Problem Sheet 6

Please send any comments or corrections to martin@stats.ox.ac.uk.

1. (a) If X is a constant random variable, say $\mathbb{P}(X=a)=1$ for some $a \in \mathbb{N}$, what is its probability generating function?
(b) If Y has probability generating function $G_{Y}(s)$, and m, n are positive integers, what is the probability generating function of $Z=m Y+n$?
2. (a) Suppose that we perform a sequence of independent trials, each of which has probability p of success. Let Y be the number of trials up to and including the m th success, where $m \geq 1$ is fixed. Explain why

$$
\mathbb{P}(Y=k)=\binom{k-1}{m-1} p^{m}(1-p)^{k-m}, \quad k=m, m+1, \ldots
$$

(This is called the negative binomial distribution.)
(b) By expressing Y as a sum of m independent random variables, find its probability generating function.
3. Let X_{1}, X_{2}, \ldots be a sequence of independent and identically distributed non-negative integer valued random variables, and let N be a non-negative integer valued random variable which is independent of the sequence X_{1}, X_{2}, \ldots.
Let $Z=X_{1}+\ldots+X_{N}$ (where we take $Z=0$ if $N=0$).
(a) Show that

$$
\mathbb{E}[Z]=\mathbb{E}[N] \mathbb{E}\left[X_{1}\right]
$$

and

$$
\operatorname{var}(Z)=\operatorname{var}(N)\left(\mathbb{E}\left[X_{1}\right]\right)^{2}+\mathbb{E}[N] \operatorname{var}\left(X_{1}\right)
$$

(b) If $N \sim \operatorname{Po}(\lambda)$ and $X_{1} \sim \operatorname{Ber}(p)$, find $\operatorname{var}(Z)$.
(c) [Optional] Suppose we remove the condition that N is independent of the sequence $\left(X_{i}\right)$. Is it still necessarily the case that $\mathbb{E}[Z]=\mathbb{E}[N] \mathbb{E}\left[X_{1}\right]$? Find a proof or a counterexample.
4. A random variable X has probability generating function G_{X}. Find a simple expression using G_{X} for the probability that X is even. [Hint: consider the value of $G_{X}(-1)$. Possible extension: suggest a similar expression for the probability that X is divisible by 4 - be creative about what values of the generating function you might evaluate!]
5. A population of cells is grown on a petri dish. Once a minute, each cell tries to reproduce by splitting in two. This is successful with probability $1 / 4$; with probability $1 / 12$, the cell dies instead; and with the remaining probability $2 / 3$, nothing happens. Assume that different cells behave independently and that we begin with a single cell. What is the probability generating function $G(s)$ of the number of cells on the dish after 1 minute? How about after 2 minutes? What is the probability that after 2 minutes the population has died out?
6. Consider a branching process in which each individual has 2 offspring with probability p, and 0 offspring with probability $1-p$. Let X_{n} be the size of the nth generation, with $X_{0}=1$.
(a) Write down the mean μ of the offspring distribution, and its probability generating function $G(s)$.
(b) Find the probability that the process eventually dies out. [Recall that this probability is the smallest non-negative solution of the equation $s=G(s)$.] Verify that the probability that the process survives for ever is positive if and only if $\mu>1$.
(c) Let $\beta_{n}=\mathbb{P}\left(X_{n}>0\right)$, the probability the process survives for at least n generations. Write down $G(s)$ in the case $p=1 / 2$. Deduce that in that case,

$$
\beta_{n}=\beta_{n-1}-\beta_{n-1}^{2} / 2
$$

and use induction to prove that, for all n,

$$
\frac{1}{n+1} \leq \beta_{n} \leq \frac{2}{n+2}
$$

(d) [For further exploration!] In lectures we considered a simple random walk, which at each step goes up with probability p and down with probability $1-p$. Suppose the walk starts from site 1 . By taking limits in the gambler's ruin model, we showed that the probability that the walk ever hits site 0 equals 1 for $p \leq 1 / 2$, and $(1-p) / p$ for $p>1 / 2$.
Compare this probability to your answer in part (b). Can you find a link between the branching process and the random walk? [Hint: if I take an individual in the branching process and replace it by its children (if any), what happens to the size of the population?]

