1 \wedge \left(\frac{\alpha \mathbf{e}_2 - B \mathbf{e}_4}{\sqrt{2}}\right) = \frac{(\alpha^2 - B^2)\mathbf{e}_3}{\sqrt{2}} = \mathbf{0}.
$$

This contradicts (d) as \mathbf{e}_1 and $(\alpha \mathbf{e}_2 - B \mathbf{e}_4)/\sqrt{2}$ are two perpendicular unit length vectors and so their product should have unit length.