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0
. Calculate the Jacobians a(u’ v) and (z, y)’ and verify that =1, in each of the follow-
z,y u,v

ing cases:

(i) u=z+y, v:g; (ii) u:x—, v=""
x

. The variables v and v are given by

u:xQ—xy, v:y2+my

for all real x and y. By finding an appropriate Jacobian matrix, calculate the partial derivatives
Ty, Ty, Yy, and y, in terms of x and y only. State the values of z and y for which your results are valid.

. Recall the definition of parabolic coordinates:
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Show that Laplace’s equation in Cartesian coordinates, that is
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transforms into the same equation in parabolic coordinates.

. In the partial differential equation
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make the change of variables s = y + 2x, t = y 4+ 3z and show that the PDE becomes
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Hence solve the original PDE.

. Laplace’s equation in three dimensions is given in Cartesian coordinates by
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For spherical polar coordinates defined by
r=rsinfcos¢, y=rsinfsing, z=rcosb,
show that Laplace’s equation becomes
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=0.

Hint: Use the inverse transformation as given in the lecture notes.



