Prelims Introductory Calculus MT 2018: Sheet 4

1. Given that

$$
x s^{2}+y t^{2}=1 \quad \text { and } \quad x^{2} s+y^{2} t=x y-4
$$

where $x=x(s, t)$ and $y=y(s, t)$, find x_{s}, x_{t}, y_{s} and y_{t} at the point $(x, y, s, t)=(1,-3,2,-1)$.
2. Given that

$$
\begin{aligned}
z & =x^{2}+x y, \\
x^{2}+y^{3} & =s t+5, \\
x^{3}-y^{2} & =s^{2}+t^{2},
\end{aligned}
$$

where $x=x(s, t)$ and $y=y(s, t)$, find expressions for $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$.
Evaluate these expressions at the point $(x, y, s, t)=(3,1,1,5)$.
3. Let $t>0$. Verify that

$$
T(x, t)=\frac{A}{\sqrt{t}} \exp \left(\frac{-x^{2}}{4 \kappa t}\right)
$$

is a solution of the heat equation

$$
\frac{\partial T}{\partial t}=\kappa \frac{\partial^{2} T}{\partial x^{2}}
$$

Sketch T as a function of x at two different times t.
4. Find general solutions $f(x, y, z)$ of the following PDES:
(a) $\quad \frac{\partial^{3} f}{\partial z^{3}}=0$,
(b) $\frac{\partial^{3} f}{\partial x \partial y \partial z}=0$.
5. Find general solutions $u(x, y)$ of the following PDES:
(a) $y \frac{\partial u}{\partial y}=u$,
(b) $\frac{\partial u}{\partial x}=2 x y u$.
6. Use the change of variable $u(x, t)=e^{\beta t} g(x)$ to find solutions of the equation

$$
\frac{\partial^{2} u}{\partial x^{2}}+2 \frac{\partial^{2} u}{\partial x \partial t}+\frac{\partial^{2} u}{\partial t^{2}}=0
$$

7. Find separable solutions $z(x, y)=X(x) Y(y)$ of the following PDEs:
(a) $\frac{\partial z}{\partial y}=y \frac{\partial z}{\partial x}$,
(b) $x \frac{\partial z}{\partial x}=z+y \frac{\partial z}{\partial y}$.
