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Shortest Paths

Let G be a connected graph.

Let `(e) > 0 for e ∈ E (G ) be the ‘length’ of
the edge e.

The `-length of a path P is
`(P) =

∑
e∈E(P) `(e).

Given x and y in V (G ), an `-shortest
xy -path is an xy -path P that minimises `(P).
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Dijkstra’s Algorithm

For vertices x and y , this finds an `-shortest xy -path.

The idea of the algorithm is to maintain a ‘tentative distance from
x ’ called D(v) for each v ∈ V (G ).

At each step of the algorithm we finalise D(u) for some vertex u.

At the end of the algorithm all D(u) will be equal to the correct
value, i.e. D(u) = `(P∗u) for some `-shortest xu-path P∗u .
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Dijkstra’s Algorithm

Start by letting U = V (G ),
[U is the set of vertices v for which D(v) has
not yet been finalised]

D(x) = 0, D(v) =∞ for all v 6= x .

Repeat the following step:
If U = ∅ stop. Otherwise pick u ∈ U with
D(u) minimal, delete u from U, and for any
v ∈ U with v adjacent to u and satisfying
D(v) > D(u) + `(uv) replace D(v) by
D(u) + `(uv).
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Shortest paths rooted trees

Dijkstra’s Algorithm can be used to do more:

For any x ∈ V (G ) we can construct a
spanning tree T such that for any y ∈ V (G ),
the unique xy -path in T is an `-shortest
xy -path.

We call T an `-shortest paths tree rooted at
x .
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Shortest paths rooted trees

We now describe how to obtain
T .

For any vertex v 6= x , the parent
of v is the last vertex u such
that we replaced D(v) by
D(u) + `(uv) during the
algorithm.

We obtain T by drawing an
edge from each vertex v 6= x to
the parent of v .
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Start of the proof

Lemma 14. T is a tree,

and for each u ∈ V (G ) we have
D(u) = `(Pu) where Pu is the unique xu-path in T .

Proof. After any step, we have defined the
parents of all vertices in C = V (G ) \ U. Let
TC be obtained by drawing an edge from
each v ∈ C \ {x} to its parent. So
V (TC ) = C .

We show by induction on |C | that TC is a
tree and for each u ∈ V (TC ) we have
D(u) = `(Pu) where Pu is the unique
xu-path in TC .
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Proof

We show by induction on |C | that TC is a tree and for each
u ∈ V (TC ) we have D(u) = `(Pu) where Pu is the unique xu-path
in TC .

Base case: we start with V (TC ) = {x} and
no edges, which is a tree, with
D(x) = 0 = `(Px).

Induction step: When we delete u from U,
we add u to C , and add an edge from u to
the parent v of u, i.e. we add a leaf to TC ,
and so obtain another tree.

By definition of parent and induction we
have D(u) = D(v) + `(vu) =
`(Pv ) + `(vu) = `(Pu). �
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Completion of the proof

Theorem 15. T is an `-shortest paths tree rooted at x .

Proof. For each u ∈ V (G ) let D∗(u) = `(P∗u) for some `-shortest
xu-path P∗u .

We show by induction that in each step of the algorithm, when u
is deleted we have D(u) = D∗(u).

Base case. We have u = x and D(u) = D∗(u) = 0.

Induction step. Consider the step where we delete some u from U,
and suppose for contradiction that D(u) > D∗(u).
Let C = V (G ) \ U. By induction, for every vertex v in TC ,
D∗(v) = D(v).
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Completion of the proof

Let yy ′ be the first edge of P∗u with
y /∈ U and y ′ ∈ U.

By induction hypothesis
D(y) = D∗(y). Now

D(y ′) ≤ D(y) + `(yy ′)

= D∗(y) + `(yy ′)

= `(P∗y ) + `(yy ′)

≤ `(P∗u) = D∗(u) < D(u).

x

u   U∍

C

Pu*

y
y´

The first inequality uses the update rule for y and y ′: when y was
removed from U, D(y ′) was replaced by D(y) + `(yy ′) if that was
smaller, and so after this, D(y ′) ≤ D(y) + `(yy ′).

However, y ′ ∈ U with D(y ′) < D(u) contradicts the choice of u in
the algorithm. So D(u) = D∗(u). �
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Running time

The running time of this implementation of Dijkstra’s Algorithm is
O(|V (G )||E (G )|).

A better implementation (which we omit) gives a running time of
O(|E (G )|+ |V (G )| log |V (G )|).
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The marriage problem

The Marriage Problem:

Given n men and n women, under what conditions is it possible to
pair each man with a woman such that every pair know each
other?
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Definitions

A graph G is bipartite if we can partition
V (G ) into two sets A and B so that every
edge of G crosses between A and B.

We say M ⊆ E (G ) is a matching if the edges
in M are pairwise disjoint.

We say M is perfect if every vertex belongs
to some edge of M.
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Alternating and augmenting paths

Let G be a graph.
Let M be matching in G .
Let P be a path in G .

We say P is M-alternating if every other edge of P is in M.

We say P is M-augmenting if P is M-alternating and its end
vertices are not in any edge of M.
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Maximal size matchings
Lemma 16. Let M be a matching in G . Then M is not of
maximum size if and only if there is an M-augmenting path in G .

Proof. If there is an M-augmenting path P in
G then we can find a larger matching by
‘flipping’ P: replace M by
M \ (M ∩ E (P)) ∪ (E (P) \M).

Conversely, suppose that M∗ is a matching in
G with |M∗| > |M|.
Let H = M ∪M∗.
Every vertex has degree at most 2 in H, so
each component of H is an edge, path or
cycle, the edge components consist of
M ∩M∗, and the edges in path and cycle
components alternate between M and M∗.
As |M∗| > |M| we can find a path
component with more edges of M∗ than M:
this is an M-augmenting path in G . �
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Finding a maximal size matching

Lemma 16 reduces the algorithmic question of finding a maximum
matching in G to the following: given a matching M in G , find an
M-augmenting path or show that there is none.

We’ll focus on the case of bipartite graphs.
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Finding augmenting paths in bipartite graphs

Now suppose that G is bipartite, with parts
A and B.

Let M be a matching.

We put directions on E (G ), so that all edges
in M are one-way from B to A, and all edges
not in M are one-way from A to B.

Let A∗ and B∗ be the vertices in A and B
that are ‘uncovered’, i.e. not in any edge of
M.

Then an M-augmenting path is equivalent to
a directed path from A∗ to B∗, i.e. a path
that respects directions of edges.

A B
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Finding a directed path

Is there a directed path from A∗ to B∗?

More generally, suppose that we have a
directed graph with subsets A∗ and B∗ of
V (G ). Is there a directed path from A∗ to
B∗?

Start with R = A∗.
Search Algorithm. Repeat the following step:
if there is any edge directed from some
x ∈ R to some y /∈ R then add y to R,
otherwise stop.

There is a directed path from A∗ to B∗ if
and only if the final R intersects B∗.

A*
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The Hungarian algorithm

This finds a matching of maximum size in a bipartite graph G .

Start with M = ∅.

Orient the edges of G : all edges in M are one-way from B to A,
and all edges not in M are one-way from A to B.

Let A∗ and B∗ be the vertices in A and B that are ‘uncovered’, i.e.
not in any edge of M.

Use the search algorithm to find a directed path from A∗ to B∗.

If there is no such path, stop. If there is, then it is M-augmenting
and so we flip the path to increase the size of M.

Repeat.

The running time of the search algorithm is O(|V (G )||E (G )|), and
there are at most |V (G )|/2 iterations of increasing the matching.

So the algorithm has running time O(|V (G )|2|E (G )|).
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Matchings and covers



Covers

A cover for a graph G is a subset C of the
vertices such that every edge contains at
least one vertex of C .

If M is any matching and C is any cover,
then |M| ≤ |C |.

To see this, define an injective map
f : M → C , where f (e) is any vertex of
e ∩ C .
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Matchings and covers

If M is any matching and C is any cover, then |M| ≤ |C |.

Maximum matching / minimum cover:

Suppose that we had found a matching M and a cover C such that
|M| = |C |.
Then we would know that M was a maximal size matching and C
was a minimal size cover.

This is an example of ‘weak duality’.

This suggests the question of whether equality holds. The answer
to the question is ‘no’ in general:

The maximum matching has size 1 but the minimum cover has
size 2.
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König’s Theorem

König’s Theorem. In any bipartite graph, the size of a maximum
matching equals the size of a minimum cover.



Proof

Let G be a bipartite graph with parts A and
B. Let M be a maximum matching in G .

It suffices to find a cover C with |C | = |M|.

Recall that we write A∗ and B∗ for the
uncovered vertices in A and B.

Consider the search algorithm for an
M-augmenting path in G . The algorithm
terminates with some set R that consists of
all vertices reachable by M-alternating paths
starting in A∗.

As M is maximum there is no M-augmenting
path, so R ∩ B∗ = ∅.

Let C = (A \ R) ∪ (B ∩ R).
We claim that C is a cover with |C | = |M|.
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Proof

C = (A \ R) ∪ (B ∩ R).

We start by showing that C is a cover.

Suppose not. Then there is ab ∈ E (G ) with
a ∈ A ∩ R and b ∈ B \ R.

However, this contradicts the definition of R,
as b must be reachable from A∗: if ab ∈ M
we must reach a via b or if ab /∈ M we can
reach b via a.

Thus C is a cover.
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Proof

C = (A \ R) ∪ (B ∩ R).

It remains to show |C | = |M|.

It suffices to show that every vertex in C is
covered by some edge of M, and that no
edge of M covers two vertices of C .

(This will show |C | ≤ |M|, and we noted
previously that |M| ≤ |C | is immediate from
the definitions.)

Firstly, any a ∈ A \ R is covered by M as
A∗ ⊆ R.

Secondly, any b ∈ B ∩ R is covered by M, or
b ∈ B∗ ∩ R = ∅ gives a contradiction.

Finally, if ab ∈ M with a ∈ A \ R, b ∈ B ∩ R
then we can reach a via b, contradicting
a /∈ R. Thus |C | = |M|. �
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The marriage problem
Let G be a bipartite graph with parts A and
B.

We consider the more general question of
whether there is a matching that covers
every vertex in A; if |B| = |A| then this will
be perfect.

For S ⊆ A the neighbourhood of S is

N(S) =
⋃
a∈S
{b : ab ∈ E (G )}.

Note that if G has a matching M covering
A then each a ∈ S has a ‘match’ a′ with
aa′ ∈ M, and the matches are distinct, so
|N(S)| ≥ |S |.

This gives a necessary condition for G to
have a matching; it is also sufficient . . .
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The marriage problem

Hall’s Theorem. Let G be a bipartite graph
with parts A and B. Then G has a matching
covering A if and only if every S ⊆ A has
|N(S)| ≥ |S |.

Proof. We have already remarked that the
condition is necessary.

Conversely, suppose that every S ⊆ A has
|N(S)| ≥ |S |.

Let C be any cover of G . By König’s
Theorem, it suffices to show |C | ≥ |A|.

To see this, let S = A \ C . Note that by
definition of ‘cover’ we have N(S) ⊆ B ∩ C .

Then |C | = |A ∩ C |+ |B ∩ C | ≥
|A| − |S |+ |N(S)| ≥ |A|.
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The Chinese Postman Problem



The Chinese Postman Problem

A postman collects a sack of letters from the sorting office, walks
along every street to deliver them, and returns to the office. How
can (s)he find the shortest route?

Let G be a connected graph. Let W be a closed walk in G .
We call W a postman walk in G if it uses every edge of G at least
once.

For each e ∈ E (G ) let c(e) > 0 be the length of e. The length of
W is c(W ) =

∑
e∈W c(e).

We want to find a shortest postman walk.
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Extensions

We can interpret a postman walk W as an
Euler Tour in an extension of G , in which we
introduce parallel edges, so that the number
of parallel edges joining vertices x and y is
the number of times that xy is used in W .

Thus an equivalent reformulation of the
Chinese Postman Problem is to find a
minimum weight Eulerian extension G ∗ of G ,
i.e. G ∗ is obtained from G by copying some
edges, so that all degrees in G ∗ are even, and
c(G ∗) is as small as possible.
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Edmonds’ algorithm

We will describe an algorithm due to Edmonds.

We assume that we have access to an algorithm for finding a
minimum weight perfect matching in a weighted graph.

(An algorithm for this problem was also found by Edmonds, but it
is beyond the scope of this course).
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Edmonds’ algorithm

1. Let X be the set of vertices with odd
degree in G .
For each x ∈ X find a c-shortest paths
tree Tx rooted at x .
Define a weight function w on pairs in
X : let w(xy) = c(Pxy ), where Pxy is
the unique xy -path in Tx .

2. Find a perfect matching M on X with
minimum w -weight.
Let G ∗ be the Eulerian extension of G
obtained by copying all edges of Pxy for
all xy ∈ M.

3. Find an Euler Tour W in G ∗. Interpret
W as a postman walk in G .
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Edmonds’ algorithm

Note that the perfect matching step makes sense as |X | is even, by
Lemma 10.

Lemma 19. Let H be a graph in which not all degrees are even.
Then there is a path in H such that both ends have odd degree.

Proof.
Pick a component of H containing a vertex of odd degree.
By Lemma 10, there is another vertex of odd degree in H.
Pick a path joining these two vertices. �
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Edmonds’ algorithm works

Theorem 20. Edmonds’ Algorithm finds a
minimum length postman walk.

Proof.
Let W ∗ be a minimum length postman walk.
It suffices to show that the algorithm finds a
postman walk that is no longer than W ∗.

Let G ∗ be the Eulerian extension of G
defined by W ∗. Let H be the graph of
copied edges: E (H) = E (G ∗) \ E (G ). Note
that the set of vertices with odd degree in H
is X (i.e. the same set as for G ).
We construct a set of paths in H by repeating the following
procedure: if the current graph has any vertices of odd degree,
apply Lemma 19 to find a path P such that both ends have odd
degree, delete the edges of P and repeat.
This procedure pairs up the vertices in X so that each pair is
connected by a path in H.
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We construct a set of paths in H by repeating the following
procedure: if the current graph has any vertices of odd degree,
apply Lemma 19 to find a path P such that both ends have odd
degree, delete the edges of P and repeat.
This procedure pairs up the vertices in X so that each pair is
connected by a path in H.
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