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Background

Probability theory is one of the fastest growing areas of mathematics. Probabilistic arguments are used
in a tremendous range of applications from number theory to genetics, from physics to finance. It is a
core part of computer science and a key tool in analysis. And of course it underpins statistics. It is a
subject that impinges on our daily lives: we come across it when we go to the doctor or buy a lottery
ticket, but we’re also using probability when we listen to the radio or use a mobile phone, or when we
enhance digital images and when our immune system fights a cold. Whether you knew it or not, from
the moment you were conceived, probability played an important role in your life.

We all have some idea of what probability is: maybe we think of it as an approximation to long run
frequencies in a sequence of repeated trials, or perhaps as a measure of degree of belief warranted by some
evidence. Each of these interpretations is valuable in certain situations. For example, the probability
that I get a head if I flip a coin is sensibly interpreted as the proportion of heads I get if I flip that
same coin many times. But there are some situations where it simply does not make sense to think of
repeating the experiment many times. For example, the probability that ‘UK interest rates will be more
than 6% next March’ or the probability that ‘I’ll be involved in a car accident in the next twelve months’
cannot be determined by repeating the experiment many times and looking for a long run frequency.

The philosophical issue of interpretation is not one that we’ll resolve in this course. What we will do is
set up the abstract framework necessary to deal with complicated probabilistic questions.

These notes are intended to complement the contents of the lectures. They contain more material than
the lectures and, in particular, a few more examples. To get the most out of the course, I strongly
encourage you to attend all of the lectures. These notes are heavily based on a previous version by
Christina Goldschmidt, who in turn drew on versions by Alison Etheridge, Neil Laws and Jonathan
Marchini. I’m very glad to receive any comments or corrections at martin@stats.ox.ac.uk.

The synopsis and reading list from the course handbook are reproduced on the next page for your
convenience. The suggested texts are an excellent source of further examples.

I hope you enjoy the course!
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Overview

An understanding of random phenomena is becoming increasingly important in today’s world within
social and political sciences, finance, life sciences and many other fields. The aim of this introduction
to probability is to develop the concept of chance in a mathematical framework. Random variables are
introduced, with examples involving most of the common distributions.

Learning Outcomes

Students should have a knowledge and understanding of basic probability concepts, including conditional
probability. They should know what is meant by a random variable, and have met the common distri-
butions and their probability mass functions. They should understand the concepts of expectation and
variance of a random variable. A key concept is that of independence which will be introduced for events
and random variables.

Synopsis

Sample space, events, probability measure. Permutations and combinations, sampling with or without
replacement. Conditional probability, partitions of the sample space, law of total probability, Bayes’
Theorem. Independence.

Discrete random variables, probability mass functions, examples: Bernoulli, binomial, Poisson, geometric.
Expectation, expectation of a function of a discrete random variable, variance. Joint distributions of
several discrete random variables. Marginal and conditional distributions. Independence. Conditional
expectation, law of total probability for expectations. Expectations of functions of more than one discrete
random variable, covariance, variance of a sum of dependent discrete random variables.

Solution of first and second order linear difference equations. Random walks (finite state space only).

Probability generating functions, use in calculating expectations. Examples including random sums and
branching processes.

Continuous random variables, cumulative distribution functions, probability density functions, examples:
uniform, exponential, gamma, normal. Expectation, expectation of a function of a continuous random
variable, variance. Distribution of a function of a single continuous random variable. Joint probability
density functions of several continuous random variables (rectangular regions only). Marginal distri-
butions. Independence. Expectations of functions of jointly continuous random variables, covariance,
variance of a sum of dependent jointly continuous random variables.

Random sample, sums of independent random variables. Markov’s inequality, Chebyshev’s inequality,
Weak Law of Large Numbers.

Textbooks

1. G. R. Grimmett and D. J. A. Welsh, Probability: An Introduction, 2nd edition, Oxford University
Press, 2014, Chapters 1–5, 6.1–6.3, 7.1–7.3, 7.5 (Markov’s inequality), 8.1-8.2, 10.4.

2. J. Pitman, Probability, Springer-Verlag, 1993.

3. S. Ross, A First Course In Probability, Prentice-Hall, 1994.

4. D. Stirzaker, Elementary Probability, Cambridge University Press, 1994, Chapters 1–4, 5.1–5.6,
6.1–6.3, 7.1, 7.2, 7.4, 8.1, 8.3, 8.5 (excluding the joint generating function).
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A brief preview

Here are three problems that the techniques of this course will equip us to solve.

Euler’s formula

One of the most important so-called “special functions” of mathematics is the Riemann zeta function.
It is the function on which the famous Riemann hypothesis is formulated and it has long been known to
have deep connections with the prime numbers. It is defined on the complex numbers, but here we just
consider it as a function on real numbers s with s > 1. Then it can be written as

ζ(s) =

∞∑
n=1

1

ns
.

An early connection between the zeta-function and the primes was established by Euler who showed that

ζ(s) =
∏

p prime

(
1− 1

ps

)−1

.

There is a beautiful probabilistic proof of this theorem.

False positives

A lot of medical tests give a probabilistic outcome. Suppose that a laboratory test is 95% effective in
detecting a certain disease when it is in fact present. However, the test also gives a false positive result
for 1% of healthy people tested. (That is, if a healthy person is tested, then with probability 0.01 the
test will imply that he has the disease.)

If 0.5% of the population actually has the disease, what is the probability that a randomly tested person
has the disease given that the test result was positive?

Test your intuition by taking a guess now. This is the same sort of question that judges often face when
presented with things like DNA evidence in court.

Gambler’s ruin

A gambler enters a casino with £k. She repeatedly plays a game in which she wins £1 with probability
p and loses £1 with probability 1−p. She will leave the casino if she loses all her money or if her holding
reaches the ‘house limit’ of £N .

What is the probability that she leaves with nothing?

What is the average number of games until she leaves?
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Chapter 1

Events and probability

1.1 Introduction

We will think of performing an experiment which has a set of possible outcomes Ω. We call Ω the sample
space. For example,

(a) tossing a coin: Ω = {H,T};

(b) throwing two dice: Ω = {(i, j) : 1 ≤ i, j ≤ 6}.

A subset of Ω is called an event. An event A ⊆ Ω occurs if, when the experiment is performed, the
outcome ω ∈ Ω satisfies ω ∈ A. You should think of events as things you can decide have or have not
happened by looking at the outcome of your experiment. For example,

(a) coming up heads: A = {H};

(b) getting a total of 4: A = {(1, 3), (2, 2), (3, 1)}.

The complement of A is Ac := Ω \A and means “A does not occur”. For events A and B,

A ∪B means “at least one of A and B occurs”;

A ∩B means “both A and B occur”;

A \B means “A occurs but B does not”.

If A ∩B = ∅ we say that A and B are disjoint – they cannot both occur.

We assign a probability P (A) ∈ [0, 1] to each (suitable) event. For example,

(a) for a fair coin, P (A) = 1/2;

(b) for two unweighted dice, P (A) = 1/12.
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(b) demonstrates the importance of counting in the situation where we have a finite number of possible
outcomes to our experiment, all equally likely. For (b), Ω has 36 elements (6 ways of choosing i and 6
ways of choosing j). Since A = {(1, 3), (2, 2), (3, 1)} contains 3 sample points, and all sample points are
equally likely, we get P (A) = 3/36 = 1/12.

We want to be able to tackle much more complicated counting problems.

1.2 Counting

Most of you will have seen this before. If you haven’t, or if you find it confusing, then you can find more
details in the first chapter of Introduction to Probability by Ross.

Arranging distinguishable objects

Suppose that we have n distinguishable objects (e.g. the numbers 1, 2, . . . , n). How many ways to order
them (permutations) are there? If we have three objects a, b, c then the answer is 6: abc, acb, bac, bca,
cab and cba.

In general, there are n choices for the first object in our ordering. Then, whatever the first object was,
we have n− 1 choices for the second object. Carrying on, we have n−m+ 1 choices for the mth object
and, finally, a single choice for the nth. So there are

n(n− 1) . . . 2.1 = n!

different orderings.

Since n! increases extremely fast, it is sometimes useful to know Stirling’s formula:

n! ∼
√

2πnn+ 1
2 e−n,

where f(n) ∼ g(n) means f(n)/g(n)→ 1 as n→∞. This is astonishingly accurate even for quite small
n. For example, the error is of the order of 1% when n = 10.

Arrangements when not all objects are distinguishable

What happens if not all the objects are distinguishable? For example, how many different arrangements
are there of a, a, a, b, c, d?

If we had a1, a2, a3, b, c, d, there would be 6! arrangements. Each arrangement (e.g. b, a2, d, a3, a1, c) is
one of 3! which differ only in the ordering of a1, a2, a3. So the 6! arrangements fall into groups of size
3! which are indistinguishable when we put a1 = a2 = a3. We want the number of groups which is just
6!/3!.

We can immediately generalise this. For example, to count the arrangements of a, a, a, b, b, d, play the
same game. We know how many arrangements there are if the b’s are distinguishable, but then all such
arrangements fall into pairs which differ only in the ordering of b1, b2, and we see that the number of
arrangements is 6!/3!2!.
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Lemma 1.1. The number of arrangements of the n objects

α1, . . . , α1︸ ︷︷ ︸
m1 times

, α2, . . . , α2︸ ︷︷ ︸
m2 times

, . . . , αk, . . . , αk︸ ︷︷ ︸
mk times

where αi appears mi times and m1 + · · ·+mk = n is

n!

m1!m2! · · ·mk!
. (1.1)

Example 1.2. The number of arrangements of the letters of STATISTICS is 10!
3!3!2! .

If there are just two types of object then, since m1 + m2 = n, the expression (1.1) is just a binomial
coefficient,

(
n
m1

)
= n!

m1!(n−m1)! =
(
n
m2

)
.

Note: we will always use the notation (
n

m

)
=

n!

m!(n−m)!
.

Recall the binomial theorem,

(x+ y)n =

n∑
m=0

(
n

m

)
xmyn−m.

You can see where the binomial coefficient comes from because writing

(x+ y)n = (x+ y)(x+ y) · · · (x+ y)

and multiplying out, each term involves one pick from each bracket. The coefficient of xmyn−m is the
number of sequences of picks that give x exactly m times and y exactly n − m times and that’s the
number of ways of choosing the m “slots” for the x’s.

The expression (1.1) is called a multinomial coefficient because it is the coefficient of am1
1 · · · amkk in the

expansion of
(a1 + · · ·+ ak)n

where m1 + · · ·mk = n. We sometimes write(
n

m1 m2 . . . mk

)
for the multinomial coefficient.

Instead of thinking in terms of arrangements, we can think of our binomial coefficient in terms of choices.
For example, if I have to choose a committee of size k from n people, there are

(
n
k

)
ways to do it. To see

how this ties in, stand the n people in a line. For each arrangement of k 1’s and n− k 0’s I can create a
different committee by picking the ith person for the committee if the ith term in the arrangement is a
1.

Many counting problems can be solved by finding a bijection (that is, a one-to-one correspondence)
between the objects we want to enumerate and other objects that we already know how to enumerate.

Example 1.3. How many distinct non-negative integer-valued solutions of the equation

x1 + x2 + · · ·+ xm = n

are there?
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Solution. Consider a sequence of n ?’s and m− 1 |’s. There is a bijection between such sequences and
non-negative integer-valued solutions to the equation. For example, if m = 4 and n = 3,

? ?︸︷︷︸
x1=2

|︸︷︷︸
x2=0

| ?︸︷︷︸
x3=1

|︸︷︷︸
x4=0

There are
(
n+m−1

n

)
sequences of n ?’s and m − 1 |’s and, hence, the same number of solutions to the

equation.

It is often possible to perform quite complex counting arguments by manipulating binomial coefficients.
Conversely, sometimes one wants to prove relationships between binomial coefficients and this can most
easily be done by a counting argument. Here is one famous example:

Lemma 1.4 (Vandermonde’s identity). For k,m, n ≥ 0,(
m+ n

k

)
=

k∑
j=0

(
m

j

)(
n

k − j

)
, (1.2)

where we use the convention
(
m
j

)
= 0 for j > m.

Proof. Suppose we choose a committee consisting of k people from a group of m men and n women.
There are

(
m+n
k

)
ways of doing this which is the left-hand side of (1.2).

Now the number of men in the committee is some j ∈ {0, 1, . . . , k} and then it contains k − j women.
The number of ways of choosing the j men is

(
m
j

)
and for each such choice there are

(
n
k−j
)

choices for

the women who make up the rest of the committee. So there are
(
m
j

)(
n
k−j
)

committees with exactly j
men and summing over j we get that the total number of committees is given by the right-hand side
of (1.2).

“Breaking things down” is an important technique in counting - and also, as we’ll see, in probability.

An aside on sizes of sets

In this course, we will often deal with finite collections of objects, as in our counting examples. We will
also want to be able to deal with infinite sets, and we will want to distinguish between those that are
countable and those that are uncountable. A countable set S is one which is either finite or such that
all of its elements can be labelled by a natural number in such a way that we can write them in a list:
S = {x1, x2, x3, . . .} = {xi : i ∈ N}. If a set is not countable, it is uncountable. The natural numbers are
themselves countable (take xi = i), as are the rational numbers, but the real numbers are not. (Those
of you doing Analysis I will see much more about this there.)

1.3 The axiomatic approach

Definition 1.5. A probability space is a triple (Ω,F ,P) where

1. Ω is the sample space,

7



2. F is a collection of subsets of Ω, called events, satisfying axioms F1–F3 below,

3. P is a probability measure, which is a function P : F → [0, 1] satisfying axioms P1–P3 below.1

Before formulating the axioms F1–F3 and P1–P3 we should do an example. Many of the more abstract
books on probability start every section with “Let (Ω,F ,P) be a probability space” but we shouldn’t
allow ourselves to be intimidated. Here’s an example to see why.

Example 1.6. We set up a probability space to model each of the following experiments:

1. A single roll of a fair die in which the outcome we observe is the number thrown;

2. A single roll of two fair dice in which the outcome we observe is the sum of the two numbers thrown
(so in particular we may not see what the individual numbers are).

Single die. The set of outcomes of our experiment, that is our sample space, is Ω1 = {1, 2, 3, 4, 5, 6}.
The events are all possible subsets of this; denote the set of all subsets of Ω1 by F1. For example,
E1 = {6} is the event “the result is a 6” and E2 = {2, 4, 6} is the event “the result is even”.
We’re told that the die is fair so P1({i}) is just 1/6 and P1(E) = 1

6 |E| where |E| is the number of distinct
elements in the subset E. Hence, P1(E1) = 1

6 and P1(E2) = 1
2 .

Formally, P1 is a function on F1 which assigns a number from [0, 1] to each element of F1.

The total on two dice. The set of outcomes that we can actually observe is Ω2 = {2, 3, 4, . . . , 12}.
We take F2 to be the set of all subsets of Ω2. So for example E3 = {2, 4, 6, 8, 10, 12} is the event “the
outcome is even”, E4 = {2, 3, 5, 7, 11} is the event “the outcome is prime” and so on.
Notice now however that not all outcomes are equally likely. However, tabulating all possible numbers
shown on the two dice we get

1 2 3 4 5 6

1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 10 11
6 7 8 9 10 11 12

and all of these outcomes are equally likely. So now we can just count to work out the probability of
each event in F2. For example P2({12}) = 1

36 , P2({7}) = 1
6 , P2(E3) = 1

2 and P2(E4) = 15
36 .

The probability measure is still a [0, 1]-valued function on F2, but this time it is a more interesting one.

This second example raises a very important point. The sample space that we use in modelling a
particular experiment is not unique. In fact, to calculate the probabilities P2, in effect we took a larger
sample space Ω′2 = {(i, j) : i, j ∈ {1, 2, . . . , 6}} that records the pair of numbers thrown. But the only
events that we are interested in for this particular experiment are those that tell us something about the
sum of the numbers thrown.

In order to make sure that the theory we build is internally consistent, we need to make some assumptions
about F and P, in the form of axioms. Informally, we would like to have that

1P : F → [0, 1] means that to each element A of F , we associate a number between 0 and 1 which we call P (A). P is a
function or mapping from F to [0, 1]. Compare to a situation you are more familiar with: if f(x) = x2 then we say that f
is a function from R to R (or f : R → R for short).
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1. the probability of any event A is between 0 and 1;

2. the event ∅ that “no outcome occurs” has probability 0 and the event Ω consisting of all possible
outcomes has probability 1;

3. if A and B are disjoint events (i.e. A∩B = ∅), with the interpretation that A and B cannot occur
simultaneously, then P (A ∪B) = P (A) + P (B).

(We already used 3. to calculate the probabilities of events in our examples.)

Formally, our axioms are as follows:

The axioms of probability

F is a collection of subsets of Ω, with:
F1: ∅ ∈ F .
F2: If A ∈ F , then also Ac ∈ F .
F3: If {Ai, i ∈ I} is a finite or countably infinite collection of members of F , then ∪i∈IAi ∈ F .

P is a function from F to R, with:
P1: For all A ∈ F , P(A) ≥ 0.
P2: P(Ω) = 1.
P3: If {Ai, i ∈ I} is a finite or countably infinite collection of members of F , and Ai ∩ Aj = ∅ for
i 6= j, then P(∪i∈IAi) =

∑
i∈I P(Ai).

Note that in particular:

P3 (special case): If A,B ∈ F with A ∩B = ∅, then P(A ∪B) = P(A) + P(B).

(You may wonder whether this special case is enough to imply the full statement of P3. It’s easy to show,
for example by induction, that this special case of the statement for two events implies the statement
for all finite collections of events. It turns out that the statement about countably infinite collections is
genuinely stronger – but this is rather a subtle point involving intricacies of set theory!)

In the examples above, Ω was finite. In general Ω may be finite, countably infinite, or uncountably
infinite. If Ω is finite or countable, as it usually will be for the first half of this course, then we normally
take F to be the set of all subsets of Ω (the power set of Ω). (You should check that, in this case, F1–F3

are satisfied.) If Ω is uncountable, however, the set of all subsets turns out to be too large: it ends up
containing sets to which we cannot consistently assign probabilities. This is an issue which some of you
will see discussed properly in next year’s Part A Integration course; for the moment, you shouldn’t worry
about it, just make a mental note that there is something to be resolved here.

Example 1.7. Consider a countable set Ω = {ω1, ω2, . . .} and an arbitrary collection (p1, p2, . . .) of
non-negative numbers with sum

∑∞
i=1 pi = 1. Put

P (A) =
∑
i:ωi∈A

pi.

Then P satisfies P1–P3. The numbers (p1, p2, . . .) are called a probability distribution.

Example 1.8. Pick a team of m players from a squad of n, all possible teams being equally likely. Set

Ω =

{
(i1, i2, . . . , in) : ik = 0 or 1 and

n∑
k=1

ik = m

}
,
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where

ik =

{
1 if player k is picked,

0 otherwise.

Let A = {player 1 is in the team}. Then

P (A) =
#teams that include player 1

#possible teams
=

(
n−1
m−1

)
( nm )

=
m

n
.

We can derive some useful consequences of the axioms.

Theorem 1.9. Suppose that (Ω,F ,P) is a probability space and that A,B ∈ F . Then

1. P (Ac) = 1− P (A);

2. If A ⊆ B then P (A) ≤ P (B).

Proof. 1. Since A ∪ Ac = Ω and A ∩ Ac = ∅, by P3, P (Ω) = P (A) + P (Ac). By P2, P (Ω) = 1 and so
P (A) + P (Ac) = 1, which entails the required result.

2. Since A ⊆ B, we have B = A ∪ (B ∩ Ac). Since B ∩ Ac ⊆ Ac, it must be disjoint from A. So by P3,
P (B) = P (A) + P (B ∩Ac). Since by P1, P (B ∩Ac) ≥ 0, we thus have P (B) ≥ P (A).

Some other useful consequences are on the problem sheet.

1.4 Conditional probability

We have seen how to formalise the notion of probability. So for each event, which we thought of as an
observable outcome of an experiment, we have a probability (a likelihood, if you prefer). But of course
our assessment of likelihoods changes as we acquire more information and our next task is to formalise
that idea. First, to get a feel for what I mean, let’s look at a simple example.

Example 1.10. Suppose that in a single roll of a fair die we know that the outcome is an even number.
What is the probability that it is in fact a six?

Solution. Let B = {result is even} = {2, 4, 6} and C = {result is a six} = {6}. Then P(B) = 1
2 and

P(C) = 1
6 , but if I know that B has happened, then P(C|B) (read “the probability of C given B”) is 1

3
because given that B happened, we know the outcome was one of {2, 4, 6} and since the die is fair, in
the absence of any other information, we assume each of these is equally likely.

Now let A = {result is divisible by 3} = {3, 6}. If we know that B happened, then the only way that
A can also happen is if the outcome is in A ∩ B, in this case if the outcome is {6} and so P(A|B) = 1

3
again which is P(A ∩B)/P(B).

Definition 1.11. Let (Ω,F ,P) be a probability space. If A,B ∈ F and P(B) > 0 then the conditional
probability of A given B is

P(A|B) =
P(A ∩B)

P(B)
.

(If P(B) = 0, then P(A|B) is not defined.)
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We should check that this new notion fits with our idea of probability. The next theorem says that it
does.

Theorem 1.12. Let (Ω,F ,P) be a probability space and let B ∈ F satisfy P(B) > 0. Define a new
function Q : F → R by Q(A) = P(A|B). Then (Ω,F ,Q) is also a probability space.

Proof. Because we’re using the same F , we need only check axioms P1–P4.

P1. For any A ∈ F ,

Q(A) =
P(A ∩B)

P(B)
≥ 0.

P2. By definition,

Q(Ω) =
P(Ω ∩B)

P(B)
=

P(B)

P(B)
= 1.

(Since P3 is implied by P4, we only need to check P4.)

P4. For disjoint events A1, A2, . . .,

Q(∪∞i=1Ai) =
P((∪∞i=1Ai) ∩B)

P(B)

=
P (∪∞i=1(Ai ∩B))

P(B)

=

∑∞
i=1 P(Ai ∩B)

P(B)
(because Ai ∩B, i ≥ 1, are disjoint)

=

∞∑
i=1

Q(Ai).

From the definition of conditional probability, we get a very useful multiplication rule:

P (A ∩B) = P (A|B)P (B) . (1.3)

This generalises to

P (A1 ∩A2 ∩A3 ∩ . . . ∩An) = P (A1)P (A2|A1)P (A3|A1 ∩A2) . . .P (An|A1 ∩A2 ∩ . . . ∩An−1) (1.4)

(you can prove this by induction).

Example 1.13. An urn contains 8 red balls and 4 white balls. We draw 3 balls at random without
replacement. Let Ri = {the ith ball is red} for 1 ≤ i ≤ 3. Then

P (R1 ∩R2 ∩R3) = P (R1)P (R2|R1)P (R3|R1 ∩R2) =
8

12
· 7

11
· 6

10
=

14

55
.

Example 1.14. A bag contains 26 tickets, one with each letter of the alphabet. If six tickets are drawn
at random from the bag (without replacement), what is the chance that they can be rearranged to spell
CALVIN ?

Solution. Write Ai for the event that the ith ticket drawn is from the set {C,A,L, V, I,N}. By (1.4),

P(A1 ∩ . . . ∩A6) =
6

26
· 5

25
· 4

24
· 3

23
· 2

22
· 1

21
.
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Example 1.15. A bitstream when transmitted has

P(0 sent) =
4

7
, P(1 sent) =

3

7
.

Owing to noise,

P(1 received | 0 sent) =
1

8
,

P(0 received | 1 sent) =
1

6
.

What is P(0 sent | 0 received)?

Solution. Using the definition of conditional probability,

P(0 sent | 0 received) =
P(0 sent and 0 received)

P(0 received)
.

Now
P(0 received) = P(0 sent and 0 received) + P(1 sent and 0 received).

Now we use (1.3) to get

P(0 sent and 0 received) = P(0 received | 0 sent)P(0 sent)

=
(
1− P(1 received | 0 sent)

)
P(0 sent)

=

(
1− 1

8

)
4

7
=

1

2
.

Similarly,

P(1 sent and 0 received) = P(0 received | 1 sent)P(1 sent)

=
1

6
· 3

7
=

1

14
.

Putting these together gives

P(0 received) =
1

2
+

1

14
=

8

14

and

P(0 sent | 0 received) =
1
2
8
14

=
7

8
.

1.5 Independence

Of course, knowing that B has happened doesn’t always influence the chances of A.

Definition 1.16. 1. Events A and B are independent if P(A ∩B) = P(A)P(B).

2. More generally, a family of events A = {Ai : i ∈ I} is independent if

P

(⋂
i∈J

Ai

)
=
∏
i∈J

P(Ai)

for all finite subsets J of I.
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3. A family A of events is pairwise independent if P(Ai ∩Aj) = P(Ai)P(Aj) whenever i 6= j.

WARNING: PAIRWISE INDEPENDENT DOES NOT IMPLY INDEPENDENT.

See the problem sheet for an example of this.

Suppose that A and B are independent. Then if P (B) > 0, we have P (A|B) = P (A), and if P (A) > 0,
we have P (B|A) = P (B). In other words, knowledge of the occurrence of B does not influence the
probability of A, and vice versa.

Example 1.17. Suppose we have two fair dice. Let

A = {first die shows 4}, B = {total score is 6} and C = {total score is 7}.

Then

P (A ∩B) = P ({(4, 2)}) =
1

36

but

P (A)P (B) =
1

6
· 5

36
6= 1

36
.

So A and B are not independent. However, A and C are independent (you should check this).

Theorem 1.18. Suppose that A and B are independent. Then

(a) A and Bc are independent;

(b) Ac and Bc are independent.

Proof. (a) We have A = (A ∩ B) ∪ (A ∩ Bc), where A ∩ B and A ∩ Bc are disjoint, so using the
independence of A and B,

P (A ∩Bc) = P (A)− P (A ∩B) = P (A)− P (A)P (B) = P (A) (1− P (B)) = P (A)P (Bc) .

(b) Apply part (a) to the events Bc and A.

More generally, if {Ai, i ∈ I} is any family of independent events, then also the family {Aci , i ∈ I} is
independent. Proof: exercise! (We need to show that the product formula in Definition 1.16 holds for all
finite subsets {Aci , i ∈ J}). One approach is to use the inclusion-exclusion formula from Problem Sheet
1; various induction arguments are also possible.)

1.6 The law of total probability and Bayes’ theorem

Definition 1.19. A family of events {B1, B2, . . .} is a partition of Ω if

1. Ω =
⋃
i≥1Bi (so that at least one Bi must happen), and

2. Bi ∩Bj = ∅ whenever i 6= j (so that no two can happen together).

13



Theorem 1.20 (The law of total probability). Suppose {B1, B2, . . .} is a partition of Ω by sets from F ,
such that P (Bi) > 0 for all i ≥ 1. Then for any A ∈ F ,

P(A) =
∑
i≥1

P(A|Bi)P(Bi).

This result is sometimes also called the partition theorem. We used it in our bitstream example to
calculate the probability that 0 was received.

Proof. We have

P (A) = P (A ∩ (∪i≥1Bi)) , since ∪i≥1Bi = Ω

= P (∪i≥1(A ∩Bi))

=
∑
i≥1

P (A ∩Bi) by axiom P3, since A ∩Bi, i ≥ 1 are disjoint

=
∑
i≥1

P (A|Bi)P (Bi) .

Note that if P(Bi) = 0 for some i, then the expression in Theorem 1.20 wouldn’t make sense, since
P(A|Bi) is undefined. (Although we could agree a convention by which P(A|B)P(B) means 0 whenever
P(B) = 0; then we can make sense of the expression in Theorem 1.20 even if some of the Bi have zero
probability.) In any case, we can still write P(A) =

∑
i P(A ∩Bi).

Example 1.21. Crossword setter I composes m clues; setter II composes n clues. Alice’s probability of
solving a clue is α if the clue was composed by setter I and β if the clue was composed by setter II.

Alice chooses a clue at random. What is the probability she solves it?

Solution. Let

A = {Alice solves the clue}
B1 = {clue composed by setter I},
B2 = {clue composed by setter II}.

Then
P(B1) =

m

m+ n
, P(B2) =

n

m+ n
, P(A|B1) = α, P(A|B2) = β.

By the law of total probability,

P (A) = P (A|B1)P (B1) + P (A|B2)P (B2) =
αm

m+ n
+

βn

m+ n
=
αm+ βn

m+ n
.

In our solution to Example 1.15, we combined the law of total probability with the definition of conditional
probability. In general, this technique has a name:

Theorem 1.22 (Bayes’ Theorem). Suppose that {B1, B2, . . .} is a partition of Ω by sets from F such
that P (Bi) > 0 for all i ≥ 1. Then for any A ∈ F such that P (A) > 0,

P(Bk|A) =
P(A|Bk)P(Bk)∑
i≥1 P(A|Bi)P(Bi)

.
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Proof. We have

P(Bk|A) =
P(Bk ∩A)

P(A)

=
P(A|Bk)P(Bk)

P(A)
.

Now substitute for P(A) using the law of total probability.

In Example 1.15, we calculated P(0 sent | 0 received) by taking {B1, B2, . . .} to be B1 = {0 sent} and
B2 = {1 sent} and A to be the event {0 received}.

Example 1.23. Recall Alice, from Example 1.21. Suppose that she chooses a clue at random and solves
it. What is the probability that the clue was composed by setter I?

Solution. Using Bayes’ theorem,

P(B1|A) =
P(A|B1)P(B1)

P(A|B1)P(B1) + P(A|B2)P(B2)

=
αm
m+n

αm
m+n + βn

m+n

=
αm

αm+ βn
.

Example 1.24 (Simpson’s paradox). Consider the following table showing a comparison of the outcomes
of two types of surgery for the removal of kidney stones (from Charig et al, 1986):

Number Success rate

Treatment A (open surgery) 350 (273/350 = ) 0.78
Treatment B (nephrolithotomy) 350 (289/350 = ) 0.83

On the basis of this comparison, it looks like Treatment B has performed slightly better than Treatment
A. A closer analysis of the data divides the patients into two groups, according to the sizes of the stones:

Type I (stone < 2cm) Type II (stone > 2cm)
Number Success rate Number Success rate

Treatment A 87 (81/87 = ) 0.93 263 (192/263 =) 0.73
Treatment B 270 (234/270 = ) 0.87 80 (55/80 = ) 0.69

Now Treatment A appears to beat Treatment B both in patients of Type I, and in patients of Type II.
Our initial analysis seems to have been misleading because of a “confounding variable”, the severity of
the case. Looking at the second table, we can see that patients of Type II are harder to treat; Treatment
A was more often given to these harder cases, and Treatment B to easier cases. This made Treatment B
appear to perform better overall.

This is Simpson’s paradox; in conditional probability language, it consists of the fact that for events E,
F , G, we can have

P(E|F ∩G) > P(E|F c ∩G)

P(E|F ∩Gc) > P(E|F c ∩Gc)
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and yet

P(E|F ) < P(E|F c).

(Exercise: identify corresponding events E, F and G in the example above.)

1.7 Some useful rules for calculating probabilities

If you’re faced with a probability calculation you don’t know how to do, here are some things to try.

• AND: Try using the multiplication rule:

P (A ∩B) = P (A|B)P (B) = P (B|A)P (A)

or its generalisation:

P (A1 ∩A2 ∩ . . . ∩An) = P (A1)P (A2|A1) . . .P (An|A1 ∩A2 ∩ . . . ∩An−1)

(as long as all of the conditional probabilities are defined).

• OR: If the events are disjoint, use

P (A1 ∪A2 ∪ . . . ∪An) = P (A1) + P (A2) + · · ·+ P (An) .

Otherwise, try taking complements:

P (A1 ∪A2 ∪ . . . ∪An) = 1− P ((A1 ∪A2 ∪ . . . ∪An)c) = 1− P (Ac1 ∩Ac2 ∩ . . . ∩Acn)

(“the probability at least one of the events occurs is 1 minus the probability that none of them
occur”). If that’s no use, try using the inclusion-exclusion formula (see the problem sheet):

P (A1 ∪A2 ∪ . . . ∪An) =

n∑
i=1

P (Ai)−
∑
i<j

P (Ai ∩Aj) + · · ·+ (−1)n+1P (A1 ∩A2 ∩ . . . ∩An) .

• If you can’t calculate the probability of your event directly, try splitting it up according to some
partition of Ω and using the law of total probability.

Useful check: any probability that you calculate should be in the interval [0, 1] ! If
not, something, has gone wrong....
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Chapter 2

Discrete random variables

Interesting information about the outcome of an experiment can often be encoded as a number. For
example, suppose that I am modelling the arrival of telephone calls at an exchange. Modelling this
directly could be very complicated: my sample space should include all of the possible starting and
finishing times of calls, all possible numbers of calls and so on. But if I am just interested in the number
of calls that arrive in some time interval [0, t], then I can take my sample space to be just Ω = {0, 1, 2, . . .}.
We’ll return to this example later.

Even if we are not counting something, we may be able to encode the result of an experiment as a
number. As a trivial example, the result of a flip of a coin can be coded by letting 1 denote “head” and
0 denote “tail”, say.

Real-valued discrete random variables are essentially real-valued measurements of this kind. Here’s a
formal definition.

Definition 2.1. A discrete random variable X on a probability space (Ω,F ,P) is a function X : Ω→ R
such that

(a) {ω ∈ Ω : X(ω) = x} ∈ F for each x ∈ R,

(b) ImX := {X(ω) : ω ∈ Ω} is a finite or countable subset of R.

We often abbreviate “random variable” to “r.v.”.

This looks very abstract, so give yourself a moment to try to understand what it means.

• (a) says that {w ∈ Ω : X(ω) = x} is an event to which we can assign a probability. We will usually
abbreviate this event to {X = x} and write P (X = x) to mean P ({ω ∈ Ω : X(ω) = x}). If these
abbreviations confuse you at first, put in the ω’s to make it clearer what is meant.

• (b) says that X can only take countably many values. Often ImX will be some subset of N.

• If Ω is countable, (b) holds automatically because we can think of ImX as being indexed by Ω,
and so, therefore, ImX must itself be countable. If we also take F to be the set of all subsets of Ω
then (a) is also immediate.
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• Later in the course, we will deal with continuous random variables, which take uncountably many
values; we have to be a a bit more careful about what the correct analogue of (a) is; we will end
up requiring that sets of the form {X ≤ x} are events to which we can assign probabilities.

Example 2.2. Roll two dice and take Ω = {(i, j) : 1 ≤ i, j ≤ 6}. Take

X(i, j) = max{i, j}, the maximum of the two scores

Y (i, j) = i+ j, the total score.

A given probability space has lots of random variables associated with it. So, for example, in our
telephone exchange we might have taken the “time in minutes until the arrival of the third call” in place
of the number of calls by time t, say.

Definition 2.3. The probability mass function (p.m.f.) of X is the function pX : R→ [0, 1] defined by

pX(x) = P(X = x).

If x /∈ ImX (that is, X(ω) never equals x) then pX(x) = P ({ω : X(ω) = x}) = P (∅) = 0. Also∑
x∈ImX

pX(x) =
∑

x∈ImX

P ({ω : X(ω) = x})

= P

( ⋃
x∈ImX

{ω : X(ω) = x}

)
since the events are disjoint

= P (Ω) since every ω ∈ Ω gets mapped somewhere in ImX

= 1.

Example 2.4. Fix an event A ∈ F and let X : Ω→ R be the function given by

X(ω) =

{
1 if ω ∈ A,
0 otherwise.

Then X is a random variable with probability mass function

pX(0) = P (X = 0) = P (Ac) = 1− P (A) , pX(1) = P (X = 1) = P (A)

and pX(x) = 0 for all x 6= 0, 1. We will usually write X = 1A and call this the indicator function of the
event A.

Notice that given a probability mass function pX , we can always write down a probability space and a
random variable defined on it with that probability mass function. For simplicity, suppose that ImX =
{0, 1, . . .}. Then let Ω = {0, 1, . . .}, let F be the power set of Ω, set

P ({ω}) = pX(ω) for each ω ∈ Ω

and then take X to be the identity function i.e. X(ω) = ω. However, this is often not the most natural
probability space to take. For example, suppose that X represents the number of heads obtained in
a sequence of three fair coin tosses. Then we could proceed as just outlined. But we could also take
Ω = {(i, j, k) : i, j, k ∈ {0, 1}}, with a 0 representing a tail and a 1 representing a head, so that an
element of Ω tells us exactly what the three coin tosses were. Then take F to be the power set of Ω,

P ({(i, j, k)}) = 2−3 for all i, j, k ∈ {0, 1},

so that every sequence of coin tosses is equally likely, and finally set X((i, j, k)) = i + j + k. In both
cases, X has the same distribution, but the probability spaces are quite different.

Although in our examples so far, the sample space has been explicitly present, we can and will talk about
random variables X without mentioning Ω.
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2.1 Some classical distributions

Before introducing concepts related to discrete random variables, we introduce a stock of examples to
try these concepts out on. All are classical and ubiquitous in probabilistic modelling. They also have
beautiful mathematical structure, some of which we’ll uncover over the course of the term.

1. The Bernoulli distribution. X has the Bernoulli distribution with parameter p (where 0 ≤ p ≤
1) if

P(X = 0) = 1− p, P(X = 1) = p.

We often write q = 1 − p. (Of course since (1 − p) + p = 1, we must have P (X = x) = 0 for all
other values of x.) We write X ∼ Ber(p).

We showed in Example 2.4 that the indicator function 1A of an event A is an example of a Bernoulli
random variable with parameter p = P (A), constructed on an explicit probability space.

The Bernoulli distribution is used to model, for example, the outcome of the flip of a coin with “1”
representing heads and “0” representing tails. It is also a basic building block for other classical
distributions.

2. The binomial distribution. X has a binomial distribution with parameters n and p (where n
is a positive integer and p ∈ [0, 1]) if

P (X = k) =

(
n

k

)
pk(1− p)n−k.

We write X ∼ Bin(n, p).

X models the number of heads obtained in n independent coin flips, where p is the probability of
a head. To see this, note that the probability of any particular sequence of length n of heads and
tails containing exactly k heads is pk(1− p)n−k and there are exactly

(
n
k

)
such sequences.

3. The geometric distribution. X has a geometric distribution with parameter p

P(X = k) = p(1− p)k−1, k = 1, 2, . . . .

Notice that now X takes values in a countably infinite set – the whole of the positive integers. We
write X ∼ Geom(p).

We can use X to model the number of independent trials needed until we see the first success,
where p is the probability of success on a single trial.

WARNING: there is an alternative and also common definition for the geometric distribution as
the distribution of the number of failures, Y , before the first success. This corresponds to X − 1
and so

P (Y = k) = p(1− p)k, k = 0, 1, . . . .

If in doubt, state which one you are using.

4. The Poisson distribution. X has the Poisson distribution with parameter λ ≥ 0 if

P (X = k) =
λke−λ

k!
, k = 0, 1, . . . .

We write X ∼ Po(λ).

This distribution arises in many applications. For example, the number of calls to arrive at a
telephone exchange in a given time period or the number of electrons emitted by a radioactive
source in a given time and so on. It can be extended, as we’ll see, to something that evolves with
time. The other setting in which we encounter it is as an approximation to a binomial distribution
with a large number of trials but a low success probability for each one (see the problem sheet).
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Exercise 2.5. Check that each of these really does define a probability mass function. That is:

• pX(x) ≥ 0 for all x,

•
∑
x pX(x) = 1.

You may find it useful to refer to the reminders about series which you can find in the Appendix at the
end of these notes.

Given any function pX which is non-zero for only a finite or countably infinite number of values x and
satisfying these two conditions we can define the corresponding discrete random variable – we have not
produced an exhaustive list!

2.2 Expectation

By plotting the probability mass funtion for the different random variables, we get some idea of how each
one will behave, but often such information can be difficult to parse and we’d like what a statistician
would call “summary statistics” to give us a feel for how they behave.

The first summary statistic tells us the “average value” of our random variable.

Definition 2.6. The expectation (or expected value or mean) of X is

E[X] =
∑

x∈ImX

xP(X = x) (2.1)

provided that
∑
x∈ImX |x|P (X = x) <∞. If

∑
x∈ImX |x|P (X = x) is infinite, we say that the expectation

does not exist.

The reason we insist that
∑
x∈ImX |x|P(X = x) is finite, that is that the sum on the right-hand side of

equation (2.1) is absolutely convergent, is that we need the expectation to take the same value regardless
of the order in which we sum the terms. See Section A.1 for a discussion of absolute convergence.

(The problems with different orders of summation giving different answer concern cases when there are
both positive and negative terms in the sum. If X is positive, i.e. ImX ⊆ R+, and if

∑
x∈ImX xP (X = x)

diverges, then there is no issue with the order of summation. In this case, we sometimes write E [X] =∞.)

The expectation of X is the ‘average’ value which X takes – if we were able to take many independent
copies of the experiment that X describes, and take the average of the outcomes, then we should expect
that average to be close to E[X]. We will come back to this idea at the end of the course when we look
at the Law of Large Numbers.

Example 2.7. 1. Suppose that X is the number obtained when we roll a fair die. Then

E[X] = 1 · P(X = 1) + 2 · P(X = 2) + . . .+ 6 · P(X = 6)

= 1 · 1

6
+ 2 · 1

6
+ . . .+ 6 · 1

6
= 3.5.

Of course, you’ll never throw 3.5 on a single roll of a die, but if you throw a lot of times you expect
the average number thrown to be close to 3.5.
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2. Suppose A ∈ F is an event and 1A is its indicator function. Then

E [1A] = 0 · P (Ac) + 1 · P (A) = P (A) .

3. Suppose that P (X = n) = 6
π2

1
n2 , n ≥ 1. Then

∞∑
n=1

nP (X = n) =
6

π2

∞∑
n=1

1

n
=∞

and so the expectation does not exist (or we may say E [X] =∞).

4. Let X ∼ Po(λ). Then

E [X] =

∞∑
k=0

k
e−λλk

k!

= e−λ
∞∑
k=1

λk

(k − 1)!

= λe−λ
∞∑
k=1

λk−1

(k − 1)!

= λe−λeλ

= λ.

You will find some more examples on the problem sheet.

Let h : R→ R. Then if X is a discrete random variable, Y = h(X) is also a discrete random variable.

Theorem 2.8. If h : R→ R, then

E [h(X)] =
∑

x∈ImX

h(x)P (X = x)

provided that
∑
x∈ImX |h(x)|P (X = x) <∞.

Proof. Let A = {y : y = h(x) for some x ∈ ImX}. Then, starting from the right-hand side,∑
x∈ImX

h(x)P (X = x) =
∑
y∈A

∑
x∈ImX:h(x)=y

h(x)P (X = x)

=
∑
y∈A

∑
x∈ImX:h(x)=y

yP (X = x)

=
∑
y∈A

y
∑

x∈ImX:h(x)=y

P (X = x)

=
∑
y∈A

yP (h(X) = y)

= E [h(X)] .

Example 2.9. Take h(x) = xk. Then E[Xk] is called the kth moment of X, when it exists.

Let us now prove some properties of the expectation which will be useful to us later on.

21



Theorem 2.10. Let X be a discrete random variable such that E [X] exists.

(a) If X is non-negative then E [X] ≥ 0.

(b) If a, b ∈ R then E [aX + b] = aE [X] + b.

Proof. (a) We have ImX ⊆ [0,∞) and so

E [X] =
∑

x∈ImX

xP (X = x)

is a sum whose terms are all non-negative and so must itself be non-negative.

(b) Exercise.

The problem with using the expectation as a summary statistic is that it is too blunt an instrument in
many circumstances. For example, suppose that you are investing in the stock market. If two different
stocks increase at about the same rate on the average, you may still not consider them to be equally good
investments. You’d like to also know something about the size of the fluctuations about that average
rate.

Definition 2.11. For a discrete random variable X, the variance of X is defined by

var (X) = E[(X − E[X])2]

provided that this quantity exists.

(This is E [f(X)] where f is given by f(x) = (x− E [X])2 – remember that E [X] is just a number.)

Note that, since (X−E [X])2 is a non-negative random variable, by part (a) of Theorem 2.10, var (X) ≥ 0.
The variance is a measure of how much the distribution of X is spread out about its mean: the more
the distribution is spread out, the larger the variance. If X is, in fact, deterministic (i.e. P (X = a) = 1
for some a ∈ R) then E [X] = a also and so var (X) = 0: only randomness gives rise to variance.

Writing µ = E[X] and expanding the square we see that

var (X) = E
[
(X − µ)2

]
=

∑
x∈ImX

(x2 − 2µx+ µ2)pX(x)

=
∑

x∈ImX

x2pX(x)− 2µ
∑

x∈ImX

xpX(x) + µ2
∑

x∈ImX

pX(x)

= E
[
X2
]
− 2µE [X] + µ2

= E
[
X2
]
− (E [X])2.

This is often an easier expression to work with.

Those of you who have done statistics at school will have seen the standard deviation, which is
√

var (X).
In probability, we usually work with the variance instead because it has natural mathematical properties.

Theorem 2.12. Suppose that X is a discrete random variable whose variance exists. Then if a and b
are (finite) fixed real numbers, then the variance of the discrete random variable Y = aX + b is given by

var (Y ) = var (aX + b) = a2var (X) .
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The proof is an exercise, but notice that of course b doesn’t come into it because it simply shifts the
whole distribution – and hence the mean – by b, whereas variance measures relative to the mean.

In view of Theorem 2.12, why do you think statisticians often prefer to use the standard deviation rather
than variance as a measure of spread?

2.3 Conditional distributions

Back in Section 1.4 we talked about conditional probability P(A|B). In the same way, for a discrete
random variable X we can define its conditional distribution, given the event B. This is what it sounds
like: the mass function obtained by conditioning on the outcome B.

Definition 2.13. Suppose that B is an event such that P (B) > 0. Then the conditional distribution of
X given B is

P(X = x|B) =
P({X = x} ∩B)

P(B)
,

for x ∈ R. The conditional expectation of X given B is

E[X|B] =
∑
x

xP(X = x|B),

whenever the sum converges absolutely. We write pX|B(x) = P(X = x|B).

Theorem 2.14 (Partition theorem for expectations). If {B1, B2, . . .} is a partition of Ω such that
P (Bi) > 0 for all i ≥ 1 then

E [X] =
∑
i≥1

E [X|Bi]P (Bi) ,

whenever E [X] exists.

Proof.

E[X] =
∑
x

xP(X = x)

=
∑
x

x

(∑
i

P(X = x|Bi)P(Bi)

)
by the law of total probability

=
∑
x

∑
i

xP(X = x|Bi)P(Bi)

=
∑
i

P(Bi)

(∑
x

xP(X = x|Bi)

)
=
∑
i

E[X|Bi]P(Bi).

Example 2.15. Let X be the number of rolls of a fair die required to get the first 6. (So X is geometrically
distributed with parameter 1/6.) Find E[X] and var (X).

Solution. Let B1 be the event that the first roll of the die gives a 6, so that Bc1 is the event that it does
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not. Then

E[X] = E[X|B1]P(B1) + E[X|Bc1]P(Bc1)

=
1

6
+

5

6
E[1 +X] (successive rolls are independent)

=
1

6
+

5

6
(1 + E[X]).

Rearrange to get E[X] = 6 (as our intuition would have us guess). Similarly,

E[X2] = E[X2|B1]P(B1) + E[X2|Bc1]P(Bc1)

=
1

6
+

5

6
E[(1 +X)2]

=
1

6
+

5

6
(1 + 2E[X] + E[X2]).

Rearranging and using the previous result (E[X] = 6) gives E[X2] = 66 and so var (X) = 30.

Compare this solution to a direct calculation using the probability mass function:

E[X] =

∞∑
k=1

kpqk−1, E[X2] =

∞∑
k=1

k2pqk−1,

with p = 1
6 and q = 5

6 .

We’ll see a powerful approach to moment calculations in §4, but first we must find a way to deal with
more than one random variable at a time.

2.4 Joint distributions

Suppose that we want to consider two discrete random variables, X and Y , defined on the same proba-
bility space. In the same way as a single random variable was characterised in terms of its probability
mass function, pX(x) for x ∈ R, so now we must specify pX,Y (x, y) = P(X = x, Y = y). It’s not enough
to specify P (X = x) and P (Y = y) because the events {X = x} and {Y = y} might not be independent
(think of the case Y = X2, for example).

Definition 2.16. Given two random variables X and Y their joint distribution (or joint probability
mass function) is

pX,Y (x, y) = P ({X = x} ∩ {Y = y}) , x, y ∈ R.
We usually write the right-hand side simply as P(X = x, Y = y). We have pX,Y (x, y) ≥ 0 for all x, y ∈ R
and

∑
x

∑
y pX,Y (x, y) = 1. The marginal distribution of X is

pX(x) =
∑
y

pX,Y (x, y)

and the marginal distribution of Y is

pY (y) =
∑
x

pX,Y (x, y).

The marginal distribution of X tells you what the distribution of X is if you have no knowledge of Y .

We can write the joint mass function as a table.
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Example 2.17. Suppose that X and Y take only the values 0 or 1 and their joint mass function is given
by

X 0 1
Y

0 1
3

1
2

1 1
12

1
12

Observe that
∑
x,y pX,Y (x, y) = 1 (always a good check when modelling).

The marginals are found by summing the rows and columns:

X 0 1 pY (y)
Y

0 1
3

1
2

5
6

1 1
12

1
12

1
6

pX(x) 5
12

7
12

Notice that P(X = 1) = 7
12 , P(Y = 1) = 1

6 and P(X = 1, Y = 1) = 1
12 6=

7
12 ×

1
6 so {X = 1} and {Y = 1}

are not independent events.

Whenever pX(x) > 0 for some x ∈ R, we can also write down the conditional distribution of Y given
that X = x:

pY |X=x(y) = P (Y = y|X = x) =
pX,Y (x, y)

pX(x)
for y ∈ R.

The conditional expectation of Y given that X = x is then

E [Y |X = x] =
∑
y

ypY |X=x(y),

whenever the sum converges absolutely.

Example 2.18. For the joint distribution in Example 2.17, we have

pY |X=0(0) =
4

5
, pY |X=0(1) =

1

5

and

E [Y |X = 0] =
1

5
.

Definition 2.19. Discrete random variables X and Y are independent if

P(X = x, Y = y) = P(X = x)P(Y = y) for all x, y ∈ R.
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In other words, X and Y are independent if and only if the events {X = x} and {Y = y} are independent
for all choices of x and y. We can also write this as

pX,Y (x, y) = pX(x)pY (y) for all x, y ∈ R.

Example 2.20 (Part of an old exam question). A coin when flipped shows heads with probability p
and tails with probability q = 1 − p. It is flipped repeatedly. Assume that the outcome of different
flips is independent. Let U be the length of the initial run and V the length of the second run. Find
P(U = m,V = n), P(U = m), P(V = m). Are U and V independent?

Solution. We condition on the outcome of the first flip and use the law of total probability.

P(U = m,V = n) = P(U = m,V = n | 1st flip H)P(1st flip H) + P(U = m,V = n | 1st flip T)P(1st flip T)

= ppm−1qnp+ qqm−1pnq

= pm+1qn + qm+1pn.

P(U = m) =

∞∑
n=1

(pm+1qn + qm+1pn) = pm+1 q

1− q
+ qm+1 p

1− p

= pmq + qmp.

P(V = n) =

∞∑
m=1

(pm+1qn + qm+1pn) = qn
p2

1− p
+ pn

q2

1− q

= p2qn−1 + q2pn−1.

We have P(U = m,V = n) 6= f(m)g(n) unless p = q = 1
2 . So U , V are not independent unless p = 1

2 .
To see why, suppose that p < 1

2 , then knowing that U is small, say, tells you that the first run is more
likely to be a run of H’s and so V is likely to be longer. Conversely, knowing that U is big will tell us
that V is likely to be small. U and V are negatively correlated.

In the same way as we defined expectation for a single discrete random variable, so in the bivariate case
we can define expectation of any function of the random variables X and Y . Let h : R2 → R. Then
h(X,Y ) is itself a random variable, and

E[h(X,Y )] =
∑
x

∑
y

h(x, y)P(X = x, Y = y)

=
∑
x

∑
y

h(x, y)pX,Y (x, y), (2.2)

provided the sum converges absolutely.

Theorem 2.21. Suppose X and Y are discrete random variables and a, b ∈ R are constants. Then

E[aX + bY ] = aE[X] + bE[Y ]

provided that both E [X] and E [Y ] exist.
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Proof. Setting h(x, y) = ax+ by, we have

E[aX + bY ] = E [h(X,Y )]

=
∑
x

∑
y

(ax+ by)pX,Y (x, y)

= a
∑
x

∑
y

xpX,Y (x, y) + b
∑
x

∑
y

ypX,Y (x, y)

= a
∑
x

x

(∑
y

pX,Y (x, y)

)
+ b

∑
y

y

(∑
x

pX,Y (x, y)

)
= a

∑
x

xpX(x) + b
∑
y

ypY (y)

= aE[X] + bE[Y ].

Theorem 2.21 tells us that expectation is linear. This is a very important property. We can easily
extend by induction to get E[a1X1 + · · ·+ anXn] = a1E[X1] + · · ·+ anE[Xn] for any finite collection of
random variables X1, . . . , Xn. Note that we don’t need to make any assumption about independence of
the random variables.

Example 2.22. Your spaghetti bowl contains n strands of spaghetti. You repeatedly choose 2 ends at
random, and join them together. What is the average number of loops in the bowl, once no ends remain?

Solution. We start with 2n ends, and the number decreases by 2 at each step. When we have k ends,
the probability of forming a loop is 1/(k− 1). Before the ith step, we have 2(n− i+ 1) ends, so we form
a loop with probability 1/[2(n− i) + 1].

Let Xi be the indicator function of the event that we form a loop at the ith step. Then E[Xi] =
1/[2(n− i)+1]. Let M be the total number of loops formed. Then M = X1 + · · ·+Xn, so using linearity
of expectation,

E[M ] = E[X1] + E[X2] + · · ·+ +E[Xn−1] + E[Xn]

=
1

2n− 1
+

1

2n− 3
+ · · ·+ 1

3
+ 1.

(If n is large, this expectation is close to log n.)

Note that the probability mass function of M is not easy to obtain. So finding the expectation of M
directly from the definition at (2.1) would have been very much less straightforward.

Theorem 2.23. If X and Y are independent discrete random variables whose expectations exist, then

E[XY ] = E[X]E[Y ].

Proof. We have

E[XY ] =
∑
x

∑
y

xyP(X = x, Y = y)

=
∑
x

∑
y

xyP(X = x)P(Y = y) (by independence)

=

(∑
x

xP(X = x)

)(∑
y

yP(Y = y)

)
= E[X]E[Y ].
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Exercise 2.24. Show that var (X + Y ) = var (X) + var (Y ) when X and Y are independent.

What happens when X and Y are not independent? It’s useful to define the covariance,

cov (X,Y ) = E [(X − E [X])(Y − E [Y ])] .

Notice that cov (X,X) = var (X).

Exercise 2.25. Check that cov (X,Y ) = E [XY ]− E [X]E [Y ] and that

var (X + Y ) = var (X) + var (Y ) + 2cov (X,Y ) .

Notice that this means that if X and Y are independent, their covariance is 0. In general, the covariance
can be either positive or negative valued.

WARNING: cov (X,Y ) = 0 DOES NOT IMPLY THAT X AND Y ARE INDEPENDENT.

See the problem sheet for an example.

Definition 2.26. We can define multivariate distributions analogously:

pX1,X2,...,Xn(x1, x2, . . . , xn) = P(X1 = x1, X2 = x2, . . . , Xn = xn),

for x1, x2, . . . , xn ∈ R, and so on.

By analogy with the way we defined independence for a sequence of events, we can define independence
for a family of random variables.

Definition 2.27. A family {Xi : i ∈ I} of discrete random variables are independent if for all finite
sets J ⊆ I and all collections {Ai : i ∈ J} of subsets of R,

P

(⋂
i∈J
{Xi ∈ Ai}

)
=
∏
i∈J

P (Xi ∈ Ai) .

Suppose that X1, X2, . . . are independent random variables which all have the same distribution. Then
we say that X1, X2, . . . are independent and identically distributed (i.i.d.).
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Chapter 3

Difference equations and random
walks

3.1 Difference equations

Our next topic is not probability theory, but rather a tool that you need both to answer some probability
questions in the next chapter, as well as in all sorts of other areas of mathematics. Here is a famous
probability problem by way of motivation.

Example 3.1 (Gambler’s ruin). A gambler repeatedly plays a game in which he wins £1 with probability
p and loses £1 with probability q = 1 − p (independently at each play). He will leave the casino if he
loses all his money or if his fortune reaches £M .

What is the probability that he leaves with nothing if his initial fortune is £n?

Call the probability un and condition on the outcome of the first play to see that

un = P(bankruptcy | win 1st game)P(win 1st game) + P(bankruptcy | lose 1st game)P(lose 1st game).

If the gambler wins the first game, by independence of different plays it’s just like starting over from an
initial fortune of £(n+ 1); similarly, if he loses the first games, it’s just like starting over from an initial
fortune of £(n− 1). This implies that

un = pun+1 + qun−1, (3.1)

which is valid for 1 ≤ n ≤M − 1. We have the boundary conditions u0 = 1, uM = 0.

This is an example of a second-order recurrence relation; it is equations of this sort that we will now
learn how to solve.

Definition 3.2. A kth order linear recurrence relation (or difference equation) has the form

k∑
j=0

ajun+j = f(n) (3.2)

with a0 6= 0 and ak 6= 0, where a0, . . . , ak are constants independent of n. A solution to such a difference
equation is a sequence (un)n≥0 satisfying (3.2) for all n ≥ 0.
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You should keep in mind what you know about solving linear ordinary differential equations like

a
d2y

dx2
+ b

dy

dx
+ cy = f(x)

for the function y, since what we do here will be completely analogous.

The next theorem says that we can split the problem of finding a solution to our difference equations
into two parts.

Theorem 3.3. The general solution (un)n≥0 (i.e. if the boundary conditions are not specified) of

k∑
j=0

ajun+j = f(n)

can be written as un = vn+wn where (vn)n≥0 is a particular solution to the equation and (wn)n≥0 solves
the homogeneous equation

k∑
j=0

ajwn+j = 0.

Proof. Suppose (un) has the suggested form and (ũn) is another solution which may not necessarily be
expressed in this form. Then

k∑
j=0

aj(un+j − ũn+j) = 0.

So (un) and (ũn) differ by a solution (xn) to the homogeneous equation. In particular,

ũn = vn + (wn + xn),

which is of the suggested form since (wn + xn) is clearly a solution to the homogeneous equation.

3.2 First order linear difference equations

We will develop the necessary methods via a series of worked examples.

Example 3.4. Solve
un+1 = aun + b

where u0 = 3 and the constants a 6= 0 and b are given

Solution. The homogeneous equation is wn+1 = awn. “Putting it into itself”, we get

wn = awn−1 = . . . = anw0 = Aan

for some constant A.

How about a particular solution? As in differential equations, guess a constant solution might work, so
try vn = C. This gives C = aC + b so provided that a 6= 1, C = b

1−a and we have general solution

un = Aan +
b

1− a
.

30



Setting n = 0 allows us to determine A:

3 = A+
b

1− a
and so A = 3− b

1− a
.

Hence,

un =

(
3− b

1− a

)
an +

b

1− a
= 3an +

b(1− an)

1− a
.

What happens if a = 1? An applied-maths-type approach would set a = 1 + ε and try to see what
happens as ε→ 0:

un = u0(1 + ε)n +
b(1− (1 + ε)n)

1− (1 + ε)

= u0 + b
(1− (1 + nε))

−ε
+O(ε)

= u0 + nb+O(ε)→ u0 + nb as ε→ 0.

An alternative approach is to mimic what you did for differential equations and “try the next most
complex thing”. We have un+1 = un + b and the homogeneous equation has solution wn = A (a
constant). For a particular solution try vn = Cn (note that there is no point in adding a constant term
because the constant solves the homogeneous equation and so it makes no contribution to the right-hand
side when we substitute).

Then C(n+ 1) = Cn+ b gives C = b and we obtain once again the general solution

un = A+ bn.

Setting n = 0 yields A = 3 and so un = 3 + bn.

Example 3.5.
un+1 = aun + bn.

Solution. As above, the homogeneous equation has solution wn = Aan. For a particular solution, try
vn = Cn+D. Substituting

C(n+ 1) +D = a(Cn+D) + bn.

Equating coefficients of n and the constant terms gives

C = aC + b, C +D = aD,

so again provided a 6= 1 we can solve to obtain C = b
1−a and D = −c

1−a . Thus for a 6= 1

un = Aan +
bn

1− a
− b

(1− a)2
.

To find A, we need a boundary condition (e.g. the value of u0).

Exercise 3.6. Solve the equation for a = 1. Hint: try vn = Cn+Dn2.
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3.3 Second order linear difference equations

Consider
un+1 + aun + bun−1 = f(n).

The general solution will depend on two constants. For the first order case, the homogeneous equation
had a solution of the form wn = Aλn, so we try the same here. Substituting wn = Aλn in

wn+1 + awn + bwn−1 = 0

gives
Aλn+1 + aAλn + bAλn−1 = 0.

For a non-trivial solution we can divide by Aλn−1 and see that λ must solve the quadratic equation

λ2 + aλ+ b = 0.

This is called the auxiliary equation. (So just as when you solve 2nd order ordinary differential equations
you obtain a quadratic equation by considering solutions of the form eλt, so here we obtain a quadratic
in λ by considering solutions of the form λn.)

If the auxiliary equation has distinct roots, λ1 and λ2 then the general solution to the homogeneous
equation is

wn = A1λ
n
1 +A2λ

n
2 .

If λ1 = λ2 = λ try the next most complicated thing (or mimic what you do for ordinary differential
equations) to get

wn = (A+Bn)λn.

Exercise 3.7. Check that this solution works.

How about particular solutions? The same tricks as for the one-dimensional case apply. We can start
by trying something of the same form as f , and if that fails then try the next most complicated thing.
You can save yourself work by not including components that you already know solve the homogeneous
equation.

Example 3.8. Solve
un+1 + 2un − 3un−1 = 1.

Solution. The auxiliary equation is just

λ2 + 2λ− 3 = 0

which has roots λ1 = −3, λ2 = 1, so
wn = A(−3)n +B.

For a particular solution, we’d like to try a constant, but that won’t work because we know that it solves
the homogeneous equation (it’s a special case of wn). So try the next most complicated thing, which is
vn = Cn. Substituting, we obtain

C(n+ 1) + 2Cn− 3C(n− 1) = 1,

which gives C = 1
4 . The general solution is then

un = A(−3)n +B +
1

4
n.
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If the boundary conditions had been specified, you could now find A and B by substitution. (Note that
it takes one boundary condition to specify the solution to a first order difference equation and two to
specify the solution to a 2nd order difference equation. Usually these will be the values of u0 and u1 but
notice that in the gambler’s ruin problem we are given u0 and uN .)

Example 3.9. Solve
un+1 − 2un + un−1 = 1.

Solution. The auxiliary equation λ2−2λ+1 = 0 has repeated root λ = 1, so the homogeneous equation
has general solution

wn = An+B.

For a particular solution, try the next most complicated thing, so vn = Cn2. (Once again there is no
point in adding a Dn + E term to this as that solves the homogeneous equation, so substituting it on
the left cannot contribute anything to the 1 that we are trying to obtain on the right of the equation.)
Substituting, we obtain

C(n+ 1)2 − 2Cn2 + C(n− 1)2 = 1,

which gives C = 1
2 . So the general solution is

un = An+B +
1

2
n2.

Example 3.10 (The Fibonacci numbers). The Fibonacci numbers 1, 1, 2, 3, 5, 8, 13, . . . are defined by the
second-order linear difference equation

fn+2 = fn+1 + fn, n ≥ 0, (3.3)

with initial conditions f0 = f1 = 1.

This is homogeneous, with auxiliary equation λ2−λ−1 = 0. The roots are λ = 1±
√

5
2 , and so the general

solution of (3.3) is given by

fn = A

(
1 +
√

5

2

)n
+B

(
1−
√

5

2

)n
.

Putting in the initial conditions yields the simultaneous equations

1 = A+B, 1 = A
1 +
√

5

2
+B

1−
√

5

2

which have solution A =
√

5+1
2
√

5
, B =

√
5−1

2
√

5
. This yields the remarkable result that for n ≥ 0,

fn =

√
5 + 1

2
√

5

(
1 +
√

5

2

)n
+

√
5− 1

2
√

5

(
1−
√

5

2

)n

=
1√
5

(
1 +
√

5

2

)n+1

− 1√
5

(
1−
√

5

2

)n+1

.

Notice that, despite the fact that
√

5 is irrational, this gives an integer for every n ≥ 0!

Example 3.11. Consider the second-order linear difference equation

un+2 − 2un+1 + 4un = 0, n ≥ 0, (3.4)
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with initial conditions u0 = u1 = 1. The auxiliary equation is λ2−2λ+4 = 0, which has roots λ = 1±i
√

3.
So the general solution to (3.4) is

un = A(1 + i
√

3)n +B(1− i
√

3)n.

Using the initial conditions, we get A = B = 1
2 , and so

un =
1

2
(1 + i

√
3)n +

1

2
(1− i

√
3)n, n ≥ 0.

This is, in fact, real for every n ≥ 0. In order to see this, recall that 1 + i
√

3 = 2eiπ/3 and 1 − i
√

3 =
2e−iπ/3. So

un =
1

2

(
2eiπ/3

)n
+

1

2

(
2e−iπ/3

)n
= 2n

einπ/3 + e−inπ/3

2
= 2n cos

(nπ
3

)
.

3.4 Random walks

We return to the gambler’s ruin problem of Example 3.1. The gambler’s fluctuating wealth is an example
of a more general class of random processes called random walks (sometimes the more evocative phrase
drunkard’s walk is used). Imagine a particle moving around a network. At each step, it can move to one
of the other nodes of the network: there are rules determining where the particle can move to at the next
time step from that position and with what probability it moves to each of the possible new positions.
The important point is that these rules only depend on the current position, not on the earlier positions
that the particle has visited. Random walks can be used to model various real-world situations. For
example, the path traced by a molecule as it moves in a liquid or a gas; the path of an animal searching
for food; or the price of a particular stock every Monday morning. There are various examples on the
problem sheets and later in the course.

Let’s return to the setting of Example 3.1 and solve the recurrence relation we obtained there. Recall
that un = P (bankruptcy) if the gambler’s initial fortune is £n, and that (rearranging (3.1)),

pun+1 − un + qun−1 = 0, 1 ≤ n ≤M − 1, (3.5)

(where q = 1 − p), with u0 = 1, uM = 0. This is a homogeneous second-order difference equation. The
auxiliary equation is

pλ2 − λ+ q = 0

which factorises as
(pλ− q)(λ− 1) = 0.

So λ = q
p or 1. If p 6= 1

2 then

un = A+B

(
q

p

)n
for some constants A and B which we can find using the boundary conditions:

u0 = 1 = A+B and uM = 0 = A+B

(
q

p

)M
.

These give

A = −

(
1−p
p

)M
1−

(
1−p
p

)M , B =
1

1−
(

1−p
p

)M
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and so

un =

(
1−p
p

)n
−
(

1−p
p

)M
1−

(
1−p
p

)M .

Exercise 3.12. Check that in the case p = 1
2 we get

un = 1− n

M
, 0 ≤ n ≤M.

Figure 3.1 shows a simulation of paths in the gambler’s ruin model.

0 20 40 60

0
5

10
15

20

Random walk simulation: p = 0.4, N = 20, start at 10

time

po
si
tio
n

Figure 3.1: 10 simulated paths in the gambler’s ruin model, with M = 20, n = 10 and p = 0.4. We see
some get absorbed at 0, one at 20, and two which have not yet reached either boundary at time 80.

Example 3.13. What is the expected number of plays in the gambler’s ruin model before the gambler’s
fortune hits either 0 or M?
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Solution. Just as we used the partition theorem to get a recurrence for the probability of bankruptcy,
we can use the partition theorem for expectations to get a recurrence for the expected length of the
process.

Let X be the number of steps until the walk reaches one of the barriers at 0 or M . Write en for the
expectation of X when the process is started from n. Then

en = pE [X|first step is to n+ 1] + qE [X|first step is to n− 1] .

Let’s think carefully about the conditional expectations on the right-hand side. If the first step is to
n+ 1, then we have already spent one step to get there, and thereafter the number of steps to reach the
boundary is just the time to reach the boundary in a walk starting from n+ 1. Hence we get

E [X|first step is to n+ 1] = 1 + en+1,

and similarly
E [X|first step is to n− 1] = 1 + en−1.

So we obtain the recurrence
en = p(1 + en+1) + q(1 + en−1)

which rearranges to give
pen+1 − en + qen−1 = −1. (3.6)

Our boundary conditions are e0 = eM = 0. Note that (3.6) has exactly the same form as (3.5), except
that the equation is no longer homogeneous: we have the constant −1 on the right-hand side instead of
0.

Take the case p 6= q. As above, we have the general solution to the homogeneous equation

wn = A+B

(
q

p

)n
.

For a particular solution to (3.6), try vn = Cn ( note that there’s no point trying a constant since we
already know that any constant solves the homogeneous equation). This yields

pC(n+ 1)− Cn+ qC(n− 1) = −1

and so C = −1/(p− q). Putting everything together, we get

en = A+B

(
q

p

)n
− n

p− q
.

Using the boundary conditions, we get

e0 = 0 = A+B, eM = 0 = A+B

(
q

p

)M
− M

p− q
.

Solving for A and B, we finally obtain

en =
M

(p− q)
1− (q/p)

n

1− (q/p)
M
− n

p− q

for 0 ≤ n ≤M .

Exercise 3.14. Find en for p = q = 1/2 (the expression is rather simpler in that case!).
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Finally, consider what happens if we remove the upper barrier at M , and instead have a random walk
on the infinite set {0, 1, 2, . . . }, starting from some site n > 0. Does the walk ever reach the site 0, or
does it stay strictly positive for ever? Let’s look at the probability of the event that it hits 0. A natural

idea is to let M →∞ in the finite problem. Write u
(M)
n for the probability of hitting 0 before M , which

we calculated above. Then we have

lim
M→∞

u(M)
n =

limM→∞
( qp )

n−( qp )
M

1−( qp )
M if p 6= q

limM→∞ 1− n
M if p = q = 1/2

=

{(
q
p

)n
if p > q

1 if p ≤ q.

It turns out that this limit as M →∞ really does give the appropriate probability that the random walk
on {0, 1, 2, . . . } hits 0. In particular, the walk has positive probability to stay away from 0 for ever if and
only if p > q. There are various ways to prove this; the idea below is not complicated, but is nonetheless
somewhat subtle.

Theorem 3.15. (Non-examinable) Consider a random walk on the integers Z, started from some n > 0,
which at each step increases by 1 with probability p, and decreases by 1 with probability q = 1− p. Then
the probability un that the walk ever hits 0 is given by

un =

{(
q
p

)n
if p > q,

1 if p ≤ q.

Proof. In Proposition A.8 in the Appendix, we prove a useful result about increasing sequences of
events. A sequence of events Ak, k ≥ 1 is called increasing if A1 ⊆ A2 ⊆ A3 ⊆ . . . . Then Proposition
A.8 says that for such a sequence of events,

P

( ∞⋃
k=1

Ak

)
= lim
k→∞

P (Ak) .

(This can be regarded as a sort of continuity result for the probability function P.)

To apply this result to the random walk started from n, consider the event H that the random walk
reaches 0, and for each M , consider the event AM that the random walk reaches 0 before M . If the walk
ever reaches 0, then there must be some M such that the walk reaches 0 before M , so that AM occurs.
Conversely, if any event AM occurs, then clearly the event H also occurs. Hence we have H =

⋃
M AM .

Then indeed we have

un = P (H)

= P

( ∞⋃
M=1

AM

)
= lim
M→∞

P (AM )

= lim
M→∞

u(M)
n ,

as desired.
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Chapter 4

Probability generating functions

We’re now going to turn to an extremely powerful tool, not just in calculations but also in proving more
abstract results about discrete random variables.

From now on we consider non-negative integer-valued random variables i.e. X takes values in {0, 1, 2, . . .}.

Definition 4.1. Let X be a non-negative integer-valued random variable. Let

S :=

{
s ∈ R :

∞∑
k=0

|s|kP(X = k) <∞

}
.

Then the probability generating function (p.g.f.) of X is GX : S → R defined by

GX(s) = E[sX ] =

∞∑
k=0

skP (X = k) .

Let us agree to save space by setting

pk = pX(k) = P(X = k).

Notice that because
∑∞
k=0 pk = 1, GX(s) is certainly defined for |s| ≤ 1 (i.e. [−1, 1] ⊆ S) and GX(1) = 1.

Notice also that GX(s) is just a real-valued function. The parameter s is the argument of the function
and has nothing to do with X. It plays the same role as x if I write sinx, for example.1

Why are generating functions so useful? Because they encode all of the information about the distribution
of X in a single function. It will turn out that we can get at this information by using the tools of calculus.

Theorem 4.2. The distribution of X is uniquely determined by its probability generating function, GX .

1The probability generating function is an example of a power series, that is a function of the form f(x) =
∑∞

n=0 cnx
n.

It may be that this sum diverges for some values of x; the radius of convergence is the value r such that the sum converges
if |x| < r and diverges if |x| > r. For a probability generating function, we can see that the radius of convergence must be
at least 1. For the purposes of this course, you are safe to assume that the derivative of f is well-defined for |x| < r and is
given by

f ′(x) =

∞∑
n=1

ncnx
n−1

i.e. what you would get differentiating term-by-term. Those of you who are doing Analysis I & II will learn more about
power series there.
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Proof. First note that GX(0) = p0. Now, for |s| < 1, we can differentiate GX(s) term-by-term to get

G′X(s) = p1 + 2p2s+ 3p3s
2 + · · · .

Setting s = 0, we see that G′X(0) = p1. Similarly, by differentiating repeatedly, we see that

dk

dsk
GX(s)

∣∣
s=0

= k! pk.

So we can recover p0, p1, . . . from GX .

Probability generating functions for common distributions.

1. Bernoulli distribution. X ∼ Ber(p). Then

GX(s) =
∑
k

pks
k = qs0 + ps1 = q + ps

for all s ∈ R.

2. Binomial distribution. X ∼ Bin(n, p). Then

GX(s) =

n∑
k=0

sk
(
n

k

)
pk(1− p)n−k =

n∑
k=0

(
n

k

)
(ps)k(1− p)n−k = (1− p+ ps)n,

by the binomial theorem. This is valid for all s ∈ R.

3. Poisson distribution. X ∼ Po(λ). Then

GX(s) =

∞∑
k=0

sk
λke−λ

k!
= e−λ

∞∑
k=0

(sλ)k

k!
= eλ(s−1)

for all s ∈ R.

4. Geometric distribution with parameter p. Exercise on the problem sheet: check that

GX(s) =
ps

1− (1− p)s
,

provided that |s| < 1
1−p .

Theorem 4.3. If X and Y are independent, then

GX+Y (s) = GX(s)GY (s).

Proof. We have
GX+Y (s) = E

[
sX+Y

]
= E

[
sXsY

]
.

Since X and Y are independent, sX and sY are independent (see a question on the problem sheet). So
then by Theorem 2.23, this is equal to

E
[
sX
]
E
[
sY
]

= GX(s)GY (s).

This can be very useful for proving distributional relationships.
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Theorem 4.4. Suppose that X1, X2, . . . , Xn are independent Ber(p) random variables and let Y =
X1 + · · ·+Xn. Then Y ∼ Bin(n, p).

Proof. We have

GY (s) = E[sY ] = E[sX1+···+Xn ] = E[sX1 · · · sXn ] = E[sX1 ] · · ·E[sXn ] = (1− p+ ps)n.

As Y has the same p.g.f. as a Bin(n, p) random variable, we deduce that Y ∼ Bin(n, p).

The interpretation of this is that Xi tells us whether the ith of a sequence of independent coin flips is
heads or tails (where heads has probability p). Then Y counts the number of heads in n independent
coin flips and so must be distributed as Bin(n, p).

Theorem 4.5. Suppose that X1, X2, . . . , Xn are independent random variables such that Xi ∼ Po(λi).
Then

n∑
i=1

Xi ∼ Po

(
n∑
i=1

λi

)
.

In particular, if λi = λ for all 1 ≤ i ≤ n then
∑n
i=1Xi ∼ Po(nλ).

Proof. Recall that E
[
sXi
]

= eλi(s−1). By independence,

E
[
sX1+X2+...+Xn

]
=

n∏
i=1

E
[
sXi
]

=

n∏
i=1

eλi(s−1) = exp

(
(s− 1)

n∑
i=1

λi

)
.

Since this is the p.g.f. of the Po(
∑n
i=1 λi) distribution and probability generating functions uniquely

determine distributions, the result follows.

4.1 Calculating expectations using probability generating func-
tions

We’ve already seen that differentiating GX(s) and setting s = 0 gives us a way to get at the probability
mass function of X. Derivatives at other points can also be useful. We have

G′X(s) =
d

ds
E[sX ] =

d

ds

∞∑
k=0

skP (X = k) =

∞∑
k=0

d

ds
skP (X = k) =

∞∑
k=0

ksk−1P (X = k) = E[XsX−1].

So
G′X(1) = E[X]

(as long as E [X] exists). Differentiating again, we get

G′′X(1) = E[X(X − 1)] = E[X2]− E[X],

and so, in particular,
var (X) = G′′X(1) +G′X(1)− (G′X(1))2.

In general,
dk

dsk
GX(s)

∣∣∣∣
s=1

= E[X(X − 1) · · · (X − k + 1)].
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Example 4.6. Let Y = X1 + X2 + X3, where X1, X2 and X3 are independent random variables each
having probability generating function

G(s) =
1

6
+
s

3
+
s2

2
.

1. Find the mean and variance of X1.

2. What is the p.g.f. of Y ? What is P(Y = 3)?

3. What is the p.g.f. of 3X1? Why is it not the same as the p.g.f. of Y ? What is P(3X1 = 3)?

Solution. 1. Differentiating the probability generating function,

G′(s) =
1

3
+ s, G′′(s) = 1,

and so E[X1] = G′(1) = 4
3 and

var (X1) = G′′(1) +G′(1)− (G′(1))2 = 1 +
4

3
− 16

9
=

5

9
.

2. Just as in our derivation of the probability generating function for the binomial distribution,

GY (s) = E[sX1+X2+X3 ] = E[sX1 ]E[sX2 ]E[sX3 ]

and so

GY (s) =

(
1

6
+
s

3
+
s2

2

)3

=
1

216

(
1 + 6s+ 21s2 + 44s3 + 63s4 + 54s5 + 27s6

)
.

P(Y = 3) is the coefficient of s3 in GY (s), that is 11
54 . (As an exercise, calculate P(Y = 3) directly.)

3. We have

G3X1(s) = E[s(3X1)] = E[(s3)X1 ] = GX1(s3) =
1

6
+
s3

3
+
s6

2
.

This is different from GY (s) because 3X1 and S3 have different distributions - knowing X1 does
not tell you Y , but it does tell you 3X1. Finally, P(3X1 = 3) = P(X1 = 1) = 1

3 .

Of course, for each fixed s ∈ R, sX is itself a discrete random variable. So we can use the law of total
probability when calculating its expectation.

Example 4.7. Suppose that there are n red balls, n white balls and 1 blue ball in an urn. A ball is
selected at random and then replaced. Let X be the number of red balls selected before a blue ball is
chosen. Find

(a) the probability generating function of X,

(b) E [X],

(c) var (X).
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Solution. (a) We will use the law of total probability for expectations. Let R be the event that the first
ball is red, W be the event that the first ball is white and B be the event that the first ball is blue. Then

GX(s) = E
[
sX
]

= E
[
sX |R

]
P (R) + E

[
sX |W

]
P (W ) + E

[
sX |B

]
P (B) .

Of course, the value of X is affected by the first ball which is picked. If the first ball is blue then we
know that X = 0. If the first ball is white, we learn nothing about the value of X. If the first ball is red
then effectively we start over again counting numbers of red balls, but we add 1 for the red ball we have
already seen. This yields

GX(s) = E
[
s1+X

]
P (R) + E

[
sX
]
P (W ) + E

[
s0
]
P (B)

= sGX(s)
n

2n+ 1
+GX(s)

n

2n+ 1
+

1

2n+ 1

and so

GX(s) =
1

n+ 1− ns
=

1/(n+ 1)

1− (1− 1/(n+ 1))s
.

(b) Differentiating, we get

G′X(s) =
n

(n+ 1− ns)2

and so
E [X] = G′X(1) = n.

(c) Recall that
var (X) = G′′X(1) +G′X(1)− (G′X(1))2.

Differentiating the p.g.f. again we get

G′′X(s) =
2n2

(n+ 1− ns)3

and so G′′X(1) = 2n2. Hence,
var (X) = 2n2 + n− n2 = n(n+ 1).

If we were just asked for E [X] it would be easier to calculate

E [X] = E [X|R]P (R) + E [X|W ]P (W ) + E [X|B]P (B)

= (1 + E [X])
N

2n+ 1
+ E [X]

n

2n+ 1
+ 0 · 1

2n+ 1
= n.

In order to calculate var (X), however, we need both E [X] and E
[
X2
]

and so it’s easier just to find
GX(s) and differentiate it.

Theorem 4.8. Let X1, X2, . . . be i.i.d. non-negative integer-valued random variables with p.g.f. GX(s).
Let N be another non-negative integer-valued random variable, independent of X1, X2, . . . and with p.g.f.
GN (s). Then the p.g.f. of

∑N
i=1Xi is GN (GX(s)).

Notice that the sum
∑N
i=1Xi has a random number of terms. We interpret it as 0 if N = 0.
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Proof. We partition according to the value of N : we have

E
[
sX1+···+XN

]
=

∞∑
n=0

E
[
sX1+···+XN |N = n

]
P (N = n) by the law of total probability

=

∞∑
n=0

E
[
sX1+···+Xn |N = n

]
P (N = n)

=

∞∑
n=0

E
[
sX1+···+Xn

]
P (N = n) by the independence of N and {X1, X2, . . .}

=

∞∑
n=0

E
[
sX1
]
· · ·E

[
sXn

]
P (N = n) since X1, X2, . . . are independent

=

∞∑
n=0

(GX(s))nP (N = n)

= GN (GX(s)).

Corollary 4.9. Suppose that X1, X2, . . . are independent and identically distributed Ber(p) random vari-

ables and that N ∼ Po(λ), independently of X1, X2, . . .. Then
∑N
i=1Xi ∼ Po(λp).

(Notice that we saw this result in disguise via a totally different method in a problem sheet question.)

Proof. We have GX(s) = 1− p+ ps and GN (s) = exp(λ(s− 1)) and so by Theorem 4.8,

E
[
s
∑N
i=1Xi

]
= GN (GX(s)) = exp(λ(1− p+ ps− 1)) = exp(λp(s− 1)).

Since this is the p.g.f. of Po(λp) and p.g.f.’s uniquely determine distributions, the result follows.

Example 4.10. In a short fixed time period, a photomultiplier detects 0, 1 or 2 photons with probabilities
1
2 , 1

3 and 1
6 respectively. The photons detected by the photomultiplier cause it to give off a charge of 2, 3,

4 or 5 electrons (with equal probability) independently for every one photon originally detected. What is
the probability generating function of the number of electrons given off in the time period? What is the
probability that exactly five electrons are given off in that period?

Solution. Let N be the number of photons detected. Then the probability generating function of N is

GN (s) =
1

2
+

1

3
s+

1

6
s2.

Let Xi be the number of electrons given off by the ith photon detected. Then Y = X1 + · · ·+XN is the
total number given off in the period (remember that N here is random). Now GX(s) = 1

4 (s2+s3+s4+s5)
and so, by Theorem 4.8,

GY (s) = GN (GX(s))

=
1

2
+

1

3
GX(s) +

1

6
(GX(s))2

=
1

2
+

1

12
s2 +

1

12
s3 +

1

12
s4 +

1

12
s5 +

1

96
(s4 + 2s5 + 3s6 + 4s7 + 3s8 + 2s9 + s10).

The probability that five electrons are given off is the coefficient of s5, that is 5
48 .
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4.2 Branching processes

A really nice illustration of the power of probability generating functions is in the study of branching
processes.

Suppose we have a population (say of bacteria). Each individual in the population lives a unit time and,
just before dying, gives birth to a random number of children in the next generation. This number of
children has probability mass function p(i), i ≥ 0, called the offspring distribution. Different individuals
reproduce independently in the same manner. Here is a possible family tree of such a population:

We start at the top of the tree, with a single individual in generation 0. Then there are 3 individuals in
generations 1 and 2, 5 individuals in generation 3, a single individual in generation 4 and no individuals
in subsequent generations.

Let Xn be the size of the population in generation n, so that X0 = 1. Let C
(n)
i be the number of children

of the ith individual in generation n ≥ 0, so that we may write

Xn+1 = C
(n)
1 + C

(n)
2 + · · ·+ C

(n)
Xn
.

(We interpret this sum as 0 if Xn = 0.) Note that C
(n)
1 , C

(n)
2 , . . . are independent and identically

distributed. Let G(s) =
∑∞
i=0 p(i)s

i and let Gn(s) = E
[
sXn

]
.

Theorem 4.11. For n ≥ 0,

Gn+1(s) = Gn(G(s)) = G(G(. . . G︸ ︷︷ ︸
n+1 times

(s) . . .)) = G(Gn(s)).

Proof. Since X0 = 1, we have G0(s) = s. Also, we get X1 = C
(0)
1 which has p.m.f. p(i), i ≥ 0. So

G1(s) = E
[
sX1
]

= G(s). Since

Xn+1 =

Xn∑
i=1

C
(n)
i ,

by Theorem 4.8 we get

Gn+1(s) = E
[
sXn+1

]
= E

[
s
∑Xn
i=1 C

(n)
i

]
= Gn(G(s)).
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Hence, by induction, for n ≥ 1,

Gn+1(s) = G(G(. . . G︸ ︷︷ ︸
n times

(s) . . .)) = G(Gn(s)).

Corollary 4.12. Suppose that the mean number of children of a single individual is µ i.e.
∑∞
i=1 ip(i) = µ.

Then
E [Xn] = µn.

Proof. We have E [Xn] = G′n(1). By the chain rule,

G′n(s) =
d

ds
G(Gn−1(s)) = G′n−1(s)G′(Gn−1(s)).

Plugging in s = 1, we get

E [Xn] = E [Xn−1]G′(1) = E [Xn−1]µ = · · · = µn.

In particular, notice that we get exponential growth on average if µ > 1 and exponential decrease if
µ < 1. This raises an interesting question: can the population die out? If p(0) = 0 then every individual
has at least one child and so the population clearly grows forever. If p(0) > 0, on the other hand, then
the population dies out with positive probability because

P (population dies out) = P (∪∞n=1{Xn = 0}) ≥ P (X1 = 0) = p(0) > 0.

(Notice that this holds even in the cases where E [Xn] grows as n→∞ !)

Example 4.13. Suppose that p(i) = (1/2)i+1, i ≥ 0, so that each individual has a geometric number of
offspring. What is the distribution of Xn?

Solution. First calculate

G(s) =

∞∑
k=0

sk
(

1

2

)k+1

=
1

2− s
.

By plugging this into itself a couple of times, we get

G2(s) =
2− s
3− 2s

, G3(s) =
3− 2s

4− 3s
.

A natural guess is that Gn(s) = n−(n−1)s
(n+1)−ns which is, in fact, the case, as can be proved by induction. If

we want the probability mass function of Xn, we need to expand this quantity out in powers of s. We
have

1

(n+ 1)− ns
=

1

n+ 1

1

1− ns/(n+ 1)
=

∞∑
k=0

nksk

(n+ 1)k+1
.

Multiplying by n− (n− 1)s, we get

Gn(s) =

∞∑
k=0

nk+1sk

(n+ 1)k+1
−
∞∑
k=1

nk−1(n− 1)sk

(n+ 1)k
=

n

n+ 1
+

∞∑
k=1

nk−1sk

(n+ 1)k+1
.

We can read off the coefficients now to see that

P (Xn = k) =

{
n
n+1 if k = 0
nk−1

(n+1)k+1 if k ≥ 1.

Notice that P (Xn = 0) → 1 as n → ∞, which indicates that the population dies out eventually in this
case.

45



4.2.1 Extinction probability (non-examinable)

Let’s return to the general case for the moment and let q = P (population dies out). We can call q the
extinction probability of the branching process. We can find an equation satisfied by q by conditioning
on the number of children of the first individual.

q =

∞∑
k=0

P (population dies out|X1 = k)P (X1 = k) =

∞∑
k=0

P (population dies out|X1 = k) p(k).

Now remember that each of the k individuals in the first generation behaves exactly like the parent. In
particular, we can think of each of them starting its own family, which is an independent copy of the
original family. Moreover, the whole population dies out if and only if all of these sub-populations die
out. If we had k families, this occurs with probability qk. So

q =

∞∑
k=0

qkp(k) = G(q). (4.1)

The equation q = G(q) doesn’t quite enable us to determine q: notice that 1 is always a solution, but
it’s not necessarily the only solution in [0, 1].

Using Proposition A.8 about increasing sequences of events (see Appendix), we have

q = P

(⋃
n

{Xn = 0}

)
= lim
n→∞

P (Xn = 0)

= lim
n→∞

Gn(0). (4.2)

Theorem 4.14. The extinction probability q is the smallest non-negative solution of

x = G(x) (4.3)

Proof. From (4.1) we know that q solves (4.3). Suppose some r ≥ 0 also solves (4.3). We claim that in
that case, Gn(0) ≤ r for all n ≥ 0. In that case we are done, since then also q = limn→∞Gn(0) ≤ r, and
so indeed q is smaller than any other solution of (4.3).

We use induction to prove the claim that Gn(0) ≤ r for all n. For the base case n = 0, we have
G0(0) = 0 ≤ r as required.

For the induction step, suppose that Gn−1(0) ≤ r. Now notice that the generating function G(s) =∑∞
k=0 p(k)sk is a non-decreasing function for s ≥ 0. Hence

Gn(0) = G
(
Gn−1(0)

)
≤ G(r) = r,

as required. This completes the proof.

It turns out that the question of whether the branching process inevitably dies out is determined by the
mean number of children of a single individual. To avoid a trivial case, we assume in the next result that
p(1) 6= 1. (If p(1) = 1 then Xn = 1 with probability 1, for all n.) Then we find that there is a positive
probability of survival of the process for ever if and only if µ > 1.

Theorem 4.15. Assume p(1) 6= 1. Then q = 1 if µ ≤ 1, and q < 1 if µ > 1.
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Proof. Note first that there’s a quick argument for the case where µ is strictly less than 1. Note that
as Xn takes non-negative integer values,

P (Xn > 0) ≤ E [Xn]

(since P (Xn > 0) =
∑
k≥1 P (Xn = k) ≤

∑
k≥1 kP (Xn = k) = E [Xn]).

But from Corollary 4.12, we have E [Xn] = µn. Hence P (Xn > 0)→ 0 as n→∞, and so from (4.2), we
get q = 1.

Now we give a more general argument that also covers the cases µ = 1 and µ > 1. First, observe that
the gradient G′(s) =

∑
k=1 kp(k)sk−1 is non-decreasing for s ≥ 0 (and, indeed, strictly increasing unless

p0 + p1 = 1). That is, G is convex.

Consider the graph of y = G(x), on the interval x ∈ [0, 1]. It passes through the points (0, p0) and (1, 1),
and at (1, 1) its slope is µ = G′(1).

We have the following two cases:

y = G(x)

y = x

p0

0 1

1

0 1

1

y = x

y = G(x)

p0

Figure 4.1: On the left, the case µ > 1; on the right, the case µ ≤ 1.

(1) Suppose µ > 1. Since the gradient of the curve y = G(x) is more than 1 at x = 1, and the curve
starts on the non-negative y-axis at x = 0, it must cross the line y = x at some x ∈ [0, 1). See the
left side of Figure 4.1. Hence indeed the smallest non-negative fixed point q of G is less than 1.

(2) Suppose µ ≤ 1. The gradient at 1 is at most 1, and in fact the gradient is strictly less than 1 for all
x ∈ [0, 1). (We excluded the case p1 = 1 for which the gradient is 1 everywhere.) Now the function
y = G(x) must stay above the line y = x throughout [0, 1). See the right side of Figure 4.1. So the
smallest non-negative fixed point q of G is 1.
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Chapter 5

Continuous random variables

5.1 Random variables and cumulative distribution functions

Recall that we defined a discrete random variable on a probability space (Ω,F ,P) to be a function
X : Ω→ R such that X can only take countably many values (and such that we can assign a probability
to the event {X = x}, i.e. such that {X = x} ∈ F). There is, however, a more general notion. The
essential idea is that a random variable can be any (sufficiently nice) function X : Ω → R, which
represents some sort of observable quantity in our random experiment.

Why do we need more general random variables?

• Some outcomes are essentially continuous. In particular, many physical quantities are most nat-
urally modelled as taking uncountably many possible values, for example, lengths, weights and
speeds.

• Even for discrete quantities, it is often useful to think instead in terms of continuous approximations.
For example, suppose you wish to consider the number of working adults who regularly contribute
to charity. You might model this number as X ∈ {0, 1, . . . , n}, where n is the total number of
working adults in the UK. We could, in theory, model this as a Bin(n, p) random variable where
p = P (adult contributes). But n is measured in millions. So instead model Y ≈ X

n as a continuous
random variable taking values in [0, 1] and giving the proportion of adults who contribute.

To give a concrete example of a random variable which is not discrete, imagine you have a board game
spinner. You spin the arrow and it lands pointing at an angle somewhere between 0 and 2π in such a
way that every angle is equally likely; we want to model this angle as a random variable X. How can we
describe its distribution? We can’t assign a positive probability to each angle – our probabilities wouldn’t
sum to 1. To get around this, we don’t define the probability of individual sample points, but only of
certain natural events. For example, by symmetry we expect that P (X ≤ π) = 1/2. More generally, we
expect the probability that X lies in an interval [a, b] ⊆ [0, 2π) to be proportional to the length of that
interval: P (X ∈ [a, b]) = b−a

2π , 0 ≤ a < b < 2π.

Definition 5.1. A random variable X defined on a probability space (Ω,F ,P) is a function X : Ω→ R
such that {ω : X(ω) ≤ x} ∈ F for each x ∈ R.
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Let’s just check that this includes our earlier definition. If X is a discrete random variable then

{ω : X(ω) ≤ x} =
⋃

y≤x:y∈ImX

{ω : X(ω) = y}.

Since ImX is countable, this is a countable union of events in F and, therefore, itself belongs to F .

Of course, {ω : X(ω) ≤ x} ∈ F means precisely that we can assign a probability to this event. The
collection of these probabilities as x varies in R will play a central part in what follows.

Definition 5.2. The cumulative distribution function (c.d.f.) of a random variable X is the function
FX : R→ [0, 1] defined by

FX(x) = P (X ≤ x) .

Example 5.3. Let X be the number of heads obtained in three tosses of a fair coin. Then P (X = 0) = 1
8 ,

P (X = 1) = P (X = 2) = 3
8 and P (X = 3) = 1

8 . So

FX(x) =



0 if x < 0
1
8 if 0 ≤ x < 1
1
8 + 3

8 = 1
2 if 1 ≤ x < 2

1
8 + 3

8 + 3
8 = 7

8 if 2 ≤ x < 3

1 if x ≥ 3.
x1 2 30

Example 5.4. Let X be the angle of the board game spinner. Then

FX(x) =


0 if x < 0,
x
2π if 0 ≤ x < 2π,

1 if x ≥ 2π.

We can immediately write down some properties of the c.d.f. FX corresponding to a general random
variable X.

Theorem 5.5. 1. FX is non-decreasing.

2. P (a < X ≤ b) = FX(b)− FX(a) for a < b.

3. As x→ −∞, FX(x)→ 0.

4. As x→∞, FX(x)→ 1.

Proof. 1. If a < b then {ω : X(ω) ≤ a} ⊆ {ω : X(ω) ≤ b} and so

FX(a) = P (X ≤ a) ≤ P (X ≤ b) = FX(b).

2. Since {X ≤ a} is a subset of {X ≤ b},

P (a < X ≤ b) = P ({X ≤ b} \ {X ≤ a}) = P (X ≤ b)− P (X ≤ a) = FX(b)− FX(a).

3 & 4. (sketch) Intuitively, we want to put “FX(−∞) = P (X ≤ −∞)” and then, since X can’t possibly
be −∞ (or less!), the only sensible interpretation we could give the right-hand side would be 0. Likewise,
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we would like to put “FX(∞) = P (X ≤ ∞)” and, since X cannot be larger than ∞, the only sensible
interpretation we could give the right-hand side would be 1. The problem is that ∞ and −∞ aren’t real
numbers, but FX is a function on R. The only sensible way to deal with this problem is by taking limits
and to do this carefully involves using our axiom P4 in a somewhat intricate way. �

Conversely, any function F satisfying conditions 1, 3 and 4 of Theorem 5.5 plus right-continuity is the
cumulative distribution function of some random variable defined on some probability space, although
we will not prove this fact.

As you can see from the coin-tossing example, FX need not be a smooth function. Indeed, for a discrete
random variable, FX is always a step function. However, in the rest of the course, we’re going to
concentrate on the case where FX is very smooth in that it has a derivative (except possibly at a
collection of isolated points).

Definition 5.6. A continuous random variable X is a random variable whose c.d.f. satisfies

FX(x) = P (X ≤ x) =

∫ x

−∞
fX(u)du,

where fX : R→ R is a function such that

(a) fX(u) ≥ 0 for all u ∈ R

(b)
∫∞
−∞ fX(u)du = 1.

fX is called the probability density function (p.d.f.) of X or, sometimes, just its density.

Remark 5.7. The definition of a continuous random variable leaves implicit which functions fX might
possibly serve as a probability density function. Part of this is a more fundamental question concerning
which functions we are allowed to integrate (and for some of you, that will be resolved in the Analysis
III course in Trinity Term and in Part A Integration). For the purposes of this course, you may assume
that fX is a function which has at most countably many jumps and is smooth everywhere else. Indeed,
in almost all of the examples we will consider, fX will have 0, 1 or 2 jumps.

Remark 5.8. The Fundamental Theorem of Calculus (which some of you will see proved in Analysis
II), tells us that FX of the form given in the definition is differentiable with

dFX(x)

dx
= fX(x),

at any point x such that fX(x) is continuous.

Example 5.9. Suppose that X has c.d.f.

FX(x) =

{
0 if x < 0

1− e−x if x ≥ 0.

Consider

f(x) =

{
0 for x < 0

e−x for x ≥ 0.

Then ∫ x

−∞
f(u)du =

{
0 if x < 0∫ x

0
e−udu = 1− e−x if x ≥ 0,
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and so X is a continuous random variable with density fX(x) = f(x). Notice that fX(0) = 1 and so
fX has a jump at x = 0. On the other hand, FX is smooth at 0, but it isn’t differentiable there. To
see this, if we approach 0 from the right, FX has gradient tending to 1; if we approach 0 from the left,
FX has gradient 0 and, since these don’t agree, there isn’t a well-defined derivative. On the other hand,
everywhere apart from 0 we do have F ′X(x) = fX(x).

Example 5.10. Suppose that a continuous random variable X has p.d.f.

fX(x) =

{
cx2(1− x) for x ∈ [0, 1]

0 otherwise.

Find the constant c and an expression for the c.d.f.

Solution. To find the constant, c, note that we must have

1 =

∫ ∞
−∞

fX(x)dx =

∫ 1

0

cx2(1− x)dx = c

[
x3

3
− x4

4

]1

0

=
c

12
.

It follows that c = 12. To find the c.d.f., we simply integrate:

FX(x) =

∫ x

−∞
fX(u)du =


0 for x < 0∫ x

0
12u2(1− u)du for 0 6 x < 1

1 for x > 1.

Since ∫ x

0

12u2(1− u)du = 12

(
x3

3
− x4

4

)
,

we get

FX(x) =


0 for x < 0

4x3 − 3x4 for 0 6 x < 1

1 for x > 1.

Example 5.11. The duration in minutes of mobile phone calls made by students is modelled by a random
variable, X, with p.d.f.

fX(x) =

{
1
6e−x/6 if x ≥ 0

0 otherwise.

What is the probability that a call lasts

(i) between 3 and 6 minutes?

(ii) more than 6 minutes?

Solution. (i)

P (3 < X ≤ 6) =

∫ 6

3

fX(x)dx =

∫ 6

3

1

6
e−x/6dx = e−

1
2 − e−1.

(ii)

P (X > 6) =

∫ ∞
6

fX(x)dx =

∫ ∞
6

1

6
e−x/6dx = e−1.
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We often use the p.d.f. of a continuous random variable analogously to the way we used the p.m.f. of a
discrete random variable. There are several similarities between the two:

Probability density function (continuous) Probability mass function (discrete)

fX(x) > 0 ∀x ∈ R pX(x) > 0 ∀x ∈ R∫ ∞
−∞

fX(x) = 1
∑

x∈ImX

pX(x) = 1

FX(x) =

∫ x

−∞
fX(u)du FX(x) =

∑
u6x: u∈ImX

pX(u)

However, the analogy can be misleading. For example, there’s nothing to prevent fX(x) exceeding 1.

WARNING: fX(x) IS NOT A PROBABILITY.

Suppose that ε > 0 is small. Then, by Taylor’s theorem,

P (x < X ≤ x+ ε) = FX(x+ ε)− FX(x) ≈ fX(x)ε.

So fX(x)ε is approximately the probability that X falls between x and x+ ε (or, indeed, between x− ε
and x). What happens as ε→ 0?

Theorem 5.12. If X is a continuous random variable with p.d.f. fX then

P (X = x) = 0 for all x ∈ R

and

P (a ≤ X ≤ b) =

∫ b

a

fX(x)dx.

Proof. (Non-examinable.) We argue by contradiction. Suppose that for some x ∈ R we have P (X = x) >
0. Let p = P (X = x). Then for all n ≥ 1, P (x− 1/n < X ≤ x) ≥ p. We have P (x− 1/n < X ≤ x) =
FX(x)− FX(x− 1/n) and so FX(x)− FX(x− 1/n) ≥ p for all n ≥ 1. But FX is continuous at x and so

lim
n→∞

(FX(x)− FX(x− 1/n)) = 0.

This gives a contradiction. So we must have P (X = x) = 0.

Finally, P (a ≤ X ≤ b) = P (X = a) + P (a < X ≤ b) and so, since P (X = a) = 0, we get

P (a ≤ X ≤ b) =

∫ b

a

fX(x)dx.

So for a continuous r.v. X, the probability of getting any fixed value x is 0! Why doesn’t this break our
theory of probability? We have

{ω : X(ω) ≤ x} =
⋃
y≤x

{ω : X(ω) = y}
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and the right-hand side is an uncountable union of disjoint events of probability 0. If the union were
countable, this would entail that the left-hand side had probability 0 also, which wouldn’t make much
sense. But because the union is uncountable, we cannot expect to “sum up” these zeros in order to get
the probability of the left-hand side. The right way to resolve this problem is using a probability density
function.

Remark 5.13. There do exist random variables which are neither discrete nor continuous. To give a
slightly artificial example, suppose that we flip a fair coin. If it comes up heads, sample U uniformly from
[0, 1] and set X to be the value obtained; if it comes up tails, let X = 1/2. Then X can take uncountably
many values but does not have a density. Indeed, as you can check,

P (X ≤ x) =

{
x
2 if 0 ≤ x < 1/2
x+1

2 if 1/2 ≤ x ≤ 1,

and there does not exist a function fX which integrates to give this.

The theory is particularly nice in the discrete and continuous cases because we can work with probability
mass functions and probability density functions respectively. But the cumulative distribution function is
a more general concept which makes sense for all random variables.

5.2 Some classical distributions

As we did for discrete distributions, we introduce a stock of examples of continuous distributions which
will come up time and again in this course.

1. The uniform distribution. X has the uniform distribution on an interval [a, b] if it has p.d.f.

fX(x) =

{
1
b−a for a ≤ x ≤ b,
0 otherwise.

We write X ∼ U[a, b].

2. The exponential distribution. X has the exponential distribution with parameter λ ≥ 0 if it
has p.d.f.

fX(x) = λe−λx, x ≥ 0.

We write X ∼ Exp(λ). The exponential distribution is often used to model lifetimes or the time
elapsing between unpredictable events (such as telephone calls, arrivals of buses, earthquakes,
emissions of radioactive particles, etc).

3. The gamma distribution. X has the gamma distribution with parameters α > 0 and λ ≥ 0 if
it has p.d.f.

fX(x) =
λα

Γ(α)
xα−1e−λx, x ≥ 0.

Here, Γ(α) is the so-called gamma function, which is defined by

Γ(α) =

∫ ∞
0

uα−1e−udu

for α > 0. For most values of α this integral does not have a closed form. However, for a strictly
positive integer n, we have Γ(n) = (n − 1)!. (See the Wikipedia “Gamma function” page for lots
more information about this fascinating function!)
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If X has the above p.d.f. we write X ∼ Gamma(α, λ). The gamma distribution is a generalisation of
the exponential distribution and possesses many nice properties. The Chi-squared distribution with
d degrees of freedom, χ2

d, which you may have seen at ‘A’ Level, is the same as Gamma(d/2, 1/2)
for d ∈ N.

4. The normal (or Gaussian) distribution. X has the normal distribution with parameters µ ∈ R
and σ2 > 0 if it has p.d.f.

fX(x) =
1√

2πσ2
exp

(
− (x− µ)2

2σ2

)
, x ∈ R.

We write X ∼ N(µ, σ2). The standard normal distribution is N(0, 1). The normal distribution
is used to model all sorts of characteristics of large populations and samples. Its fundamental
importance across Probability and Statistics is a consequence of the Central Limit Theorem, which
you will use in Prelims Statistics and see proved in Part A Probability.

Exercise 5.14. For the uniform and exponential distributions:

• Check that for each of these fX really is a p.d.f. (i.e. that it is non-negative and integrates to 1).

• Calculate the corresponding c.d.f.’s.

Example 5.15. Show that

I :=

∫ ∞
−∞

1√
2πσ2

exp

(
− (x− µ)2

2σ2

)
dx = 1.

Solution. We first change variables in the integral. Set z = (x− µ)/σ. Then

I =

∫ ∞
−∞

1√
2πσ2

exp

(
− (x− µ)2

2σ2

)
dx =

∫ ∞
−∞

1√
2π

exp

(
−z

2

2

)
dz.

It follows that

I2 =

∫ ∞
−∞

1√
2π

exp

(
−x

2

2

)
dx

∫ ∞
−∞

1√
2π

exp

(
−y

2

2

)
dy

=

∫ ∞
−∞

∫ ∞
−∞

1

2π
exp

(
− (x2 + y2)

2

)
dxdy.

Now convert to polar co-ordinates: let r and θ be such that x = r cos θ and y = r sin θ. Then the
Jacobian is |J | = r and so we get∫ 2π

0

∫ ∞
0

1

2π
r exp

(
−r

2

2

)
drdθ =

[
−e−r

2/2
]∞

0
= 1.

Since I is clearly non-negative (it’s the integral of a non-negative function), we must have I = 1.

The c.d.f. of the standard normal distribution,

FX(x) =

∫ x

−∞

1√
2π
e−u

2/2du,

cannot be written in a closed form, but can be found by numerical integration to an arbitrary degree of
accuracy. This very important function is usually called Φ and if you did some Statistics at ‘A’ Level
you will certainly have come across tables of its values.
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5.3 Expectation

Recall that for a discrete r.v. we defined

E [X] =
∑

x∈ImX

xpX(x) (5.1)

whenever the sum is absolutely convergent and, more generally, for any function h : R→ R, we had

E [h(X)] =
∑

x∈ImX

h(x)pX(x) (5.2)

whenever this sum is absolutely convergent. We want to make an analogous definition for continuous
random variables. Suppose X has a smooth p.d.f. fX . Then for any x and small δ > 0,

P (x ≤ X ≤ x+ δ) ≈ fX(x)δ

and, in particular,
P (nδ ≤ X ≤ (n+ 1)δ) ≈ fX(nδ)δ.

So for the expectation, we want something like

∞∑
n=−∞

(nδ)fX(nδ)δ.

We now want to take δ → 0; intuitively, we should obtain an integral.

Definition 5.16. Let X be a continuous random variable with probability density function fX . The
expectation or mean of X is defined to be

E [X] =

∫ ∞
−∞

xfX(x)dx (5.3)

whenever
∫∞
−∞ |x|fX(x)dx < ∞. Otherwise, we say that the mean is undefined (or as in the discrete

case, if only the positive tail diverges, we might say that E [X] =∞.)

Theorem 5.17. Let X be a continuous random variable with probability density function fX , and let h
be a function from R to R. Then

E [h(X)] =

∫ ∞
−∞

h(x)fX(x)dx. (5.4)

(whenever
∫∞
−∞ |h(x)|fX(x)dx <∞).

Notice that (5.4) is analogous to (5.2) in the same way that (5.3) is analogous to (5.1). Proving Theorem
5.17 in full generality, for any function h, is rather technical. Here we just give an idea of one approach
to the proof for a particular class of functions.

Proof of Theorem 5.17 (outline of idea, non-examinable). First we claim that if X is a non-
negative continuous random variable, then E [X] =

∫ x
0
P (X > x) dx. To show this, we can write the
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expectation as a double integral and change the order of integration:

E [X] =

∫ ∞
x=0

xfX(x)dx

=

∫ ∞
x=0

∫ x

y=0

fX(x)dy dx

=

∫ ∞
y=0

∫ ∞
x=y

fX(x)dx dy

=

∫ ∞
y=0

P (X > y) dy,

giving the claim as required.

So now suppose h is such that h(X) is a non-negative continuous random variable. Then

E [h(X)] =

∫ ∞
y=0

P (h(X) > y) dy

=

∫ ∞
y=0

∫
x:h(x)>y

fX(x)dx dy

=

∫ ∞
x=0

fX(x)

∫
y:y<h(x)

dy dx

=

∫ ∞
x=0

fX(x)h(x)dx,

giving the desired formula in this case.

As in the case of discrete random variables, we define the variance of X to be

var (X) = E
[
(X − E [X])2

]
whenever the right-hand side is defined. For simplicity of notation, write µ = E [X]. Then we have

var (X) =

∫ ∞
−∞

(x− µ)2fX(x)dx

=

∫ ∞
−∞

(x2 − 2xµ+ µ2)fX(x)dx

=

∫ ∞
−∞

x2fX(x)dx− 2µ

∫ ∞
−∞

xfX(x)dx+ µ2

∫ ∞
−∞

fX(x)dx

= E
[
X2
]
− µ2,

since
∫∞
−∞ xfX(x)dx = µ and

∫∞
−∞ fX(x)dx = 1. So we recover the expression

var (X) = E
[
X2
]
− (E [X])2.

Just as in the discrete case, expectation has a linearity property.

Theorem 5.18. Suppose X is a continuous random variable with p.d.f. fX . Then if a, b ∈ R then
E [aX + b] = aE [X] + b and var (aX + b) = a2var (X).
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Proof. We have

E [aX + b] =

∫ ∞
−∞

(ax+ b)fX(x)dx = a

∫ ∞
−∞

xfX(x)dx+ b

∫ ∞
−∞

fX(x)dx = aE [X] + b,

as required, since the density integrates to 1. Moreover,

var (aX + b) = E
[
(aX + b− aE [X]− b)2

]
= E

[
a2(X − E [X])2

]
= a2E

[
(X − E [X])2

]
= a2var (X) .

Example 5.19. Suppose X ∼ N(µ, σ2). Then

• X has the same distribution as µ+ σZ, where Z ∼ N(0, 1).

• X has c.d.f. FX(x) = Φ((x− µ)/σ), where Φ is the standard normal c.d.f.

• E [X] = µ.

• var (X) = σ2.

Solution. First suppose that µ = 0 and σ2 = 1. Then the first two assertions are trivial and

E [X] =

∫ ∞
−∞

x√
2π
e−x

2/2dx

which must equal 0 since the integrand is an odd function. Since the mean is 0,

var (X) = E
[
X2
]

=

∫ ∞
−∞

x2

√
2π
e−x

2/2dx =

∫ ∞
−∞

x · xe
−x2/2

√
2π

dx.

Integrating by parts, we get that this equals[
−x · e

−x2/2

√
2π

]∞
−∞

+

∫ ∞
−∞

1√
2π
e−x

2/2dx = 1.

So var (X) = 1.

Suppose now that Z ∼ N(0, 1). Then

P (µ+ σZ ≤ x) = P (Z ≤ (x− µ)/σ) = Φ((x− µ)/σ).

Let φ(x) = 1√
2π
e−x

2/2, the standard normal density. Differentiating P (µ+ σZ ≤ x) in x, we get

1

σ
φ((x− µ)/σ) =

1√
2πσ2

exp

(
− (x− µ)2

2σ2

)
.

So µ+ σZ ∼ N(µ, σ2). Finally,

E [X] = E [µ+ σZ] = µ+ σE [Z] = µ

and
var (X) = var (µ+ σZ) = σ2var (Z) = σ2.
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Exercise 5.20. Show that if X ∼ U[a, b] and Y ∼ Exp(λ) then

E [X] =
a+ b

2
, var (X) =

(b− a)2

12
, E [Y ] =

1

λ
, var (Y ) =

1

λ2
.

Notice, in particular, that the parameter of the Exponential distribution is the reciprocal of its mean.

Example 5.21. Suppose that X ∼ Gamma(2, 2), so that it has p.d.f.

fX(x) =

{
4xe−2x for x ≥ 0,

0 otherwise.

Find E [X] and E
[

1
X

]
.

Solution. We have

E [X] =

∫ ∞
−∞

x · 4xe−2xdx =

∫ ∞
−∞

23

2!
x3−1e−2xdx

and, since Γ(3) = 2! we recognise the integrand as the density of a Gamma(3, 2) random variable. So it
must integrate to 1 and we get E [X] = 1.

On the other hand,

E
[

1

X

]
=

∫ ∞
−∞

1

x
· 4xe−2xdx = 2

∫ ∞
−∞

2e−2xdx

and again we recognise the integrand as the density of an Exp(2) random variable which must integrate
to 1. So we get E

[
1
X

]
= 2.

WARNING: IN GENERAL, E
[

1
X

]
6= 1

E[X] .

5.4 Examples of functions of continuous random variables

Example 5.22. Imagine a forest. Suppose that R is the distance from a tree to the nearest neighbouring
tree. Suppose that R has p.d.f.

fR(r) =

{
re−r

2/2 for r ≥ 0,

0 otherwise.

Find the distribution of the area of the tree-free circle around the original tree.

Solution. Let A be the area of the tree-free circle; then A = πR2. We begin by finding the c.d.f. of R
and then use it to find the c.d.f. of A. FR(r) is clearly 0 for r < 0. For r ≥ 0,

FR(r) = P (R ≤ r) =

∫ r

0

se−s
2/2ds =

[
−e−s

2/2
]r

0
= 1− e−r

2/2.

Hence, using the fact that R can’t take negative values,

FA(a) = P (A ≤ a) = P
(
πR2 ≤ a

)
= P

(
R ≤

√
a

π

)
= FR

(√
a

π

)
= 1− e−a/(2π)
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for a ≥ 0. Of course, FA(a) = 0 for a < 0. Differentiating for a ≥ 0, we get

fA(a) =
1

2π
e−a/(2π).

So, recognising the p.d.f., we see that A is distributed exponentially with parameter 1/(2π).

Remark 5.23. The distribution of R in Example 5.22 is called the Rayleigh distribution. One way in
which this distribution occurs is as follows. Pick a point in R2 such that the x and y co-ordinates are
independent N(0, 1) random variables. Then the Euclidean distance of that point from the origin (0, 0)
has the Rayleigh distribution (see Part A Probability for a proof of this fact; there is a connection to
Example 5.15).

We can generalise the idea in Example 5.22 to prove the following theorem.

Theorem 5.24. Suppose that X is a continuous random variable with density fX and that h : R → R
is a differentiable function which is strictly increasing (i.e. dh(x)

dx > 0 for all x). Then Y = h(X) is a
continuous random variable with p.d.f.

fY (y) = fX(h−1(y))
d

dy
h−1(y),

where h−1 is the inverse function of h.

Proof. Since h is strictly increasing, h(X) ≤ y if and only if X ≤ h−1(y). So the c.d.f. of Y is

FY (y) = P (h(X) ≤ y) = P
(
X ≤ h−1(y)

)
= FX(h−1(y)).

Differentiating with respect to y using the chain rule, we get

fY (y) = fX(h−1(y))
d

dy
h−1(y).

There is a similar result in the case where h is strictly decreasing. In any case, you may find it easier to
remember the proof than the statement of the theorem!

What if the function h is not one-to-one? It’s best to treat these on a case-by-case basis and think them
through carefully. Here’s an example.

Example 5.25. Suppose that a point is chosen uniformly from the perimeter of the unit circle. What
is the distribution of its x-co-ordinate?

Solution. Represent the chosen point by its angle, Θ. So then Θ has a uniform distribution on [0, 2π),
with p.d.f.

fΘ(θ) =

{
1

2π for 0 ≤ θ < 2π

0 otherwise.

Moreover, the x-co-ordinate is X = cos Θ, which takes values in [−1, 1]. We again work via c.d.f.’s:

FΘ(θ) =


0 for θ < 0
θ

2π for 0 ≤ θ < 2π

1 for θ ≥ 2π.

Notice that there are two angles in [0, 2π) corresponding to each x-co-ordinate in (−1, 1):
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Then FX(x) = 0 for x ≤ −1, FX(x) = 1 for x ≥ 1 and, for x ∈ (−1, 1),

FX(x) = P (cos Θ ≤ x)

= P (arccosx ≤ Θ ≤ 2π − arccosx)

= FΘ(2π − arccosx)− FΘ(arccosx)

= 1− arccosx

2π
− arccosx

2π

= 1− 1

π
arccosx.

This completely determines the distribution of X, but we might also be interested in the p.d.f. Differen-
tiating FX , we get

dFX(x)

dx
=


1
π

1√
1−x2

for −1 < x < 1

0 for x < −1 or x > 1

undefined for x = −1 or x = 1.

So we can take

fX(x) =

{
1
π

1√
1−x2

for −1 < x < 1

0 for x ≤ −1 or x ≥ 1

and get FX(x) =
∫ x
−∞ fX(u)du.

Notice that fX(x)→∞ as x→ 1 or x→ −1 even though
∫∞
−∞ fX(x)dx = 1.

5.5 Joint distributions

We will often want to think of different random variables defined on the same probability space. In the
discrete case, we studied pairs of random variables via their joint probability mass function. For a pair of
arbitrary random variables, we use instead the joint cumulative distribution function, FX,Y : R2 → [0, 1],
given by

FX,Y (x, y) = P (X ≤ x, Y ≤ y) .

It’s again possible to show that this function is non-decreasing in each of its arguments, and that

lim
x→−∞

lim
y→−∞

FX,Y (x, y) = 0

and
lim
x→∞

lim
y→∞

FX,Y (x, y) = 1.
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Definition 5.26. Let X and Y be random variables such that

FX,Y (x, y) =

∫ y

−∞

∫ x

−∞
fX,Y (u, v)dudv

for some function fX,Y : R2 → R such that

(a) fX,Y (u, v) ≥ 0 for all u, v ∈ R

(b)
∫∞
−∞

∫∞
−∞ fX,Y (u, v)dudv = 1.

Then X and Y are jointly continuous and fX,Y is their joint density function.

If fX,Y is sufficiently smooth at (x, y), we get

fX,Y (x, y) =
∂2

∂x∂y
FX,Y (x, y).

For a single continuous random variable X, it turns out that the probability that it lies in some nice set
A ∈ R (see Part A Integration to see what we mean by “nice”, but note that any set you can think of or
write down will be!) can be obtained by integrating its density over A:

P (X ∈ A) =

∫
A

fX(x)dx.

Likewise, for nice sets B ⊆ R2 we obtain the probability that the pair (X,Y ) lies in B by integrating
the joint density over the set B:

P ((X,Y ) ∈ B) =

∫ ∫
(x,y)∈B

fX,Y (x, y)dxdy.

We will show here that this works for rectangular regions B.

Theorem 5.27. For a pair of jointly continuous random variables X and Y , we have

P (a < X ≤ b, c < Y ≤ d) =

∫ d

c

∫ b

a

fX,Y (x, y)dxdy,

for a < b and c < d.

Proof. We have

P (a < X ≤ b, c < Y ≤ d)

= P (X ≤ b, Y ≤ d)− P (X ≤ a, Y ≤ d) + P (X ≤ a, Y ≤ c)− P (X ≤ b, Y ≤ c)
= FX,Y (b, d)− FX,Y (a, d) + FX,Y (a, c)− FX,Y (b, c)

=

∫ d

c

∫ b

a

fX,Y (x, y)dxdy.

Theorem 5.28. Suppose X and Y are jointly continuous with joint density fX,Y . Then X is a contin-
uous random variable with density

fX(x) =

∫ ∞
−∞

fX,Y (x, y)dy,

and similarly Y is a continuous random variable with density

fY (y) =

∫ ∞
−∞

fX,Y (x, y)dx.
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In this context the one-dimensional densities fX and fY are called the marginal distributions of the joint
distribution with density fX,Y , just as in the discrete case at Definition 2.16.

Proof. If fX is defined by fX(x) =
∫∞
−∞ fX,Y (x, y)dy, then we have∫ x

−∞
fX(u)du =

∫ x

−∞

∫ ∞
−∞

fX,Y (u, y)dy du

= P (X ≤ x) ,

so indeed X has density fX (and the case of fY is identical).

The definitions and results above generalise straightforwardly to the case of n random variables, X1, X2, . . . , Xn.

Example 5.29. Let

fX,Y (x, y) =

{
1
2 (x+ y) for 0 ≤ x ≤ 1, 1 ≤ y ≤ 2,

0 otherwise.

Check that fX,Y (x, y) is a joint density. What is P
(
X ≤ 1

2 , Y ≥
3
2

)
? What are the marginal densities?

What is P
(
X ≥ 1

2

)
?

Solution. Clearly, fX,Y (x, y) ≥ 0 for all x, y ∈ R. We have∫ ∞
−∞

∫ ∞
−∞

fX,Y (x, y)dxdy =

∫ 2

1

∫ 1

0

1

2
(x+ y)dxdy

=

∫ 2

1

[
1

4
x2 +

1

2
xy

]1

0

dy

=

∫ 2

1

(
1

4
+

1

2
y

)
dy

=

[
1

4
y +

1

4
y2

]2

1

= 1.

We have

P
(
X ≤ 1

2
, Y ≥ 3

2

)
=

∫ 2

3/2

∫ 1/2

0

1

2
(x+ y)dxdy

=

∫ 2

3/2

[
1

4
x2 +

1

2
xy

]1/2

0

dy

=

∫ 2

3/2

(
1

16
+

1

4
y

)
dy

=

[
1

16
y +

1

8
y2

]2

3/2

=
1

4
.

Integrating out y we get

fX(x) =

∫ 2

1

1

2
(x+ y)dy =

1

2
x+

3

4
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for x ∈ [0, 1], and integrating out x we get

fY (y) =

∫ 1

0

1

2
(x+ y)dx =

1

4
+

1

2
y

for y ∈ [1, 2]. Using the marginal density of X,

P
(
X ≥ 1

2

)
=

∫ 1

1
2

(
1

2
x+

3

4

)
dx =

9

16
.

Definition 5.30. Jointly continuous random variables X and Y with joint density fX,Y are independent
if

fX,Y (x, y) = fX(x)fY (y)

for all x, y ∈ R. Likewise, jointly continuous random variables X1, X2, . . . , Xn with joint density
fX1,X2,...,Xn are independent if

fX1,X2,...,Xn(x1, x2, . . . , xn) = fX1(x1)fX2(x2) . . . fXn(xn)

for all x1, x2, . . . , xn ∈ R.

Note that if X and Y are independent then it follows easily that

FX,Y (x, y) = FX(x)FY (y)

for all x, y ∈ R.

Example 5.31. Consider the set-up of Example 5.29. Since there exist x and y such that

1

2
(x+ y) 6=

(
1

2
x+

3

4

)(
1

4
+

1

2
y

)
,

X and Y are not independent.

5.5.1 Expectation

We can write the function h of a pair of jointly continuous random variables in a natural way.

Theorem 5.32.

E [h(X,Y )] =

∫ ∞
−∞

∫ ∞
−∞

h(x, y)fX,Y (x, y)dxdy.

As in the case of Theorem 5.17, the proof of this result is rather techincal, and we don’t cover it here.
However, note again that there is a very direct analogy with the discrete case which we saw in equation
(2.2).

In particular, the covariance of X and Y is

cov (X,Y ) = E [(X − E [X])(Y − E [Y ])] = E [XY ]− E [X]E [Y ]

(exercise: check the second equality).
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Exercise 5.33. Check that
E [aX + bY ] = aE [X] + bE [Y ]

and
var (X + Y ) = var (X) + var (Y ) + 2cov (X,Y ) .

Remark 5.34. We have now shown that the rules for calculating expectations (and derived quantities
such as variances and covariances) of continuous random variables are exactly the same as for discrete
random variables. This isn’t a coincidence! We can make a more general definition of expectation which
covers both cases (and more besides) but in order to do so we need a more general theory of integration,
which some of you will see in the Part A Integration course.

Example 5.35. Let −1 < ρ < 1. The standard bivariate normal distribution has joint density

fX,Y (x, y) =
1

2π
√

1− ρ2
exp

(
− 1

2(1− ρ2)
(x2 − 2ρxy + y2)

)
for x, y ∈ R. What are the marginal distributions of X and Y ? Find the covariance of X and Y .

Proof. We have

fX(x) =

∫ ∞
−∞

1

2π
√

1− ρ2
exp

(
− 1

2(1− ρ2)
(x2 − 2ρxy + y2)

)
dy

=

∫ ∞
−∞

1

2π
√

1− ρ2
exp

(
− 1

2(1− ρ2)
[(y − ρx)2 + x2(1− ρ2)]

)
dy

=
1√
2π
e−x

2/2

∫ ∞
−∞

1√
2π(1− ρ2)

exp

(
− (y − ρx)2

2(1− ρ2)

)
dy.

But the integrand is now the density of a normal random variable with mean ρx and variance 1− ρ2. So
it integrates to 1 and we are left with

fX(x) =
1√
2π
e−x

2/2.

So X ∼ N(0, 1) and, by symmetry, the same is true for Y . Notice that X and Y are only independent if
ρ = 0.

Since X and Y both have mean 0, we only need to calculate E [XY ]. We can use a similar trick:

E [XY ] =

∫ ∞
−∞

∫ ∞
−∞

xy

2π
√

1− ρ2
exp

(
− 1

2(1− ρ2)
(x2 − 2ρxy + y2)

)
dydx

=

∫ ∞
−∞

x√
2π
e−x

2/2

∫ ∞
−∞

y√
2π(1− ρ2)

exp

(
− (y − ρx)2

2(1− ρ2)

)
dydx.

The inner integral now gives us the mean of a N(ρx, 1− ρ2) random variable, which is ρx. So we get

cov (X,Y ) =

∫ ∞
−∞

ρx2

√
2π
e−x

2/2dx = ρE
[
X2
]

= ρ,

since E
[
X2
]

= 1.

This yields the interesting conclusion that standard bivariate normal random variables X and Y are
independent if and only if their covariance is 0. This is a nice property of normal random variables which
is not true for general random variables, as we have already observed in the discrete case.
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Chapter 6

Random samples and the weak law
of large numbers

One of the reasons that we are interested in sequences of i.i.d. random variables is that we can view them
as repeated samples from some underlying distribution.

Definition 6.1. Let X1, X2, . . . , Xn denote i.i.d. random variables. Then these random variables are
said to constitute a random sample of size n from the distribution.

Statistics often involves random samples where the underlying distribution (the “parent distribution”) is
unknown. A realisation of such a random sample is used to make inferences about the parent distribution.
Suppose, for example, we want to know about the mean of the parent distribution. An important
estimator is the sample mean.

Definition 6.2. The sample mean is defined to be X̄n =
1

n

n∑
i=1

Xi.

This is a key random variable which itself has an expectation and a variance. Recall that for random
variables X and Y (discrete or continuous),

var (X + Y ) = var (X) + var (Y ) + 2cov (X,Y ) .

We can extend this (by induction) to n random variables as follows:

var

(
n∑
i=1

Xi

)
=

n∑
i=1

var (Xi) +
∑
i 6=j

cov (Xi, Xj)

=

n∑
i=1

var (Xi) + 2
∑
i<j

cov (Xi, Xj) .

Theorem 6.3. Suppose that X1, X2, . . . , Xn form a random sample from a distribution with mean µ
and variance σ2. Then the expectation and variance of the sample mean are

E
[
X̄n

]
= µ and var

(
X̄n

)
=

1

n
σ2.
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Proof. We have E [Xi] = µ and var (Xi) = σ2 for 1 ≤ i ≤ n. So

E
[
X̄n

]
= E

[
1

n

n∑
i=1

Xi

]
=

1

n

n∑
i=1

E [Xi] = µ,

var
(
X̄n

)
= var

(
1

n

n∑
i=1

Xi

)
=

1

n2
var

(
n∑
i=1

Xi

)
=

1

n2

n∑
i=1

var (Xi) =
1

n
σ2,

since independence implies that cov (Xi, Xj) = 0 for all i 6= j.

Example 6.4. Let X1, . . . , Xn be a random sample from a Bernoulli distribution with parameter p.
Then E [Xi] = p, var (Xi) = p(1− p) for all 1 ≤ i ≤ n. Hence, E

[
X̄n

]
= p and var

(
X̄n

)
= p(1− p)/n.

In order for X̄n to be a good estimator of the mean, we would like to know that for large sample sizes
n, X̄n is not too far away from µ i.e. that |X̄n − µ| is small. The result which tells us that this is true
is called the law of large numbers and is of fundamental importance in probability. Before we state it,
let’s step away from the sample mean and consider a more basic situation.

Suppose that A is an event with probability P (A) and write p = P (A). Let X be the indicator function
of the event A i.e. the random variable defined by

X(ω) = 1A(ω) =

{
1 if ω ∈ A
0 if ω /∈ A.

Then X ∼ Ber(p) and E [X] = p. Suppose now that we perform our experiment repeatedly and let Xi

be the indicator of the event that A occurs on the ith trial. Our intuitive notion of probability leads us
to believe that if the number n of trials is large then the proportion of the time that A occurs should be
close to p i.e. ∣∣∣∣∣ 1n

n∑
i=1

Xi − p

∣∣∣∣∣
should be small. So proving that the sample mean is close to the true mean in this situation will also
provide some justification for the way we have set up our mathematical theory of probability.

Theorem 6.5 (Weak law of large numbers). Suppose that X1, X2, . . . are independent and identically
distributed random variables with mean µ. Then for any fixed ε > 0,

P

(∣∣∣∣∣ 1n
n∑
i=1

Xi − µ

∣∣∣∣∣ > ε

)
→ 0

as n→∞.

(Equivalently, we could have put

P

(∣∣∣∣∣ 1n
n∑
i=1

Xi − µ

∣∣∣∣∣ ≤ ε
)
→ 1

as n→∞.)

In other words, the probability that the sample mean deviates from the true mean by more than some
small quantity ε tends to 0 as n→∞. Notice that the result only depends on the underlying distribution
through its mean.

We will give a proof of the weak law under an additional assumption that the variance of the distribution
is finite. To do that, we’ll first prove a couple of very useful inequalities.
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Theorem 6.6 (Markov’s inequality). Suppose that Y is a non-negative random variable whose expecta-
tion exists. Then

P (Y ≥ t) ≤ E [Y ]

t

for all t > 0.

Proof. Let A = {Y ≥ t}. We may assume that P (A) ∈ (0, 1), since otherwise the result is trivially true.
Then by the law of total probability for expectations,

E [Y ] = E [Y |A]P (A) + E [Y |Ac]P (Ac) ≥ E [Y |A]P (A) ,

since P (Ac) > 0 and E [Y |Ac] ≥ 0. Now, we certainly have E [Y |A] = E [Y |Y ≥ t] > t. So, rearranging,
we get

P (Y ≥ t) ≤ E [Y ]

t

as we wanted.

Theorem 6.7 (Chebyshev’s inequality). Suppose that Z is a random variable with a finite variance.
Then for any t > 0,

P (|Z − E [Z] | ≥ t) ≤ var (Z)

t2
.

Proof. Note that P (|Z − E [Z] | ≥ t) = P
(
(Z − E [Z])2 ≥ t2

)
and then apply Markov’s inequality to the

non-negative random variable Y = (Z − E [Z])2.

Proof of Theorem 6.5 (under the assumption of finite variance). Suppose the common distri-
bution of the random variables Xi has mean µ and variance σ2. Set

Z =
1

n

n∑
i=1

Xi.

Then

E [Z] = µ and var (Z) = var

(
1

n

n∑
i=1

Xi

)
=
σ2

n
.

So by Chebyshev’s inequality,

P

(∣∣∣∣∣ 1n
n∑
i=1

Xi − µ

∣∣∣∣∣ > ε

)
≤ σ2

nε2
.

Since ε > 0 is fixed, the right-hand side tends to 0 as n→∞.
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Appendix

A.1 Useful ideas from Analysis

Here are brief details of some ideas about sets, sequences, and series, that it will be useful to make
reference to. Those doing the Analysis I course in Maths this term will see all of this in much greater
detail!

Countability

A set S is countable if either it’s finite, or its elements can be written as a list: S = {x1, x2, x3, . . . }. Put
another way, S is countable if there is a bijection from a subset of N to S. The set N itself is countable;
so is the set of rational numbers Q, for example. The set of real numbers R is not countable.

Limits

Even if you haven’t seen a definition, you probably have an idea of what it means for a sequence to
converge to a limit. Formally, we say that a sequence of real numbers (a1, a2, a3, . . . ) converges to a limit
L ∈ R if the following holds: for all ε > 0, there exists N ∈ N such that |an − L| ≤ ε whenever n ≥ N .

Then we may write “L = limn→∞ an”, or “an →∞ as n→∞”.

Infinite sums

Finite sums are easy. If we have a sequence (a1, a2, a3, . . . ), then for any n ∈ N we can define

sn =

n∑
k=1

ak = a1 + a2 + · · ·+ an.

What do we mean by the infinite sum
∑∞
k=1 ak? An infinite sum is really a sort of limit. If the limit

L = limn→∞ sn exists, then we say that the series
∑∞
k=1 ak converges, and that its sum is L. If the

sequence (sn, n ∈ N) does not have a limit, then we say that the series
∑∞
k=1 ak diverges.

An important idea for our purposes will be absolute convergence of a series. We say that the series∑∞
k=1 ak converges absolutely if the series

∑∞
k=1 |ak| converges. If a series converges absolutely, then it
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also converges.

One reason why absolute convergence is important is that it guarantees that the value of a sum doesn’t
depend on the order of the terms. In the definition of expectation of a discrete random variable, for
example, we may have an infinite sum and no reason to take the terms in any particular order. Formally,
suppose f is a bijection from N to N, and define bk = af(k). If the series

∑∞
k=1 ak converges absolutely,

then so does the series
∑∞
k=1 bk, and the sums

∑∞
k=1 ak and

∑∞
k=1 bk are equal.

An example of a series that converges but does not converge absolutely is the series 1− 1
2 + 1

3−
1
4 + 1

5−. . . ,
whose sum is ln 2.

If we reordered the terms as 1 + 1
3 −

1
2 + 1

5 + 1
7 −

1
4 + 1

9 + 1
11 −

1
6 + . . . , then the sum instead becomes

3
2 ln 2.

Power series

A (real) power series is a function of the form

f(x) =

∞∑
k=0

ckx
k

where the coefficients ck, k ≥ 0 are real constants. For any such series, there exists a radius of convergence
R ∈ [0,∞) ∪∞, such that

∑∞
k=0 ckx

k converges absolutely for |x| < R, and not for |x| > R.

In this course we will meet a particular class of power series called probability generating functions, with
the property that the coefficients ck are non-negative and sum to 1. In that case, R is at least 1.

Power series behave well when differentiated! A power series f(x) =
∑∞
k=0 ckx

k with radius of conver-
gence R is differentiable on the interval (−R,R), and its derivative is also a power series with radius of
convergence R, given by

f ′(x) =

∞∑
k=0

(k + 1)ck+1x
k.

Series identities

Here is a reminder of some useful identities:

Geometric series: if a ∈ R and 0 ≤ r < 1 then

n−1∑
k=0

ark =
a(1− rn)

1− r

and
∞∑
k=0

ark =
a

1− r
.

Exponential function: for λ ∈ R,
∞∑
n=0

λn

n!
= eλ.
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Binomial theorem: for x, y ∈ R and n ≥ 0,

(x+ y)n =

n∑
k=0

(
n
k

)
xkyn−k.

Differentiation and integration give us variants of these. For example, for 0 < r < 1,

∞∑
k=1

krk−1 =
d

dr

( ∞∑
k=0

rk

)

and
∞∑
k=1

rk

k
=

∫ r

0

( ∞∑
k=0

tk

)
dt.

A.2 Increasing sequences of events

We mentioned the following result in the later part of the course. A sequence of events An, n ≥ 1 is
called increasing if A1 ⊆ A2 ⊆ A3 ⊆ . . . .

Proposition A.8. If An, n ≥ 1 is an increasing sequence of events, then

P

( ∞⋃
n=1

An

)
= lim
n→∞

P (An) .

Proof. The proof uses countable additivity. Using the fact that the sequence is increasing, we can write⋃∞
n=1An as a disjoint union:

∞⋃
n=1

An = A1 ∪ (A2 \A1) ∪ (A3 \A2) ∪ . . . .

and similarly each individual An as a disjoint union:

An = A1 ∪ (A2 \A1) ∪ (A3 \A2) ∪ · · · ∪ (An \An−1).

Then applying the countable additivity axiom twice, we have

P

( ∞⋃
n=1

An

)
= P (A1) + P (A2 \A1) + P (A3 \A2) + . . .

= lim
n→∞

[P (A1) + P (A2 \A1) + P (A3 \A2) + · · ·+ P (An \An−1)]

(since by definition of an infinite sum,
∞∑
i=1

ai = lim
n→∞

n∑
i=1

ai.)

= lim
n→∞

P (An) .
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