Prelims Introductory Calculus MT 2016: Sheet 5

1. Calculate the Jacobians $\frac{\partial(u, v)}{\partial(x, y)}$ and $\frac{\partial(x, y)}{\partial(u, v)}$, and verify that $\frac{\partial(u, v)}{\partial(x, y)} \frac{\partial(x, y)}{\partial(u, v)}=1$, in each of the following cases:
(i) $\quad u=x+y, \quad v=\frac{y}{x}$;
(ii) $\quad u=\frac{x^{2}}{y}, \quad v=\frac{y^{2}}{x}$.
2. The variables u and v are given by

$$
u=x^{2}-x y, \quad v=y^{2}+x y
$$

for all real x and y. By finding an appropriate Jacobian matrix, calculate the partial derivatives x_{u}, x_{v}, y_{u} and y_{v} in terms of x and y only. State the values of x and y for which your results are valid.
3. Recall the definition of parabolic coordinates:

$$
x=\frac{1}{2}\left(u^{2}-v^{2}\right), \quad y=u v .
$$

Show that Laplace's equation in Cartesian coordinates, that is

$$
\frac{\partial^{2} F}{\partial x^{2}}+\frac{\partial^{2} F}{\partial y^{2}}=0
$$

transforms into the same equation in parabolic coordinates.
4. In the partial differential equation

$$
\frac{\partial^{2} z}{\partial x^{2}}-5 \frac{\partial^{2} z}{\partial x \partial y}+6 \frac{\partial^{2} z}{\partial y^{2}}=0
$$

make the change of variables $s=y+2 x, t=y+3 x$ and show that the PDE becomes

$$
\frac{\partial^{2} z}{\partial s \partial t}=0 .
$$

Hence solve the original PDE.
5. Laplace's equation in three dimensions is given in Cartesian coordinates by

$$
\frac{\partial^{2} F}{\partial x^{2}}+\frac{\partial^{2} F}{\partial y^{2}}+\frac{\partial^{2} F}{\partial z^{2}}=0
$$

For spherical polar coordinates defined by

$$
x=r \sin \theta \cos \phi, \quad y=r \sin \theta \sin \phi, \quad z=r \cos \theta
$$

show that Laplace's equation becomes

$$
\frac{\partial^{2} F}{\partial r^{2}}+\frac{2}{r} \frac{\partial F}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} F}{\partial \theta^{2}}+\frac{\cot \theta}{r^{2}} \frac{\partial F}{\partial \theta}+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} F}{\partial \phi^{2}}=0 .
$$

Hint: Use the inverse transformation as given in the lecture notes.

