
Part A Graph Theory

Marc Lackenby

Trinity Term 2022

Shortest paths

Shortest Paths

Let G be a connected graph.

Let `(e) > 0 for e ∈ E (G) be the ‘length’ of
the edge e.

The `-length of a path P is
`(P) =

∑
e∈E(P) `(e).

Given x and y in V (G), an `-shortest
xy -path is an xy -path P that minimises `(P).

Shortest Paths

Let G be a connected graph.

Let `(e) > 0 for e ∈ E (G) be the ‘length’ of
the edge e.

The `-length of a path P is
`(P) =

∑
e∈E(P) `(e).

Given x and y in V (G), an `-shortest
xy -path is an xy -path P that minimises `(P).

Shortest Paths

Let G be a connected graph.

Let `(e) > 0 for e ∈ E (G) be the ‘length’ of
the edge e.

The `-length of a path P is
`(P) =

∑
e∈E(P) `(e).

Given x and y in V (G), an `-shortest
xy -path is an xy -path P that minimises `(P).

1

1

1

3

4

5

1

Shortest Paths

Let G be a connected graph.

Let `(e) > 0 for e ∈ E (G) be the ‘length’ of
the edge e.

The `-length of a path P is
`(P) =

∑
e∈E(P) `(e).

Given x and y in V (G), an `-shortest
xy -path is an xy -path P that minimises `(P).

1

1

1

3

4

5

1

Shortest Paths

Let G be a connected graph.

Let `(e) > 0 for e ∈ E (G) be the ‘length’ of
the edge e.

The `-length of a path P is
`(P) =

∑
e∈E(P) `(e).

Given x and y in V (G), an `-shortest
xy -path is an xy -path P that minimises `(P).

1

1

1

3

4

5

1x

y

Shortest Paths

Let G be a connected graph.

Let `(e) > 0 for e ∈ E (G) be the ‘length’ of
the edge e.

The `-length of a path P is
`(P) =

∑
e∈E(P) `(e).

Given x and y in V (G), an `-shortest
xy -path is an xy -path P that minimises `(P).

1

1

1

3

4

5

1x

y

Dijkstra’s Algorithm

For vertices x and y , this finds an `-shortest xy -path.

The idea of the algorithm is to maintain a ‘tentative distance from
x ’ called D(v) for each v ∈ V (G).

At each step of the algorithm we finalise D(u) for some vertex u.

At the end of the algorithm all D(u) will be equal to the correct
value, i.e. D(u) = `(P∗u) for some `-shortest xu-path P∗u .

Dijkstra’s Algorithm

For vertices x and y , this finds an `-shortest xy -path.

The idea of the algorithm is to maintain a ‘tentative distance from
x ’ called D(v) for each v ∈ V (G).

At each step of the algorithm we finalise D(u) for some vertex u.

At the end of the algorithm all D(u) will be equal to the correct
value, i.e. D(u) = `(P∗u) for some `-shortest xu-path P∗u .

Dijkstra’s Algorithm

For vertices x and y , this finds an `-shortest xy -path.

The idea of the algorithm is to maintain a ‘tentative distance from
x ’ called D(v) for each v ∈ V (G).

At each step of the algorithm we finalise D(u) for some vertex u.

At the end of the algorithm all D(u) will be equal to the correct
value, i.e. D(u) = `(P∗u) for some `-shortest xu-path P∗u .

Dijkstra’s Algorithm

For vertices x and y , this finds an `-shortest xy -path.

The idea of the algorithm is to maintain a ‘tentative distance from
x ’ called D(v) for each v ∈ V (G).

At each step of the algorithm we finalise D(u) for some vertex u.

At the end of the algorithm all D(u) will be equal to the correct
value,

i.e. D(u) = `(P∗u) for some `-shortest xu-path P∗u .

Dijkstra’s Algorithm

For vertices x and y , this finds an `-shortest xy -path.

The idea of the algorithm is to maintain a ‘tentative distance from
x ’ called D(v) for each v ∈ V (G).

At each step of the algorithm we finalise D(u) for some vertex u.

At the end of the algorithm all D(u) will be equal to the correct
value, i.e. D(u) = `(P∗u) for some `-shortest xu-path P∗u .

Dijkstra’s Algorithm

Start by letting U = V (G),
[U is the set of vertices v for which D(v) has
not yet been finalised]

D(x) = 0, D(v) =∞ for all v 6= x .

Repeat the following step:
If U = ∅ stop. Otherwise pick u ∈ U with
D(u) minimal, delete u from U, and for any
v ∈ U with v adjacent to u and satisfying
D(v) > D(u) + `(uv) replace D(v) by
D(u) + `(uv).

Dijkstra’s Algorithm

Start by letting U = V (G),
[U is the set of vertices v for which D(v) has
not yet been finalised]
D(x) = 0,

D(v) =∞ for all v 6= x .

Repeat the following step:
If U = ∅ stop. Otherwise pick u ∈ U with
D(u) minimal, delete u from U, and for any
v ∈ U with v adjacent to u and satisfying
D(v) > D(u) + `(uv) replace D(v) by
D(u) + `(uv).

Dijkstra’s Algorithm

Start by letting U = V (G),
[U is the set of vertices v for which D(v) has
not yet been finalised]
D(x) = 0, D(v) =∞ for all v 6= x .

Repeat the following step:
If U = ∅ stop. Otherwise pick u ∈ U with
D(u) minimal, delete u from U, and for any
v ∈ U with v adjacent to u and satisfying
D(v) > D(u) + `(uv) replace D(v) by
D(u) + `(uv).

Dijkstra’s Algorithm

Start by letting U = V (G),
[U is the set of vertices v for which D(v) has
not yet been finalised]
D(x) = 0, D(v) =∞ for all v 6= x .

Repeat the following step:

If U = ∅ stop. Otherwise pick u ∈ U with
D(u) minimal, delete u from U, and for any
v ∈ U with v adjacent to u and satisfying
D(v) > D(u) + `(uv) replace D(v) by
D(u) + `(uv).

Dijkstra’s Algorithm

Start by letting U = V (G),
[U is the set of vertices v for which D(v) has
not yet been finalised]
D(x) = 0, D(v) =∞ for all v 6= x .

Repeat the following step:
If U = ∅ stop. Otherwise pick u ∈ U with
D(u) minimal, delete u from U,

and for any
v ∈ U with v adjacent to u and satisfying
D(v) > D(u) + `(uv) replace D(v) by
D(u) + `(uv).

Dijkstra’s Algorithm

Start by letting U = V (G),
[U is the set of vertices v for which D(v) has
not yet been finalised]
D(x) = 0, D(v) =∞ for all v 6= x .

Repeat the following step:
If U = ∅ stop. Otherwise pick u ∈ U with
D(u) minimal, delete u from U, and for any
v ∈ U with v adjacent to u and satisfying
D(v) > D(u) + `(uv) replace D(v) by
D(u) + `(uv).

Dijkstra’s Algorithm

Start by letting U = V (G),
[U is the set of vertices v for which D(v) has
not yet been finalised]
D(x) = 0, D(v) =∞ for all v 6= x .

Repeat the following step:
If U = ∅ stop. Otherwise pick u ∈ U with
D(u) minimal, delete u from U, and for any
v ∈ U with v adjacent to u and satisfying
D(v) > D(u) + `(uv) replace D(v) by
D(u) + `(uv).

Dijkstra’s Algorithm

Start by letting U = V (G),
[U is the set of vertices v for which D(v) has
not yet been finalised]
D(x) = 0, D(v) =∞ for all v 6= x .

Repeat the following step:
If U = ∅ stop. Otherwise pick u ∈ U with
D(u) minimal, delete u from U, and for any
v ∈ U with v adjacent to u and satisfying
D(v) > D(u) + `(uv) replace D(v) by
D(u) + `(uv).

1

1

1

3

4

5

1x

Dijkstra’s Algorithm

Start by letting U = V (G),
[U is the set of vertices v for which D(v) has
not yet been finalised]
D(x) = 0, D(v) =∞ for all v 6= x .

Repeat the following step:
If U = ∅ stop. Otherwise pick u ∈ U with
D(u) minimal, delete u from U, and for any
v ∈ U with v adjacent to u and satisfying
D(v) > D(u) + `(uv) replace D(v) by
D(u) + `(uv).

1

1
0

1

3

4

5

1x

∞

∞

∞

∞

Dijkstra’s Algorithm

Start by letting U = V (G),
[U is the set of vertices v for which D(v) has
not yet been finalised]
D(x) = 0, D(v) =∞ for all v 6= x .

Repeat the following step:
If U = ∅ stop. Otherwise pick u ∈ U with
D(u) minimal, delete u from U, and for any
v ∈ U with v adjacent to u and satisfying
D(v) > D(u) + `(uv) replace D(v) by
D(u) + `(uv).

1

1
0

1

3

4

5

1x

∞

∞

∞

∞

Dijkstra’s Algorithm

Start by letting U = V (G),
[U is the set of vertices v for which D(v) has
not yet been finalised]
D(x) = 0, D(v) =∞ for all v 6= x .

Repeat the following step:
If U = ∅ stop. Otherwise pick u ∈ U with
D(u) minimal, delete u from U, and for any
v ∈ U with v adjacent to u and satisfying
D(v) > D(u) + `(uv) replace D(v) by
D(u) + `(uv).

1

1
0

1

3

4

5

1x

1

3

4

1

Dijkstra’s Algorithm

Start by letting U = V (G),
[U is the set of vertices v for which D(v) has
not yet been finalised]
D(x) = 0, D(v) =∞ for all v 6= x .

Repeat the following step:
If U = ∅ stop. Otherwise pick u ∈ U with
D(u) minimal, delete u from U, and for any
v ∈ U with v adjacent to u and satisfying
D(v) > D(u) + `(uv) replace D(v) by
D(u) + `(uv).

1

1
0

1

3

4

5

1x

1

3

4

1

Dijkstra’s Algorithm

Start by letting U = V (G),
[U is the set of vertices v for which D(v) has
not yet been finalised]
D(x) = 0, D(v) =∞ for all v 6= x .

Repeat the following step:
If U = ∅ stop. Otherwise pick u ∈ U with
D(u) minimal, delete u from U, and for any
v ∈ U with v adjacent to u and satisfying
D(v) > D(u) + `(uv) replace D(v) by
D(u) + `(uv).

1

1
0

1

3

4

5

1x

1

2

4

1

Dijkstra’s Algorithm

Start by letting U = V (G),
[U is the set of vertices v for which D(v) has
not yet been finalised]
D(x) = 0, D(v) =∞ for all v 6= x .

Repeat the following step:
If U = ∅ stop. Otherwise pick u ∈ U with
D(u) minimal, delete u from U, and for any
v ∈ U with v adjacent to u and satisfying
D(v) > D(u) + `(uv) replace D(v) by
D(u) + `(uv).

1

1
0

1

3

4

5

1x

1

2

4

1

Dijkstra’s Algorithm

Start by letting U = V (G),
[U is the set of vertices v for which D(v) has
not yet been finalised]
D(x) = 0, D(v) =∞ for all v 6= x .

Repeat the following step:
If U = ∅ stop. Otherwise pick u ∈ U with
D(u) minimal, delete u from U, and for any
v ∈ U with v adjacent to u and satisfying
D(v) > D(u) + `(uv) replace D(v) by
D(u) + `(uv).

1

1
0

1

3

4

5

1x

1

2

4

1

Dijkstra’s Algorithm

Start by letting U = V (G),
[U is the set of vertices v for which D(v) has
not yet been finalised]
D(x) = 0, D(v) =∞ for all v 6= x .

Repeat the following step:
If U = ∅ stop. Otherwise pick u ∈ U with
D(u) minimal, delete u from U, and for any
v ∈ U with v adjacent to u and satisfying
D(v) > D(u) + `(uv) replace D(v) by
D(u) + `(uv).

1

1
0

1

3

4

5

1x

1

2

3

1

Dijkstra’s Algorithm

Start by letting U = V (G),
[U is the set of vertices v for which D(v) has
not yet been finalised]
D(x) = 0, D(v) =∞ for all v 6= x .

Repeat the following step:
If U = ∅ stop. Otherwise pick u ∈ U with
D(u) minimal, delete u from U, and for any
v ∈ U with v adjacent to u and satisfying
D(v) > D(u) + `(uv) replace D(v) by
D(u) + `(uv).

1

1
0

1

3

4

5

1x

1

2

3

1

Shortest paths rooted trees

Dijkstra’s Algorithm can be used to do more:

For any x ∈ V (G) we can construct a
spanning tree T such that for any y ∈ V (G),
the unique xy -path in T is an `-shortest
xy -path.

We call T an `-shortest paths tree rooted at
x .

Shortest paths rooted trees

Dijkstra’s Algorithm can be used to do more:

For any x ∈ V (G) we can construct a
spanning tree T such that for any y ∈ V (G),
the unique xy -path in T is an `-shortest
xy -path.

We call T an `-shortest paths tree rooted at
x .

Shortest paths rooted trees

Dijkstra’s Algorithm can be used to do more:

For any x ∈ V (G) we can construct a
spanning tree T such that for any y ∈ V (G),
the unique xy -path in T is an `-shortest
xy -path.

We call T an `-shortest paths tree rooted at
x .

Shortest paths rooted trees

Dijkstra’s Algorithm can be used to do more:

For any x ∈ V (G) we can construct a
spanning tree T such that for any y ∈ V (G),
the unique xy -path in T is an `-shortest
xy -path.

We call T an `-shortest paths tree rooted at
x .

1

1
0

1

3

4

5

1x

1

2

3

1

Shortest paths rooted trees

We now describe how to obtain
T .

For any vertex v 6= x , the parent
of v is the last vertex u such
that we replaced D(v) by
D(u) + `(uv) during the
algorithm.

We obtain T by drawing an
edge from each vertex v 6= x to
the parent of v .

Shortest paths rooted trees

We now describe how to obtain
T .

For any vertex v 6= x , the parent
of v is the last vertex u such
that we replaced D(v) by
D(u) + `(uv) during the
algorithm.

We obtain T by drawing an
edge from each vertex v 6= x to
the parent of v .

1

1

1

3

4

5

1x

1

2

3

1

v

Shortest paths rooted trees

We now describe how to obtain
T .

For any vertex v 6= x , the parent
of v is the last vertex u such
that we replaced D(v) by
D(u) + `(uv) during the
algorithm.

We obtain T by drawing an
edge from each vertex v 6= x to
the parent of v .

1

1

1

3

4

5

1x

1

2

3

1

v
parent of v

Shortest paths rooted trees

We now describe how to obtain
T .

For any vertex v 6= x , the parent
of v is the last vertex u such
that we replaced D(v) by
D(u) + `(uv) during the
algorithm.

We obtain T by drawing an
edge from each vertex v 6= x to
the parent of v .

1

1

1

3

4

5

1x

1

2

3

1

Start of the proof

Lemma 14. T is a tree,

and for each u ∈ V (G) we have
D(u) = `(Pu) where Pu is the unique xu-path in T .

Proof. After any step, we have defined the
parents of all vertices in C = V (G) \ U. Let
TC be obtained by drawing an edge from
each v ∈ C \ {x} to its parent. So
V (TC) = C .

We show by induction on |C | that TC is a
tree and for each u ∈ V (TC) we have
D(u) = `(Pu) where Pu is the unique
xu-path in TC .

Start of the proof

Lemma 14. T is a tree, and for each u ∈ V (G) we have
D(u) = `(Pu) where Pu is the unique xu-path in T .

Proof.

After any step, we have defined the
parents of all vertices in C = V (G) \ U. Let
TC be obtained by drawing an edge from
each v ∈ C \ {x} to its parent. So
V (TC) = C .

We show by induction on |C | that TC is a
tree and for each u ∈ V (TC) we have
D(u) = `(Pu) where Pu is the unique
xu-path in TC .

Start of the proof

Lemma 14. T is a tree, and for each u ∈ V (G) we have
D(u) = `(Pu) where Pu is the unique xu-path in T .

Proof. After any step, we have defined the
parents of all vertices in C = V (G) \ U.

Let
TC be obtained by drawing an edge from
each v ∈ C \ {x} to its parent. So
V (TC) = C .

We show by induction on |C | that TC is a
tree and for each u ∈ V (TC) we have
D(u) = `(Pu) where Pu is the unique
xu-path in TC .

Start of the proof

Lemma 14. T is a tree, and for each u ∈ V (G) we have
D(u) = `(Pu) where Pu is the unique xu-path in T .

Proof. After any step, we have defined the
parents of all vertices in C = V (G) \ U.

Let
TC be obtained by drawing an edge from
each v ∈ C \ {x} to its parent. So
V (TC) = C .

We show by induction on |C | that TC is a
tree and for each u ∈ V (TC) we have
D(u) = `(Pu) where Pu is the unique
xu-path in TC .

1

1
0

1

3

4

5

1x

∞

∞

∞

∞

Start of the proof

Lemma 14. T is a tree, and for each u ∈ V (G) we have
D(u) = `(Pu) where Pu is the unique xu-path in T .

Proof. After any step, we have defined the
parents of all vertices in C = V (G) \ U.

Let
TC be obtained by drawing an edge from
each v ∈ C \ {x} to its parent. So
V (TC) = C .

We show by induction on |C | that TC is a
tree and for each u ∈ V (TC) we have
D(u) = `(Pu) where Pu is the unique
xu-path in TC .

1

1
0

1

3

4

5

1x

∞

∞

∞

∞

Start of the proof

Lemma 14. T is a tree, and for each u ∈ V (G) we have
D(u) = `(Pu) where Pu is the unique xu-path in T .

Proof. After any step, we have defined the
parents of all vertices in C = V (G) \ U.

Let
TC be obtained by drawing an edge from
each v ∈ C \ {x} to its parent. So
V (TC) = C .

We show by induction on |C | that TC is a
tree and for each u ∈ V (TC) we have
D(u) = `(Pu) where Pu is the unique
xu-path in TC .

1

1
0

1

3

4

5

1x

1

3

4

1

Start of the proof

Lemma 14. T is a tree, and for each u ∈ V (G) we have
D(u) = `(Pu) where Pu is the unique xu-path in T .

Proof. After any step, we have defined the
parents of all vertices in C = V (G) \ U.

Let
TC be obtained by drawing an edge from
each v ∈ C \ {x} to its parent. So
V (TC) = C .

We show by induction on |C | that TC is a
tree and for each u ∈ V (TC) we have
D(u) = `(Pu) where Pu is the unique
xu-path in TC .

1

1
0

1

3

4

5

1x

1

3

4

1

Start of the proof

Lemma 14. T is a tree, and for each u ∈ V (G) we have
D(u) = `(Pu) where Pu is the unique xu-path in T .

Proof. After any step, we have defined the
parents of all vertices in C = V (G) \ U.

Let
TC be obtained by drawing an edge from
each v ∈ C \ {x} to its parent. So
V (TC) = C .

We show by induction on |C | that TC is a
tree and for each u ∈ V (TC) we have
D(u) = `(Pu) where Pu is the unique
xu-path in TC .

1

1
0

1

3

4

5

1x

1

2

4

1

Start of the proof

Lemma 14. T is a tree, and for each u ∈ V (G) we have
D(u) = `(Pu) where Pu is the unique xu-path in T .

Proof. After any step, we have defined the
parents of all vertices in C = V (G) \ U.

Let
TC be obtained by drawing an edge from
each v ∈ C \ {x} to its parent. So
V (TC) = C .

We show by induction on |C | that TC is a
tree and for each u ∈ V (TC) we have
D(u) = `(Pu) where Pu is the unique
xu-path in TC .

1

1
0

1

3

4

5

1x

1

2

4

1

Start of the proof

Lemma 14. T is a tree, and for each u ∈ V (G) we have
D(u) = `(Pu) where Pu is the unique xu-path in T .

Proof. After any step, we have defined the
parents of all vertices in C = V (G) \ U.

Let
TC be obtained by drawing an edge from
each v ∈ C \ {x} to its parent. So
V (TC) = C .

We show by induction on |C | that TC is a
tree and for each u ∈ V (TC) we have
D(u) = `(Pu) where Pu is the unique
xu-path in TC .

1

1
0

1

3

4

5

1x

1

2

4

1

Start of the proof

Lemma 14. T is a tree, and for each u ∈ V (G) we have
D(u) = `(Pu) where Pu is the unique xu-path in T .

Proof. After any step, we have defined the
parents of all vertices in C = V (G) \ U.

Let
TC be obtained by drawing an edge from
each v ∈ C \ {x} to its parent. So
V (TC) = C .

We show by induction on |C | that TC is a
tree and for each u ∈ V (TC) we have
D(u) = `(Pu) where Pu is the unique
xu-path in TC .

1

1
0

1

3

4

5

1x

1

2

3

1

Start of the proof

Lemma 14. T is a tree, and for each u ∈ V (G) we have
D(u) = `(Pu) where Pu is the unique xu-path in T .

Proof. After any step, we have defined the
parents of all vertices in C = V (G) \ U.

Let
TC be obtained by drawing an edge from
each v ∈ C \ {x} to its parent. So
V (TC) = C .

We show by induction on |C | that TC is a
tree and for each u ∈ V (TC) we have
D(u) = `(Pu) where Pu is the unique
xu-path in TC .

1

1
0

1

3

4

5

1x

1

2

3

1

Start of the proof

Lemma 14. T is a tree, and for each u ∈ V (G) we have
D(u) = `(Pu) where Pu is the unique xu-path in T .

Proof. After any step, we have defined the
parents of all vertices in C = V (G) \ U. Let
TC be obtained by drawing an edge from
each v ∈ C \ {x} to its parent. So
V (TC) = C .

We show by induction on |C | that TC is a
tree and for each u ∈ V (TC) we have
D(u) = `(Pu) where Pu is the unique
xu-path in TC .

1

1
0

1

3

4

5

1x

1

2

3

1

Start of the proof

Lemma 14. T is a tree, and for each u ∈ V (G) we have
D(u) = `(Pu) where Pu is the unique xu-path in T .

Proof. After any step, we have defined the
parents of all vertices in C = V (G) \ U. Let
TC be obtained by drawing an edge from
each v ∈ C \ {x} to its parent. So
V (TC) = C .

We show by induction on |C | that TC is a
tree and for each u ∈ V (TC) we have
D(u) = `(Pu) where Pu is the unique
xu-path in TC .

1

1
0

1

3

4

5

1x

1

3

4

1

Start of the proof

Lemma 14. T is a tree, and for each u ∈ V (G) we have
D(u) = `(Pu) where Pu is the unique xu-path in T .

Proof. After any step, we have defined the
parents of all vertices in C = V (G) \ U. Let
TC be obtained by drawing an edge from
each v ∈ C \ {x} to its parent. So
V (TC) = C .

We show by induction on |C | that TC is a
tree and for each u ∈ V (TC) we have
D(u) = `(Pu) where Pu is the unique
xu-path in TC .

1

1
0

1

3

4

5

1x

1

2

4

1

Start of the proof

Lemma 14. T is a tree, and for each u ∈ V (G) we have
D(u) = `(Pu) where Pu is the unique xu-path in T .

Proof. After any step, we have defined the
parents of all vertices in C = V (G) \ U. Let
TC be obtained by drawing an edge from
each v ∈ C \ {x} to its parent. So
V (TC) = C .

We show by induction on |C | that TC is a
tree and for each u ∈ V (TC) we have
D(u) = `(Pu) where Pu is the unique
xu-path in TC .

1

1
0

1

3

4

5

1x

1

2

3

1

Start of the proof

Lemma 14. T is a tree, and for each u ∈ V (G) we have
D(u) = `(Pu) where Pu is the unique xu-path in T .

Proof. After any step, we have defined the
parents of all vertices in C = V (G) \ U. Let
TC be obtained by drawing an edge from
each v ∈ C \ {x} to its parent. So
V (TC) = C .

We show by induction on |C | that TC is a
tree and for each u ∈ V (TC) we have
D(u) = `(Pu) where Pu is the unique
xu-path in TC .

1

1
0

1

3

4

5

1x

1

2

3

1

Start of the proof

Lemma 14. T is a tree, and for each u ∈ V (G) we have
D(u) = `(Pu) where Pu is the unique xu-path in T .

Proof. After any step, we have defined the
parents of all vertices in C = V (G) \ U. Let
TC be obtained by drawing an edge from
each v ∈ C \ {x} to its parent. So
V (TC) = C .

We show by induction on |C | that TC is a
tree and for each u ∈ V (TC) we have
D(u) = `(Pu) where Pu is the unique
xu-path in TC .

1

1
0

1

3

4

5

1x

1

2

3

1

Proof

We show by induction on |C | that TC is a tree and for each
u ∈ V (TC) we have D(u) = `(Pu) where Pu is the unique xu-path
in TC .

Base case: we start with V (TC) = {x} and
no edges, which is a tree, with
D(x) = 0 = `(Px).

Induction step: When we delete u from U,
we add u to C , and add an edge from u to
the parent v of u, i.e. we add a leaf to TC ,
and so obtain another tree.

By definition of parent and induction we
have D(u) = D(v) + `(vu) =
`(Pv) + `(vu) = `(Pu). �

Proof

We show by induction on |C | that TC is a tree and for each
u ∈ V (TC) we have D(u) = `(Pu) where Pu is the unique xu-path
in TC .

Base case:

we start with V (TC) = {x} and
no edges, which is a tree, with
D(x) = 0 = `(Px).

Induction step: When we delete u from U,
we add u to C , and add an edge from u to
the parent v of u, i.e. we add a leaf to TC ,
and so obtain another tree.

By definition of parent and induction we
have D(u) = D(v) + `(vu) =
`(Pv) + `(vu) = `(Pu). �

Proof

We show by induction on |C | that TC is a tree and for each
u ∈ V (TC) we have D(u) = `(Pu) where Pu is the unique xu-path
in TC .

Base case: we start with V (TC) = {x} and
no edges, which is a tree, with
D(x) = 0 = `(Px).

Induction step: When we delete u from U,
we add u to C , and add an edge from u to
the parent v of u, i.e. we add a leaf to TC ,
and so obtain another tree.

By definition of parent and induction we
have D(u) = D(v) + `(vu) =
`(Pv) + `(vu) = `(Pu). �

Proof

We show by induction on |C | that TC is a tree and for each
u ∈ V (TC) we have D(u) = `(Pu) where Pu is the unique xu-path
in TC .

Base case: we start with V (TC) = {x} and
no edges, which is a tree, with
D(x) = 0 = `(Px).

Induction step:

When we delete u from U,
we add u to C , and add an edge from u to
the parent v of u, i.e. we add a leaf to TC ,
and so obtain another tree.

By definition of parent and induction we
have D(u) = D(v) + `(vu) =
`(Pv) + `(vu) = `(Pu). �

1

1
0

1

3

4

5

1x

1

2

4

1

u

v

Proof

We show by induction on |C | that TC is a tree and for each
u ∈ V (TC) we have D(u) = `(Pu) where Pu is the unique xu-path
in TC .

Base case: we start with V (TC) = {x} and
no edges, which is a tree, with
D(x) = 0 = `(Px).

Induction step: When we delete u from U,
we add u to C , and add an edge from u to
the parent v of u, i.e. we add a leaf to TC ,
and so obtain another tree.

By definition of parent and induction we
have D(u) = D(v) + `(vu) =
`(Pv) + `(vu) = `(Pu). �

1

1
0

1

3

4

5

1x

1

2

4

1

u

v

Proof

We show by induction on |C | that TC is a tree and for each
u ∈ V (TC) we have D(u) = `(Pu) where Pu is the unique xu-path
in TC .

Base case: we start with V (TC) = {x} and
no edges, which is a tree, with
D(x) = 0 = `(Px).

Induction step: When we delete u from U,
we add u to C , and add an edge from u to
the parent v of u, i.e. we add a leaf to TC ,
and so obtain another tree.

By definition of parent and induction we
have D(u) = D(v) + `(vu) =
`(Pv) + `(vu) = `(Pu). �

1

1
0

1

3

4

5

1x

1

2

4

1

u

v

Completion of the proof

Theorem 15. T is an `-shortest paths tree rooted at x .

Proof. For each u ∈ V (G) let D∗(u) = `(P∗u) for some `-shortest
xu-path P∗u .

We show by induction that in each step of the algorithm, when u
is deleted we have D(u) = D∗(u).

Base case. We have u = x and D(u) = D∗(u) = 0.

Induction step. Consider the step where we delete some u from U,
and suppose for contradiction that D(u) > D∗(u).
Let C = V (G) \ U. By induction, for every vertex v in TC ,
D∗(v) = D(v).

Completion of the proof

Theorem 15. T is an `-shortest paths tree rooted at x .

Proof. For each u ∈ V (G) let D∗(u) = `(P∗u) for some `-shortest
xu-path P∗u .

We show by induction that in each step of the algorithm, when u
is deleted we have D(u) = D∗(u).

Base case. We have u = x and D(u) = D∗(u) = 0.

Induction step. Consider the step where we delete some u from U,
and suppose for contradiction that D(u) > D∗(u).
Let C = V (G) \ U. By induction, for every vertex v in TC ,
D∗(v) = D(v).

Completion of the proof

Theorem 15. T is an `-shortest paths tree rooted at x .

Proof. For each u ∈ V (G) let D∗(u) = `(P∗u) for some `-shortest
xu-path P∗u .

We show by induction that in each step of the algorithm, when u
is deleted we have D(u) = D∗(u).

Base case. We have u = x and D(u) = D∗(u) = 0.

Induction step. Consider the step where we delete some u from U,
and suppose for contradiction that D(u) > D∗(u).
Let C = V (G) \ U. By induction, for every vertex v in TC ,
D∗(v) = D(v).

Completion of the proof

Theorem 15. T is an `-shortest paths tree rooted at x .

Proof. For each u ∈ V (G) let D∗(u) = `(P∗u) for some `-shortest
xu-path P∗u .

We show by induction that in each step of the algorithm, when u
is deleted we have D(u) = D∗(u).

Base case.

We have u = x and D(u) = D∗(u) = 0.

Induction step. Consider the step where we delete some u from U,
and suppose for contradiction that D(u) > D∗(u).
Let C = V (G) \ U. By induction, for every vertex v in TC ,
D∗(v) = D(v).

Completion of the proof

Theorem 15. T is an `-shortest paths tree rooted at x .

Proof. For each u ∈ V (G) let D∗(u) = `(P∗u) for some `-shortest
xu-path P∗u .

We show by induction that in each step of the algorithm, when u
is deleted we have D(u) = D∗(u).

Base case. We have u = x and D(u) = D∗(u) = 0.

Induction step. Consider the step where we delete some u from U,
and suppose for contradiction that D(u) > D∗(u).
Let C = V (G) \ U. By induction, for every vertex v in TC ,
D∗(v) = D(v).

Completion of the proof

Theorem 15. T is an `-shortest paths tree rooted at x .

Proof. For each u ∈ V (G) let D∗(u) = `(P∗u) for some `-shortest
xu-path P∗u .

We show by induction that in each step of the algorithm, when u
is deleted we have D(u) = D∗(u).

Base case. We have u = x and D(u) = D∗(u) = 0.

Induction step. Consider the step where we delete some u from U,
and suppose for contradiction that D(u) > D∗(u).

Let C = V (G) \ U. By induction, for every vertex v in TC ,
D∗(v) = D(v).

Completion of the proof

Theorem 15. T is an `-shortest paths tree rooted at x .

Proof. For each u ∈ V (G) let D∗(u) = `(P∗u) for some `-shortest
xu-path P∗u .

We show by induction that in each step of the algorithm, when u
is deleted we have D(u) = D∗(u).

Base case. We have u = x and D(u) = D∗(u) = 0.

Induction step. Consider the step where we delete some u from U,
and suppose for contradiction that D(u) > D∗(u).
Let C = V (G) \ U. By induction, for every vertex v in TC ,
D∗(v) = D(v).

Completion of the proof

Let yy ′ be the first edge of P∗u with
y /∈ U and y ′ ∈ U.

By induction hypothesis
D(y) = D∗(y). Now

D(y ′) ≤ D(y) + `(yy ′)

= D∗(y) + `(yy ′)

= `(P∗y) + `(yy ′)

≤ `(P∗u) = D∗(u) < D(u).

x

u U∍

C

Pu*

y
y´

The first inequality uses the update rule for y and y ′: when y was
removed from U, D(y ′) was replaced by D(y) + `(yy ′) if that was
smaller, and so after this, D(y ′) ≤ D(y) + `(yy ′).

However, y ′ ∈ U with D(y ′) < D(u) contradicts the choice of u in
the algorithm. So D(u) = D∗(u). �

Completion of the proof

Let yy ′ be the first edge of P∗u with
y /∈ U and y ′ ∈ U.

By induction hypothesis
D(y) = D∗(y). Now

D(y ′) ≤ D(y) + `(yy ′)

= D∗(y) + `(yy ′)

= `(P∗y) + `(yy ′)

≤ `(P∗u) = D∗(u) < D(u).

x

u U∍

C

Pu*

y
y´

The first inequality uses the update rule for y and y ′: when y was
removed from U, D(y ′) was replaced by D(y) + `(yy ′) if that was
smaller, and so after this, D(y ′) ≤ D(y) + `(yy ′).

However, y ′ ∈ U with D(y ′) < D(u) contradicts the choice of u in
the algorithm. So D(u) = D∗(u). �

Completion of the proof

Let yy ′ be the first edge of P∗u with
y /∈ U and y ′ ∈ U.

By induction hypothesis
D(y) = D∗(y). Now

D(y ′) ≤ D(y) + `(yy ′)

= D∗(y) + `(yy ′)

= `(P∗y) + `(yy ′)

≤ `(P∗u) = D∗(u) < D(u).

x

u U∍

C

Pu*

y
y´

The first inequality uses the update rule for y and y ′: when y was
removed from U, D(y ′) was replaced by D(y) + `(yy ′) if that was
smaller, and so after this, D(y ′) ≤ D(y) + `(yy ′).

However, y ′ ∈ U with D(y ′) < D(u) contradicts the choice of u in
the algorithm. So D(u) = D∗(u). �

Completion of the proof

Let yy ′ be the first edge of P∗u with
y /∈ U and y ′ ∈ U.

By induction hypothesis
D(y) = D∗(y). Now

D(y ′) ≤ D(y) + `(yy ′)

= D∗(y) + `(yy ′)

= `(P∗y) + `(yy ′)

≤ `(P∗u) = D∗(u) < D(u).

x

u U∍

C

Pu*

y
y´

The first inequality uses the update rule for y and y ′: when y was
removed from U, D(y ′) was replaced by D(y) + `(yy ′) if that was
smaller, and so after this, D(y ′) ≤ D(y) + `(yy ′).

However, y ′ ∈ U with D(y ′) < D(u) contradicts the choice of u in
the algorithm. So D(u) = D∗(u). �

Running time

The running time of this implementation of Dijkstra’s Algorithm is
O(|V (G)||E (G)|).

A better implementation (which we omit) gives a running time of
O(|E (G)|+ |V (G)| log |V (G)|).

Running time

The running time of this implementation of Dijkstra’s Algorithm is
O(|V (G)||E (G)|).

A better implementation (which we omit) gives a running time of
O(|E (G)|+ |V (G)| log |V (G)|).

Matchings

The marriage problem

The Marriage Problem:

Given n men and n women, under what conditions is it possible to
pair each man with a woman such that every pair know each
other?

The marriage problem

The Marriage Problem:
Given n men and n women, under what conditions is it possible to
pair each man with a woman such that every pair know each
other?

The marriage problem

The Marriage Problem:
Given n men and n women, under what conditions is it possible to
pair each man with a woman such that every pair know each
other?

men women

The marriage problem

The Marriage Problem:
Given n men and n women, under what conditions is it possible to
pair each man with a woman such that every pair know each
other?

men women

Definitions

A graph G is bipartite if we can partition
V (G) into two sets A and B so that every
edge of G crosses between A and B.

We say M ⊆ E (G) is a matching if the edges
in M are pairwise disjoint.

We say M is perfect if every vertex belongs
to some edge of M.

A B

Definitions

A graph G is bipartite if we can partition
V (G) into two sets A and B so that every
edge of G crosses between A and B.

We say M ⊆ E (G) is a matching if the edges
in M are pairwise disjoint.

We say M is perfect if every vertex belongs
to some edge of M.

A B

Definitions

A graph G is bipartite if we can partition
V (G) into two sets A and B so that every
edge of G crosses between A and B.

We say M ⊆ E (G) is a matching if the edges
in M are pairwise disjoint.

We say M is perfect if every vertex belongs
to some edge of M.

A B

Definitions

A graph G is bipartite if we can partition
V (G) into two sets A and B so that every
edge of G crosses between A and B.

We say M ⊆ E (G) is a matching if the edges
in M are pairwise disjoint.

We say M is perfect if every vertex belongs
to some edge of M.

A B

Maximal size matchings

How can we produce a matching of maximal size?

The greedy algorithm does not work.

Maximal size matchings

How can we produce a matching of maximal size?

The greedy algorithm does not work.

Maximal size matchings

How can we produce a matching of maximal size?

The greedy algorithm does not work.

Alternating and augmenting paths

Let G be a graph.
Let M be matching in G .
Let P be a path in G .

We say P is M-alternating if every other edge of P is in M.

We say P is M-augmenting if P is M-alternating and its end
vertices are not in any edge of M.

Alternating and augmenting paths

Let G be a graph.
Let M be matching in G .
Let P be a path in G .

We say P is M-alternating if every other edge of P is in M.

We say P is M-augmenting if P is M-alternating and its end
vertices are not in any edge of M.

Alternating and augmenting paths

Let G be a graph.
Let M be matching in G .
Let P be a path in G .

We say P is M-alternating if every other edge of P is in M.

We say P is M-augmenting if P is M-alternating and its end
vertices are not in any edge of M.

Alternating and augmenting paths

Let G be a graph.
Let M be matching in G .
Let P be a path in G .

We say P is M-alternating if every other edge of P is in M.

We say P is M-augmenting if P is M-alternating and its end
vertices are not in any edge of M.

Alternating and augmenting paths

Let G be a graph.
Let M be matching in G .
Let P be a path in G .

We say P is M-alternating if every other edge of P is in M.

We say P is M-augmenting if P is M-alternating and its end
vertices are not in any edge of M.

Maximal size matchings
Lemma 16. Let M be a matching in G . Then M is not of
maximum size if and only if there is an M-augmenting path in G .

Proof. If there is an M-augmenting path P in
G then we can find a larger matching by
‘flipping’ P: replace M by
M \ (M ∩ E (P)) ∪ (E (P) \M).

Conversely, suppose that M∗ is a matching in
G with |M∗| > |M|.
Let H = M ∪M∗.
Every vertex has degree at most 2 in H, so
each component of H is an edge, path or
cycle, the edge components consist of
M ∩M∗, and the edges in path and cycle
components alternate between M and M∗.
As |M∗| > |M| we can find a path
component with more edges of M∗ than M:
this is an M-augmenting path in G . �

Maximal size matchings
Lemma 16. Let M be a matching in G . Then M is not of
maximum size if and only if there is an M-augmenting path in G .

Proof. If there is an M-augmenting path P in
G then we can find a larger matching by
‘flipping’ P: replace M by
M \ (M ∩ E (P)) ∪ (E (P) \M).

Conversely, suppose that M∗ is a matching in
G with |M∗| > |M|.
Let H = M ∪M∗.
Every vertex has degree at most 2 in H, so
each component of H is an edge, path or
cycle, the edge components consist of
M ∩M∗, and the edges in path and cycle
components alternate between M and M∗.
As |M∗| > |M| we can find a path
component with more edges of M∗ than M:
this is an M-augmenting path in G . �

Maximal size matchings
Lemma 16. Let M be a matching in G . Then M is not of
maximum size if and only if there is an M-augmenting path in G .

Proof. If there is an M-augmenting path P in
G then we can find a larger matching by
‘flipping’ P: replace M by
M \ (M ∩ E (P)) ∪ (E (P) \M).

Conversely, suppose that M∗ is a matching in
G with |M∗| > |M|.

Let H = M ∪M∗.
Every vertex has degree at most 2 in H, so
each component of H is an edge, path or
cycle, the edge components consist of
M ∩M∗, and the edges in path and cycle
components alternate between M and M∗.
As |M∗| > |M| we can find a path
component with more edges of M∗ than M:
this is an M-augmenting path in G . �

Maximal size matchings
Lemma 16. Let M be a matching in G . Then M is not of
maximum size if and only if there is an M-augmenting path in G .

Proof. If there is an M-augmenting path P in
G then we can find a larger matching by
‘flipping’ P: replace M by
M \ (M ∩ E (P)) ∪ (E (P) \M).

Conversely, suppose that M∗ is a matching in
G with |M∗| > |M|.
Let H = M ∪M∗.

Every vertex has degree at most 2 in H, so
each component of H is an edge, path or
cycle, the edge components consist of
M ∩M∗, and the edges in path and cycle
components alternate between M and M∗.
As |M∗| > |M| we can find a path
component with more edges of M∗ than M:
this is an M-augmenting path in G . �

Maximal size matchings
Lemma 16. Let M be a matching in G . Then M is not of
maximum size if and only if there is an M-augmenting path in G .

Proof. If there is an M-augmenting path P in
G then we can find a larger matching by
‘flipping’ P: replace M by
M \ (M ∩ E (P)) ∪ (E (P) \M).

Conversely, suppose that M∗ is a matching in
G with |M∗| > |M|.
Let H = M ∪M∗.
Every vertex has degree at most 2 in H, so
each component of H is an edge, path or
cycle, the edge components consist of
M ∩M∗, and the edges in path and cycle
components alternate between M and M∗.

As |M∗| > |M| we can find a path
component with more edges of M∗ than M:
this is an M-augmenting path in G . �

Maximal size matchings
Lemma 16. Let M be a matching in G . Then M is not of
maximum size if and only if there is an M-augmenting path in G .

Proof. If there is an M-augmenting path P in
G then we can find a larger matching by
‘flipping’ P: replace M by
M \ (M ∩ E (P)) ∪ (E (P) \M).

Conversely, suppose that M∗ is a matching in
G with |M∗| > |M|.
Let H = M ∪M∗.
Every vertex has degree at most 2 in H, so
each component of H is an edge, path or
cycle, the edge components consist of
M ∩M∗, and the edges in path and cycle
components alternate between M and M∗.
As |M∗| > |M| we can find a path
component with more edges of M∗ than M:
this is an M-augmenting path in G . �

Finding a maximal size matching

Lemma 16 reduces the algorithmic question of finding a maximum
matching in G to the following: given a matching M in G , find an
M-augmenting path or show that there is none.

We’ll focus on the case of bipartite graphs.

Finding a maximal size matching

Lemma 16 reduces the algorithmic question of finding a maximum
matching in G to the following: given a matching M in G , find an
M-augmenting path or show that there is none.

We’ll focus on the case of bipartite graphs.

Finding augmenting paths in bipartite graphs

Now suppose that G is bipartite, with parts
A and B.

Let M be a matching.

We put directions on E (G), so that all edges
in M are one-way from B to A, and all edges
not in M are one-way from A to B.

Let A∗ and B∗ be the vertices in A and B
that are ‘uncovered’, i.e. not in any edge of
M.

Then an M-augmenting path is equivalent to
a directed path from A∗ to B∗, i.e. a path
that respects directions of edges.

A B

Finding augmenting paths in bipartite graphs

Now suppose that G is bipartite, with parts
A and B.
Let M be a matching.

We put directions on E (G), so that all edges
in M are one-way from B to A, and all edges
not in M are one-way from A to B.

Let A∗ and B∗ be the vertices in A and B
that are ‘uncovered’, i.e. not in any edge of
M.

Then an M-augmenting path is equivalent to
a directed path from A∗ to B∗, i.e. a path
that respects directions of edges.

A B

Finding augmenting paths in bipartite graphs

Now suppose that G is bipartite, with parts
A and B.
Let M be a matching.

We put directions on E (G), so that all edges
in M are one-way from B to A, and all edges
not in M are one-way from A to B.

Let A∗ and B∗ be the vertices in A and B
that are ‘uncovered’, i.e. not in any edge of
M.

Then an M-augmenting path is equivalent to
a directed path from A∗ to B∗, i.e. a path
that respects directions of edges.

A B

Finding augmenting paths in bipartite graphs

Now suppose that G is bipartite, with parts
A and B.
Let M be a matching.

We put directions on E (G), so that all edges
in M are one-way from B to A, and all edges
not in M are one-way from A to B.

Let A∗ and B∗ be the vertices in A and B
that are ‘uncovered’, i.e. not in any edge of
M.

Then an M-augmenting path is equivalent to
a directed path from A∗ to B∗, i.e. a path
that respects directions of edges.

A

A*

B*

B

Finding augmenting paths in bipartite graphs

Now suppose that G is bipartite, with parts
A and B.
Let M be a matching.

We put directions on E (G), so that all edges
in M are one-way from B to A, and all edges
not in M are one-way from A to B.

Let A∗ and B∗ be the vertices in A and B
that are ‘uncovered’, i.e. not in any edge of
M.

Then an M-augmenting path is equivalent to
a directed path from A∗ to B∗, i.e. a path
that respects directions of edges. A

A*

B*

B

Finding a directed path

Is there a directed path from A∗ to B∗?

More generally, suppose that we have a
directed graph with subsets A∗ and B∗ of
V (G). Is there a directed path from A∗ to
B∗?

Start with R = A∗.
Search Algorithm. Repeat the following step:
if there is any edge directed from some
x ∈ R to some y /∈ R then add y to R,
otherwise stop.

There is a directed path from A∗ to B∗ if
and only if the final R intersects B∗.

A*

B*

Finding a directed path

Is there a directed path from A∗ to B∗?

More generally, suppose that we have a
directed graph with subsets A∗ and B∗ of
V (G). Is there a directed path from A∗ to
B∗?

Start with R = A∗.
Search Algorithm. Repeat the following step:
if there is any edge directed from some
x ∈ R to some y /∈ R then add y to R,
otherwise stop.

There is a directed path from A∗ to B∗ if
and only if the final R intersects B∗.

A*

B*

Finding a directed path

Is there a directed path from A∗ to B∗?

More generally, suppose that we have a
directed graph with subsets A∗ and B∗ of
V (G). Is there a directed path from A∗ to
B∗?

Start with R = A∗.

Search Algorithm. Repeat the following step:
if there is any edge directed from some
x ∈ R to some y /∈ R then add y to R,
otherwise stop.

There is a directed path from A∗ to B∗ if
and only if the final R intersects B∗.

A*

B*

Finding a directed path

Is there a directed path from A∗ to B∗?

More generally, suppose that we have a
directed graph with subsets A∗ and B∗ of
V (G). Is there a directed path from A∗ to
B∗?

Start with R = A∗.
Search Algorithm. Repeat the following step:
if there is any edge directed from some
x ∈ R to some y /∈ R then add y to R,
otherwise stop.

There is a directed path from A∗ to B∗ if
and only if the final R intersects B∗.

A*

B*

Finding a directed path

Is there a directed path from A∗ to B∗?

More generally, suppose that we have a
directed graph with subsets A∗ and B∗ of
V (G). Is there a directed path from A∗ to
B∗?

Start with R = A∗.
Search Algorithm. Repeat the following step:
if there is any edge directed from some
x ∈ R to some y /∈ R then add y to R,
otherwise stop.

There is a directed path from A∗ to B∗ if
and only if the final R intersects B∗.

A*

B*

Finding a directed path

Is there a directed path from A∗ to B∗?

More generally, suppose that we have a
directed graph with subsets A∗ and B∗ of
V (G). Is there a directed path from A∗ to
B∗?

Start with R = A∗.
Search Algorithm. Repeat the following step:
if there is any edge directed from some
x ∈ R to some y /∈ R then add y to R,
otherwise stop.

There is a directed path from A∗ to B∗ if
and only if the final R intersects B∗.

R

B*

Finding a directed path

Is there a directed path from A∗ to B∗?

More generally, suppose that we have a
directed graph with subsets A∗ and B∗ of
V (G). Is there a directed path from A∗ to
B∗?

Start with R = A∗.
Search Algorithm. Repeat the following step:
if there is any edge directed from some
x ∈ R to some y /∈ R then add y to R,
otherwise stop.

There is a directed path from A∗ to B∗ if
and only if the final R intersects B∗.

R

B*

Finding a directed path

Is there a directed path from A∗ to B∗?

More generally, suppose that we have a
directed graph with subsets A∗ and B∗ of
V (G). Is there a directed path from A∗ to
B∗?

Start with R = A∗.
Search Algorithm. Repeat the following step:
if there is any edge directed from some
x ∈ R to some y /∈ R then add y to R,
otherwise stop.

There is a directed path from A∗ to B∗ if
and only if the final R intersects B∗.

R

B*

Finding a directed path

Is there a directed path from A∗ to B∗?

More generally, suppose that we have a
directed graph with subsets A∗ and B∗ of
V (G). Is there a directed path from A∗ to
B∗?

Start with R = A∗.
Search Algorithm. Repeat the following step:
if there is any edge directed from some
x ∈ R to some y /∈ R then add y to R,
otherwise stop.

There is a directed path from A∗ to B∗ if
and only if the final R intersects B∗.

R

B*

The Hungarian algorithm

This finds a matching of maximum size in a bipartite graph G .

Start with M = ∅.

Orient the edges of G : all edges in M are one-way from B to A,
and all edges not in M are one-way from A to B.

Let A∗ and B∗ be the vertices in A and B that are ‘uncovered’, i.e.
not in any edge of M.

Use the search algorithm to find a directed path from A∗ to B∗.

If there is no such path, stop. If there is, then it is M-augmenting
and so we flip the path to increase the size of M.

Repeat.

The running time of the search algorithm is O(|V (G)||E (G)|), and
there are at most |V (G)|/2 iterations of increasing the matching.

So the algorithm has running time O(|V (G)|2|E (G)|).

The Hungarian algorithm

This finds a matching of maximum size in a bipartite graph G .

Start with M = ∅.

Orient the edges of G : all edges in M are one-way from B to A,
and all edges not in M are one-way from A to B.

Let A∗ and B∗ be the vertices in A and B that are ‘uncovered’, i.e.
not in any edge of M.

Use the search algorithm to find a directed path from A∗ to B∗.

If there is no such path, stop. If there is, then it is M-augmenting
and so we flip the path to increase the size of M.

Repeat.

The running time of the search algorithm is O(|V (G)||E (G)|), and
there are at most |V (G)|/2 iterations of increasing the matching.

So the algorithm has running time O(|V (G)|2|E (G)|).

The Hungarian algorithm

This finds a matching of maximum size in a bipartite graph G .

Start with M = ∅.

Orient the edges of G : all edges in M are one-way from B to A,
and all edges not in M are one-way from A to B.

Let A∗ and B∗ be the vertices in A and B that are ‘uncovered’, i.e.
not in any edge of M.

Use the search algorithm to find a directed path from A∗ to B∗.

If there is no such path, stop. If there is, then it is M-augmenting
and so we flip the path to increase the size of M.

Repeat.

The running time of the search algorithm is O(|V (G)||E (G)|), and
there are at most |V (G)|/2 iterations of increasing the matching.

So the algorithm has running time O(|V (G)|2|E (G)|).

The Hungarian algorithm

This finds a matching of maximum size in a bipartite graph G .

Start with M = ∅.

Orient the edges of G : all edges in M are one-way from B to A,
and all edges not in M are one-way from A to B.

Let A∗ and B∗ be the vertices in A and B that are ‘uncovered’, i.e.
not in any edge of M.

Use the search algorithm to find a directed path from A∗ to B∗.

If there is no such path, stop. If there is, then it is M-augmenting
and so we flip the path to increase the size of M.

Repeat.

The running time of the search algorithm is O(|V (G)||E (G)|), and
there are at most |V (G)|/2 iterations of increasing the matching.

So the algorithm has running time O(|V (G)|2|E (G)|).

The Hungarian algorithm

This finds a matching of maximum size in a bipartite graph G .

Start with M = ∅.

Orient the edges of G : all edges in M are one-way from B to A,
and all edges not in M are one-way from A to B.

Let A∗ and B∗ be the vertices in A and B that are ‘uncovered’, i.e.
not in any edge of M.

Use the search algorithm to find a directed path from A∗ to B∗.

If there is no such path, stop. If there is, then it is M-augmenting
and so we flip the path to increase the size of M.

Repeat.

The running time of the search algorithm is O(|V (G)||E (G)|), and
there are at most |V (G)|/2 iterations of increasing the matching.

So the algorithm has running time O(|V (G)|2|E (G)|).

The Hungarian algorithm

This finds a matching of maximum size in a bipartite graph G .

Start with M = ∅.

Orient the edges of G : all edges in M are one-way from B to A,
and all edges not in M are one-way from A to B.

Let A∗ and B∗ be the vertices in A and B that are ‘uncovered’, i.e.
not in any edge of M.

Use the search algorithm to find a directed path from A∗ to B∗.

If there is no such path, stop. If there is, then it is M-augmenting
and so we flip the path to increase the size of M.

Repeat.

The running time of the search algorithm is O(|V (G)||E (G)|), and
there are at most |V (G)|/2 iterations of increasing the matching.

So the algorithm has running time O(|V (G)|2|E (G)|).

The Hungarian algorithm

This finds a matching of maximum size in a bipartite graph G .

Start with M = ∅.

Orient the edges of G : all edges in M are one-way from B to A,
and all edges not in M are one-way from A to B.

Let A∗ and B∗ be the vertices in A and B that are ‘uncovered’, i.e.
not in any edge of M.

Use the search algorithm to find a directed path from A∗ to B∗.

If there is no such path, stop. If there is, then it is M-augmenting
and so we flip the path to increase the size of M.

Repeat.

The running time of the search algorithm is O(|V (G)||E (G)|), and
there are at most |V (G)|/2 iterations of increasing the matching.

So the algorithm has running time O(|V (G)|2|E (G)|).

The Hungarian algorithm

This finds a matching of maximum size in a bipartite graph G .

Start with M = ∅.

Orient the edges of G : all edges in M are one-way from B to A,
and all edges not in M are one-way from A to B.

Let A∗ and B∗ be the vertices in A and B that are ‘uncovered’, i.e.
not in any edge of M.

Use the search algorithm to find a directed path from A∗ to B∗.

If there is no such path, stop. If there is, then it is M-augmenting
and so we flip the path to increase the size of M.

Repeat.

The running time of the search algorithm is O(|V (G)||E (G)|),

and
there are at most |V (G)|/2 iterations of increasing the matching.

So the algorithm has running time O(|V (G)|2|E (G)|).

The Hungarian algorithm

This finds a matching of maximum size in a bipartite graph G .

Start with M = ∅.

Orient the edges of G : all edges in M are one-way from B to A,
and all edges not in M are one-way from A to B.

Let A∗ and B∗ be the vertices in A and B that are ‘uncovered’, i.e.
not in any edge of M.

Use the search algorithm to find a directed path from A∗ to B∗.

If there is no such path, stop. If there is, then it is M-augmenting
and so we flip the path to increase the size of M.

Repeat.

The running time of the search algorithm is O(|V (G)||E (G)|), and
there are at most |V (G)|/2 iterations of increasing the matching.

So the algorithm has running time O(|V (G)|2|E (G)|).

The Hungarian algorithm

This finds a matching of maximum size in a bipartite graph G .

Start with M = ∅.

Orient the edges of G : all edges in M are one-way from B to A,
and all edges not in M are one-way from A to B.

Let A∗ and B∗ be the vertices in A and B that are ‘uncovered’, i.e.
not in any edge of M.

Use the search algorithm to find a directed path from A∗ to B∗.

If there is no such path, stop. If there is, then it is M-augmenting
and so we flip the path to increase the size of M.

Repeat.

The running time of the search algorithm is O(|V (G)||E (G)|), and
there are at most |V (G)|/2 iterations of increasing the matching.

So the algorithm has running time O(|V (G)|2|E (G)|).

Matchings and covers

Covers

A cover for a graph G is a subset C of the
vertices such that every edge contains at
least one vertex of C .

If M is any matching and C is any cover,
then |M| ≤ |C |.

To see this, define an injective map
f : M → C , where f (e) is any vertex of
e ∩ C .

Covers

A cover for a graph G is a subset C of the
vertices such that every edge contains at
least one vertex of C .

If M is any matching and C is any cover,
then |M| ≤ |C |.

To see this, define an injective map
f : M → C , where f (e) is any vertex of
e ∩ C .

Covers

A cover for a graph G is a subset C of the
vertices such that every edge contains at
least one vertex of C .

If M is any matching and C is any cover,
then |M| ≤ |C |.

To see this, define an injective map
f : M → C , where f (e) is any vertex of
e ∩ C .

Covers

A cover for a graph G is a subset C of the
vertices such that every edge contains at
least one vertex of C .

If M is any matching and C is any cover,
then |M| ≤ |C |.

To see this, define an injective map
f : M → C , where f (e) is any vertex of
e ∩ C .

Matchings and covers

If M is any matching and C is any cover, then |M| ≤ |C |.

Maximum matching / minimum cover:

Suppose that we had found a matching M and a cover C such that
|M| = |C |.
Then we would know that M was a maximal size matching and C
was a minimal size cover.

This is an example of ‘weak duality’.

This suggests the question of whether equality holds. The answer
to the question is ‘no’ in general:

The maximum matching has size 1 but the minimum cover has
size 2.

Matchings and covers

If M is any matching and C is any cover, then |M| ≤ |C |.

Maximum matching / minimum cover:

Suppose that we had found a matching M and a cover C such that
|M| = |C |.
Then we would know that M was a maximal size matching and C
was a minimal size cover.

This is an example of ‘weak duality’.

This suggests the question of whether equality holds. The answer
to the question is ‘no’ in general:

The maximum matching has size 1 but the minimum cover has
size 2.

Matchings and covers

If M is any matching and C is any cover, then |M| ≤ |C |.

Maximum matching / minimum cover:

Suppose that we had found a matching M and a cover C such that
|M| = |C |.

Then we would know that M was a maximal size matching and C
was a minimal size cover.

This is an example of ‘weak duality’.

This suggests the question of whether equality holds. The answer
to the question is ‘no’ in general:

The maximum matching has size 1 but the minimum cover has
size 2.

Matchings and covers

If M is any matching and C is any cover, then |M| ≤ |C |.

Maximum matching / minimum cover:

Suppose that we had found a matching M and a cover C such that
|M| = |C |.
Then we would know that M was a maximal size matching and C
was a minimal size cover.

This is an example of ‘weak duality’.

This suggests the question of whether equality holds. The answer
to the question is ‘no’ in general:

The maximum matching has size 1 but the minimum cover has
size 2.

Matchings and covers

If M is any matching and C is any cover, then |M| ≤ |C |.

Maximum matching / minimum cover:

Suppose that we had found a matching M and a cover C such that
|M| = |C |.
Then we would know that M was a maximal size matching and C
was a minimal size cover.

This is an example of ‘weak duality’.

This suggests the question of whether equality holds. The answer
to the question is ‘no’ in general:

The maximum matching has size 1 but the minimum cover has
size 2.

Matchings and covers

If M is any matching and C is any cover, then |M| ≤ |C |.

Maximum matching / minimum cover:

Suppose that we had found a matching M and a cover C such that
|M| = |C |.
Then we would know that M was a maximal size matching and C
was a minimal size cover.

This is an example of ‘weak duality’.

This suggests the question of whether equality holds.

The answer
to the question is ‘no’ in general:

The maximum matching has size 1 but the minimum cover has
size 2.

Matchings and covers

If M is any matching and C is any cover, then |M| ≤ |C |.

Maximum matching / minimum cover:

Suppose that we had found a matching M and a cover C such that
|M| = |C |.
Then we would know that M was a maximal size matching and C
was a minimal size cover.

This is an example of ‘weak duality’.

This suggests the question of whether equality holds. The answer
to the question is ‘no’ in general:

The maximum matching has size 1 but the minimum cover has
size 2.

Matchings and covers

If M is any matching and C is any cover, then |M| ≤ |C |.

Maximum matching / minimum cover:

Suppose that we had found a matching M and a cover C such that
|M| = |C |.
Then we would know that M was a maximal size matching and C
was a minimal size cover.

This is an example of ‘weak duality’.

This suggests the question of whether equality holds. The answer
to the question is ‘no’ in general:

The maximum matching has size 1 but the minimum cover has
size 2.

Matchings and covers

If M is any matching and C is any cover, then |M| ≤ |C |.

Maximum matching / minimum cover:

Suppose that we had found a matching M and a cover C such that
|M| = |C |.
Then we would know that M was a maximal size matching and C
was a minimal size cover.

This is an example of ‘weak duality’.

This suggests the question of whether equality holds. The answer
to the question is ‘no’ in general:

The maximum matching has size 1 but the minimum cover has
size 2.

König’s Theorem

König’s Theorem. In any bipartite graph, the size of a maximum
matching equals the size of a minimum cover.

Proof

Let G be a bipartite graph with parts A and
B. Let M be a maximum matching in G .

It suffices to find a cover C with |C | = |M|.

Recall that we write A∗ and B∗ for the
uncovered vertices in A and B.

Consider the search algorithm for an
M-augmenting path in G . The algorithm
terminates with some set R that consists of
all vertices reachable by M-alternating paths
starting in A∗.

As M is maximum there is no M-augmenting
path, so R ∩ B∗ = ∅.

Let C = (A \ R) ∪ (B ∩ R).
We claim that C is a cover with |C | = |M|.

A B

Proof

Let G be a bipartite graph with parts A and
B. Let M be a maximum matching in G .

It suffices to find a cover C with |C | = |M|.

Recall that we write A∗ and B∗ for the
uncovered vertices in A and B.

Consider the search algorithm for an
M-augmenting path in G . The algorithm
terminates with some set R that consists of
all vertices reachable by M-alternating paths
starting in A∗.

As M is maximum there is no M-augmenting
path, so R ∩ B∗ = ∅.

Let C = (A \ R) ∪ (B ∩ R).
We claim that C is a cover with |C | = |M|.

A B

Proof

Let G be a bipartite graph with parts A and
B. Let M be a maximum matching in G .

It suffices to find a cover C with |C | = |M|.

Recall that we write A∗ and B∗ for the
uncovered vertices in A and B.

Consider the search algorithm for an
M-augmenting path in G . The algorithm
terminates with some set R that consists of
all vertices reachable by M-alternating paths
starting in A∗.

As M is maximum there is no M-augmenting
path, so R ∩ B∗ = ∅.

Let C = (A \ R) ∪ (B ∩ R).
We claim that C is a cover with |C | = |M|.

A

A

B

*

B*

Proof

Let G be a bipartite graph with parts A and
B. Let M be a maximum matching in G .

It suffices to find a cover C with |C | = |M|.

Recall that we write A∗ and B∗ for the
uncovered vertices in A and B.

Consider the search algorithm for an
M-augmenting path in G .

The algorithm
terminates with some set R that consists of
all vertices reachable by M-alternating paths
starting in A∗.

As M is maximum there is no M-augmenting
path, so R ∩ B∗ = ∅.

Let C = (A \ R) ∪ (B ∩ R).
We claim that C is a cover with |C | = |M|.

A B

A

*

*

B

Proof

Let G be a bipartite graph with parts A and
B. Let M be a maximum matching in G .

It suffices to find a cover C with |C | = |M|.

Recall that we write A∗ and B∗ for the
uncovered vertices in A and B.

Consider the search algorithm for an
M-augmenting path in G . The algorithm
terminates with some set R that consists of
all vertices reachable by M-alternating paths
starting in A∗.

As M is maximum there is no M-augmenting
path, so R ∩ B∗ = ∅.

Let C = (A \ R) ∪ (B ∩ R).
We claim that C is a cover with |C | = |M|.

A B

A

*

*

B

Proof

Let G be a bipartite graph with parts A and
B. Let M be a maximum matching in G .

It suffices to find a cover C with |C | = |M|.

Recall that we write A∗ and B∗ for the
uncovered vertices in A and B.

Consider the search algorithm for an
M-augmenting path in G . The algorithm
terminates with some set R that consists of
all vertices reachable by M-alternating paths
starting in A∗.

As M is maximum there is no M-augmenting
path, so R ∩ B∗ = ∅.

Let C = (A \ R) ∪ (B ∩ R).
We claim that C is a cover with |C | = |M|.

A B

A

*

*

B

Proof

Let G be a bipartite graph with parts A and
B. Let M be a maximum matching in G .

It suffices to find a cover C with |C | = |M|.

Recall that we write A∗ and B∗ for the
uncovered vertices in A and B.

Consider the search algorithm for an
M-augmenting path in G . The algorithm
terminates with some set R that consists of
all vertices reachable by M-alternating paths
starting in A∗.

As M is maximum there is no M-augmenting
path, so R ∩ B∗ = ∅.

Let C = (A \ R) ∪ (B ∩ R).

We claim that C is a cover with |C | = |M|.

A B

A

*

*

B

C

C C

Proof

Let G be a bipartite graph with parts A and
B. Let M be a maximum matching in G .

It suffices to find a cover C with |C | = |M|.

Recall that we write A∗ and B∗ for the
uncovered vertices in A and B.

Consider the search algorithm for an
M-augmenting path in G . The algorithm
terminates with some set R that consists of
all vertices reachable by M-alternating paths
starting in A∗.

As M is maximum there is no M-augmenting
path, so R ∩ B∗ = ∅.

Let C = (A \ R) ∪ (B ∩ R).
We claim that C is a cover with |C | = |M|.

A B

A

*

*

B

C

C C

Proof

C = (A \ R) ∪ (B ∩ R).

We start by showing that C is a cover.

Suppose not. Then there is ab ∈ E (G) with
a ∈ A ∩ R and b ∈ B \ R.

However, this contradicts the definition of R,
as b must be reachable from A∗: if ab ∈ M
we must reach a via b or if ab /∈ M we can
reach b via a.

Thus C is a cover.

A B

A

*

*

B

C

C C

Proof

C = (A \ R) ∪ (B ∩ R).

We start by showing that C is a cover.

Suppose not. Then there is ab ∈ E (G) with
a ∈ A ∩ R and b ∈ B \ R.

However, this contradicts the definition of R,
as b must be reachable from A∗: if ab ∈ M
we must reach a via b or if ab /∈ M we can
reach b via a.

Thus C is a cover.

A B

A

*

*

B

C

C C

Proof

C = (A \ R) ∪ (B ∩ R).

We start by showing that C is a cover.

Suppose not. Then there is ab ∈ E (G) with
a ∈ A ∩ R and b ∈ B \ R.

However, this contradicts the definition of R,
as b must be reachable from A∗: if ab ∈ M
we must reach a via b or if ab /∈ M we can
reach b via a.

Thus C is a cover.

A B

A

*

*

B

C

C C

Proof

C = (A \ R) ∪ (B ∩ R).

We start by showing that C is a cover.

Suppose not. Then there is ab ∈ E (G) with
a ∈ A ∩ R and b ∈ B \ R.

However, this contradicts the definition of R,
as b must be reachable from A∗: if ab ∈ M
we must reach a via b or if ab /∈ M we can
reach b via a.

Thus C is a cover.

A B

A

*

*

B

C

C C

Proof

C = (A \ R) ∪ (B ∩ R).

We start by showing that C is a cover.

Suppose not. Then there is ab ∈ E (G) with
a ∈ A ∩ R and b ∈ B \ R.

However, this contradicts the definition of R,
as b must be reachable from A∗: if ab ∈ M
we must reach a via b or if ab /∈ M we can
reach b via a.

Thus C is a cover.

A B

A

*

*

B

C

C C

Proof

C = (A \ R) ∪ (B ∩ R).

It remains to show |C | = |M|.

It suffices to show that every vertex in C is
covered by some edge of M, and that no
edge of M covers two vertices of C .

(This will show |C | ≤ |M|, and we noted
previously that |M| ≤ |C | is immediate from
the definitions.)

Firstly, any a ∈ A \ R is covered by M as
A∗ ⊆ R.

Secondly, any b ∈ B ∩ R is covered by M, or
b ∈ B∗ ∩ R = ∅ gives a contradiction.

Finally, if ab ∈ M with a ∈ A \ R, b ∈ B ∩ R
then we can reach a via b, contradicting
a /∈ R. Thus |C | = |M|. �

A B

A

*

*

B

C

C C

Proof

C = (A \ R) ∪ (B ∩ R).

It remains to show |C | = |M|.

It suffices to show that every vertex in C is
covered by some edge of M, and that no
edge of M covers two vertices of C .

(This will show |C | ≤ |M|, and we noted
previously that |M| ≤ |C | is immediate from
the definitions.)

Firstly, any a ∈ A \ R is covered by M as
A∗ ⊆ R.

Secondly, any b ∈ B ∩ R is covered by M, or
b ∈ B∗ ∩ R = ∅ gives a contradiction.

Finally, if ab ∈ M with a ∈ A \ R, b ∈ B ∩ R
then we can reach a via b, contradicting
a /∈ R. Thus |C | = |M|. �

A B

A

*

*

B

C

C C

Proof

C = (A \ R) ∪ (B ∩ R).

It remains to show |C | = |M|.

It suffices to show that every vertex in C is
covered by some edge of M, and that no
edge of M covers two vertices of C .

(This will show |C | ≤ |M|, and we noted
previously that |M| ≤ |C | is immediate from
the definitions.)

Firstly, any a ∈ A \ R is covered by M as
A∗ ⊆ R.

Secondly, any b ∈ B ∩ R is covered by M, or
b ∈ B∗ ∩ R = ∅ gives a contradiction.

Finally, if ab ∈ M with a ∈ A \ R, b ∈ B ∩ R
then we can reach a via b, contradicting
a /∈ R. Thus |C | = |M|. �

A B

A

*

*

B

C

C C

Proof

C = (A \ R) ∪ (B ∩ R).

It remains to show |C | = |M|.

It suffices to show that every vertex in C is
covered by some edge of M, and that no
edge of M covers two vertices of C .

(This will show |C | ≤ |M|, and we noted
previously that |M| ≤ |C | is immediate from
the definitions.)

Firstly, any a ∈ A \ R is covered by M as
A∗ ⊆ R.

Secondly, any b ∈ B ∩ R is covered by M, or
b ∈ B∗ ∩ R = ∅ gives a contradiction.

Finally, if ab ∈ M with a ∈ A \ R, b ∈ B ∩ R
then we can reach a via b, contradicting
a /∈ R. Thus |C | = |M|. �

A B

A

*

*

B

C

C C

Proof

C = (A \ R) ∪ (B ∩ R).

It remains to show |C | = |M|.

It suffices to show that every vertex in C is
covered by some edge of M, and that no
edge of M covers two vertices of C .

(This will show |C | ≤ |M|, and we noted
previously that |M| ≤ |C | is immediate from
the definitions.)

Firstly, any a ∈ A \ R is covered by M as
A∗ ⊆ R.

Secondly, any b ∈ B ∩ R is covered by M, or
b ∈ B∗ ∩ R = ∅ gives a contradiction.

Finally, if ab ∈ M with a ∈ A \ R, b ∈ B ∩ R
then we can reach a via b, contradicting
a /∈ R. Thus |C | = |M|. �

A B

A

*

*

B

C

C C

Proof

C = (A \ R) ∪ (B ∩ R).

It remains to show |C | = |M|.

It suffices to show that every vertex in C is
covered by some edge of M, and that no
edge of M covers two vertices of C .

(This will show |C | ≤ |M|, and we noted
previously that |M| ≤ |C | is immediate from
the definitions.)

Firstly, any a ∈ A \ R is covered by M as
A∗ ⊆ R.

Secondly, any b ∈ B ∩ R is covered by M, or
b ∈ B∗ ∩ R = ∅ gives a contradiction.

Finally, if ab ∈ M with a ∈ A \ R, b ∈ B ∩ R
then we can reach a via b, contradicting
a /∈ R. Thus |C | = |M|. �

A B

A

*

*

B

C

C C

Proof

C = (A \ R) ∪ (B ∩ R).

It remains to show |C | = |M|.

It suffices to show that every vertex in C is
covered by some edge of M, and that no
edge of M covers two vertices of C .

(This will show |C | ≤ |M|, and we noted
previously that |M| ≤ |C | is immediate from
the definitions.)

Firstly, any a ∈ A \ R is covered by M as
A∗ ⊆ R.

Secondly, any b ∈ B ∩ R is covered by M, or
b ∈ B∗ ∩ R = ∅ gives a contradiction.

Finally, if ab ∈ M with a ∈ A \ R, b ∈ B ∩ R
then we can reach a via b, contradicting
a /∈ R. Thus |C | = |M|. �

A B

A

*

*

B

C

C C

The marriage problem
Let G be a bipartite graph with parts A and
B.

We consider the more general question of
whether there is a matching that covers
every vertex in A; if |B| = |A| then this will
be perfect.

For S ⊆ A the neighbourhood of S is

N(S) =
⋃
a∈S
{b : ab ∈ E (G)}.

Note that if G has a matching M covering
A then each a ∈ S has a ‘match’ a′ with
aa′ ∈ M, and the matches are distinct, so
|N(S)| ≥ |S |.

This gives a necessary condition for G to
have a matching; it is also sufficient . . .

A B

The marriage problem
Let G be a bipartite graph with parts A and
B.

We consider the more general question of
whether there is a matching that covers
every vertex in A; if |B| = |A| then this will
be perfect.

For S ⊆ A the neighbourhood of S is

N(S) =
⋃
a∈S
{b : ab ∈ E (G)}.

Note that if G has a matching M covering
A then each a ∈ S has a ‘match’ a′ with
aa′ ∈ M, and the matches are distinct, so
|N(S)| ≥ |S |.

This gives a necessary condition for G to
have a matching; it is also sufficient . . .

A B

The marriage problem
Let G be a bipartite graph with parts A and
B.

We consider the more general question of
whether there is a matching that covers
every vertex in A; if |B| = |A| then this will
be perfect.

For S ⊆ A the neighbourhood of S is

N(S) =
⋃
a∈S
{b : ab ∈ E (G)}.

Note that if G has a matching M covering
A then each a ∈ S has a ‘match’ a′ with
aa′ ∈ M, and the matches are distinct, so
|N(S)| ≥ |S |.

This gives a necessary condition for G to
have a matching; it is also sufficient . . .

A B

S

N(S)

The marriage problem
Let G be a bipartite graph with parts A and
B.

We consider the more general question of
whether there is a matching that covers
every vertex in A; if |B| = |A| then this will
be perfect.

For S ⊆ A the neighbourhood of S is

N(S) =
⋃
a∈S
{b : ab ∈ E (G)}.

Note that if G has a matching M covering
A then each a ∈ S has a ‘match’ a′ with
aa′ ∈ M, and the matches are distinct, so
|N(S)| ≥ |S |.

This gives a necessary condition for G to
have a matching; it is also sufficient . . .

A B

S

N(S)

The marriage problem
Let G be a bipartite graph with parts A and
B.

We consider the more general question of
whether there is a matching that covers
every vertex in A; if |B| = |A| then this will
be perfect.

For S ⊆ A the neighbourhood of S is

N(S) =
⋃
a∈S
{b : ab ∈ E (G)}.

Note that if G has a matching M covering
A then each a ∈ S has a ‘match’ a′ with
aa′ ∈ M, and the matches are distinct, so
|N(S)| ≥ |S |.

This gives a necessary condition for G to
have a matching; it is also sufficient . . .

A B

S

N(S)

The marriage problem

Hall’s Theorem. Let G be a bipartite graph
with parts A and B. Then G has a matching
covering A if and only if every S ⊆ A has
|N(S)| ≥ |S |.

Proof. We have already remarked that the
condition is necessary.

Conversely, suppose that every S ⊆ A has
|N(S)| ≥ |S |.

Let C be any cover of G . By König’s
Theorem, it suffices to show |C | ≥ |A|.

To see this, let S = A \ C . Note that by
definition of ‘cover’ we have N(S) ⊆ B ∩ C .

Then |C | = |A ∩ C |+ |B ∩ C | ≥
|A| − |S |+ |N(S)| ≥ |A|.

A B

The marriage problem

Hall’s Theorem. Let G be a bipartite graph
with parts A and B. Then G has a matching
covering A if and only if every S ⊆ A has
|N(S)| ≥ |S |.

Proof.

We have already remarked that the
condition is necessary.

Conversely, suppose that every S ⊆ A has
|N(S)| ≥ |S |.

Let C be any cover of G . By König’s
Theorem, it suffices to show |C | ≥ |A|.

To see this, let S = A \ C . Note that by
definition of ‘cover’ we have N(S) ⊆ B ∩ C .

Then |C | = |A ∩ C |+ |B ∩ C | ≥
|A| − |S |+ |N(S)| ≥ |A|.

A B

The marriage problem

Hall’s Theorem. Let G be a bipartite graph
with parts A and B. Then G has a matching
covering A if and only if every S ⊆ A has
|N(S)| ≥ |S |.

Proof. We have already remarked that the
condition is necessary.

Conversely, suppose that every S ⊆ A has
|N(S)| ≥ |S |.

Let C be any cover of G . By König’s
Theorem, it suffices to show |C | ≥ |A|.

To see this, let S = A \ C . Note that by
definition of ‘cover’ we have N(S) ⊆ B ∩ C .

Then |C | = |A ∩ C |+ |B ∩ C | ≥
|A| − |S |+ |N(S)| ≥ |A|.

A B

The marriage problem

Hall’s Theorem. Let G be a bipartite graph
with parts A and B. Then G has a matching
covering A if and only if every S ⊆ A has
|N(S)| ≥ |S |.

Proof. We have already remarked that the
condition is necessary.

Conversely, suppose that every S ⊆ A has
|N(S)| ≥ |S |.

Let C be any cover of G . By König’s
Theorem, it suffices to show |C | ≥ |A|.

To see this, let S = A \ C . Note that by
definition of ‘cover’ we have N(S) ⊆ B ∩ C .

Then |C | = |A ∩ C |+ |B ∩ C | ≥
|A| − |S |+ |N(S)| ≥ |A|.

A B

The marriage problem

Hall’s Theorem. Let G be a bipartite graph
with parts A and B. Then G has a matching
covering A if and only if every S ⊆ A has
|N(S)| ≥ |S |.

Proof. We have already remarked that the
condition is necessary.

Conversely, suppose that every S ⊆ A has
|N(S)| ≥ |S |.

Let C be any cover of G . By König’s
Theorem, it suffices to show |C | ≥ |A|.

To see this, let S = A \ C . Note that by
definition of ‘cover’ we have N(S) ⊆ B ∩ C .

Then |C | = |A ∩ C |+ |B ∩ C | ≥
|A| − |S |+ |N(S)| ≥ |A|.

A B

The marriage problem

Hall’s Theorem. Let G be a bipartite graph
with parts A and B. Then G has a matching
covering A if and only if every S ⊆ A has
|N(S)| ≥ |S |.

Proof. We have already remarked that the
condition is necessary.

Conversely, suppose that every S ⊆ A has
|N(S)| ≥ |S |.

Let C be any cover of G . By König’s
Theorem, it suffices to show |C | ≥ |A|.

To see this, let S = A \ C .

Note that by
definition of ‘cover’ we have N(S) ⊆ B ∩ C .

Then |C | = |A ∩ C |+ |B ∩ C | ≥
|A| − |S |+ |N(S)| ≥ |A|.

A B

S

The marriage problem

Hall’s Theorem. Let G be a bipartite graph
with parts A and B. Then G has a matching
covering A if and only if every S ⊆ A has
|N(S)| ≥ |S |.

Proof. We have already remarked that the
condition is necessary.

Conversely, suppose that every S ⊆ A has
|N(S)| ≥ |S |.

Let C be any cover of G . By König’s
Theorem, it suffices to show |C | ≥ |A|.

To see this, let S = A \ C . Note that by
definition of ‘cover’ we have N(S) ⊆ B ∩ C .

Then |C | = |A ∩ C |+ |B ∩ C | ≥
|A| − |S |+ |N(S)| ≥ |A|.

A B

S

The marriage problem

Hall’s Theorem. Let G be a bipartite graph
with parts A and B. Then G has a matching
covering A if and only if every S ⊆ A has
|N(S)| ≥ |S |.

Proof. We have already remarked that the
condition is necessary.

Conversely, suppose that every S ⊆ A has
|N(S)| ≥ |S |.

Let C be any cover of G . By König’s
Theorem, it suffices to show |C | ≥ |A|.

To see this, let S = A \ C . Note that by
definition of ‘cover’ we have N(S) ⊆ B ∩ C .

Then |C | = |A ∩ C |+ |B ∩ C | ≥
|A| − |S |+ |N(S)| ≥ |A|.

A B

S

The Chinese Postman Problem

The Chinese Postman Problem

A postman collects a sack of letters from the sorting office, walks
along every street to deliver them, and returns to the office. How
can (s)he find the shortest route?

Let G be a connected graph. Let W be a closed walk in G .
We call W a postman walk in G if it uses every edge of G at least
once.

For each e ∈ E (G) let c(e) > 0 be the length of e. The length of
W is c(W) =

∑
e∈W c(e).

We want to find a shortest postman walk.

The Chinese Postman Problem

A postman collects a sack of letters from the sorting office, walks
along every street to deliver them, and returns to the office. How
can (s)he find the shortest route?

Let G be a connected graph. Let W be a closed walk in G .

We call W a postman walk in G if it uses every edge of G at least
once.

For each e ∈ E (G) let c(e) > 0 be the length of e. The length of
W is c(W) =

∑
e∈W c(e).

We want to find a shortest postman walk.

The Chinese Postman Problem

A postman collects a sack of letters from the sorting office, walks
along every street to deliver them, and returns to the office. How
can (s)he find the shortest route?

Let G be a connected graph. Let W be a closed walk in G .
We call W a postman walk in G if it uses every edge of G at least
once.

For each e ∈ E (G) let c(e) > 0 be the length of e. The length of
W is c(W) =

∑
e∈W c(e).

We want to find a shortest postman walk.

The Chinese Postman Problem

A postman collects a sack of letters from the sorting office, walks
along every street to deliver them, and returns to the office. How
can (s)he find the shortest route?

Let G be a connected graph. Let W be a closed walk in G .
We call W a postman walk in G if it uses every edge of G at least
once.

For each e ∈ E (G) let c(e) > 0 be the length of e. The length of
W is c(W) =

∑
e∈W c(e).

We want to find a shortest postman walk.

The Chinese Postman Problem

A postman collects a sack of letters from the sorting office, walks
along every street to deliver them, and returns to the office. How
can (s)he find the shortest route?

Let G be a connected graph. Let W be a closed walk in G .
We call W a postman walk in G if it uses every edge of G at least
once.

For each e ∈ E (G) let c(e) > 0 be the length of e. The length of
W is c(W) =

∑
e∈W c(e).

We want to find a shortest postman walk.

Extensions

We can interpret a postman walk W as an
Euler Tour in an extension of G , in which we
introduce parallel edges, so that the number
of parallel edges joining vertices x and y is
the number of times that xy is used in W .

Thus an equivalent reformulation of the
Chinese Postman Problem is to find a
minimum weight Eulerian extension G ∗ of G ,
i.e. G ∗ is obtained from G by copying some
edges, so that all degrees in G ∗ are even, and
c(G ∗) is as small as possible.

1

3

1 1

1

2

Extensions

We can interpret a postman walk W as an
Euler Tour in an extension of G , in which we
introduce parallel edges, so that the number
of parallel edges joining vertices x and y is
the number of times that xy is used in W .

Thus an equivalent reformulation of the
Chinese Postman Problem is to find a
minimum weight Eulerian extension G ∗ of G ,
i.e. G ∗ is obtained from G by copying some
edges, so that all degrees in G ∗ are even, and
c(G ∗) is as small as possible.

1

3

1 1

1

2

Extensions

We can interpret a postman walk W as an
Euler Tour in an extension of G , in which we
introduce parallel edges, so that the number
of parallel edges joining vertices x and y is
the number of times that xy is used in W .

Thus an equivalent reformulation of the
Chinese Postman Problem is to find a
minimum weight Eulerian extension G ∗ of G ,
i.e. G ∗ is obtained from G by copying some
edges, so that all degrees in G ∗ are even, and
c(G ∗) is as small as possible.

1

3

1 1

1

2

Extensions

We can interpret a postman walk W as an
Euler Tour in an extension of G , in which we
introduce parallel edges, so that the number
of parallel edges joining vertices x and y is
the number of times that xy is used in W .

Thus an equivalent reformulation of the
Chinese Postman Problem is to find a
minimum weight Eulerian extension G ∗ of G ,
i.e. G ∗ is obtained from G by copying some
edges, so that all degrees in G ∗ are even, and
c(G ∗) is as small as possible.

1

3

1 1

1

2

Edmonds’ algorithm

We will describe an algorithm due to Edmonds.

We assume that we have access to an algorithm for finding a
minimum weight perfect matching in a weighted graph.

(An algorithm for this problem was also found by Edmonds, but it
is beyond the scope of this course).

Edmonds’ algorithm

We will describe an algorithm due to Edmonds.

We assume that we have access to an algorithm for finding a
minimum weight perfect matching in a weighted graph.

(An algorithm for this problem was also found by Edmonds, but it
is beyond the scope of this course).

Edmonds’ algorithm

We will describe an algorithm due to Edmonds.

We assume that we have access to an algorithm for finding a
minimum weight perfect matching in a weighted graph.

(An algorithm for this problem was also found by Edmonds, but it
is beyond the scope of this course).

Edmonds’ algorithm

1. Let X be the set of vertices with odd
degree in G .
For each x ∈ X find a c-shortest paths
tree Tx rooted at x .
Define a weight function w on pairs in
X : let w(xy) = c(Pxy), where Pxy is
the unique xy -path in Tx .

2. Find a perfect matching M on X with
minimum w -weight.
Let G ∗ be the Eulerian extension of G
obtained by copying all edges of Pxy for
all xy ∈ M.

3. Find an Euler Tour W in G ∗. Interpret
W as a postman walk in G .

1

5 1

11

5

1

5

7

5

1 1

1

7

Edmonds’ algorithm

1. Let X be the set of vertices with odd
degree in G .

For each x ∈ X find a c-shortest paths
tree Tx rooted at x .
Define a weight function w on pairs in
X : let w(xy) = c(Pxy), where Pxy is
the unique xy -path in Tx .

2. Find a perfect matching M on X with
minimum w -weight.
Let G ∗ be the Eulerian extension of G
obtained by copying all edges of Pxy for
all xy ∈ M.

3. Find an Euler Tour W in G ∗. Interpret
W as a postman walk in G .

1

5 1

11

5

1

5

7

5

1 1

1

7

Edmonds’ algorithm

1. Let X be the set of vertices with odd
degree in G .
For each x ∈ X find a c-shortest paths
tree Tx rooted at x .

Define a weight function w on pairs in
X : let w(xy) = c(Pxy), where Pxy is
the unique xy -path in Tx .

2. Find a perfect matching M on X with
minimum w -weight.
Let G ∗ be the Eulerian extension of G
obtained by copying all edges of Pxy for
all xy ∈ M.

3. Find an Euler Tour W in G ∗. Interpret
W as a postman walk in G .

1

5 1

11

5

1

5

7

5

1 1

1

7

Edmonds’ algorithm

1. Let X be the set of vertices with odd
degree in G .
For each x ∈ X find a c-shortest paths
tree Tx rooted at x .

Define a weight function w on pairs in
X : let w(xy) = c(Pxy), where Pxy is
the unique xy -path in Tx .

2. Find a perfect matching M on X with
minimum w -weight.
Let G ∗ be the Eulerian extension of G
obtained by copying all edges of Pxy for
all xy ∈ M.

3. Find an Euler Tour W in G ∗. Interpret
W as a postman walk in G .

1

5 1

11

5

1

5

7

5

1 1

1

7

Edmonds’ algorithm

1. Let X be the set of vertices with odd
degree in G .
For each x ∈ X find a c-shortest paths
tree Tx rooted at x .
Define a weight function w on pairs in
X : let w(xy) = c(Pxy), where Pxy is
the unique xy -path in Tx .

2. Find a perfect matching M on X with
minimum w -weight.
Let G ∗ be the Eulerian extension of G
obtained by copying all edges of Pxy for
all xy ∈ M.

3. Find an Euler Tour W in G ∗. Interpret
W as a postman walk in G .

1

5 1

11

5

1

5

7

5

1 1

1

7
1

5

4 4 3 3

Edmonds’ algorithm

1. Let X be the set of vertices with odd
degree in G .
For each x ∈ X find a c-shortest paths
tree Tx rooted at x .
Define a weight function w on pairs in
X : let w(xy) = c(Pxy), where Pxy is
the unique xy -path in Tx .

2. Find a perfect matching M on X with
minimum w -weight.

Let G ∗ be the Eulerian extension of G
obtained by copying all edges of Pxy for
all xy ∈ M.

3. Find an Euler Tour W in G ∗. Interpret
W as a postman walk in G .

1

5 1

11

5

1

5

7

5

1 1

1

7
1

5

4 4 3 3

Edmonds’ algorithm

1. Let X be the set of vertices with odd
degree in G .
For each x ∈ X find a c-shortest paths
tree Tx rooted at x .
Define a weight function w on pairs in
X : let w(xy) = c(Pxy), where Pxy is
the unique xy -path in Tx .

2. Find a perfect matching M on X with
minimum w -weight.
Let G ∗ be the Eulerian extension of G
obtained by copying all edges of Pxy for
all xy ∈ M.

3. Find an Euler Tour W in G ∗. Interpret
W as a postman walk in G .

1

5 1

11

5

1

5

7

5

1 1

1

7
1

5

4 4 3 3

Edmonds’ algorithm

1. Let X be the set of vertices with odd
degree in G .
For each x ∈ X find a c-shortest paths
tree Tx rooted at x .
Define a weight function w on pairs in
X : let w(xy) = c(Pxy), where Pxy is
the unique xy -path in Tx .

2. Find a perfect matching M on X with
minimum w -weight.
Let G ∗ be the Eulerian extension of G
obtained by copying all edges of Pxy for
all xy ∈ M.

3. Find an Euler Tour W in G ∗. Interpret
W as a postman walk in G .

1

5 1

11

5

1

5

7

5

1 1

1

7
1

5

4 4 3 3

Edmonds’ algorithm

1. Let X be the set of vertices with odd
degree in G .
For each x ∈ X find a c-shortest paths
tree Tx rooted at x .
Define a weight function w on pairs in
X : let w(xy) = c(Pxy), where Pxy is
the unique xy -path in Tx .

2. Find a perfect matching M on X with
minimum w -weight.
Let G ∗ be the Eulerian extension of G
obtained by copying all edges of Pxy for
all xy ∈ M.

3. Find an Euler Tour W in G ∗. Interpret
W as a postman walk in G .

1

5 1

11

5

1

5

7

5

1 1

1

7
1

5

4 4 3 3

Edmonds’ algorithm

Note that the perfect matching step makes sense as |X | is even, by
Lemma 10.

Lemma 19. Let H be a graph in which not all degrees are even.
Then there is a path in H such that both ends have odd degree.

Proof.
Pick a component of H containing a vertex of odd degree.
By Lemma 10, there is another vertex of odd degree in H.
Pick a path joining these two vertices. �

Edmonds’ algorithm

Note that the perfect matching step makes sense as |X | is even, by
Lemma 10.

Lemma 19. Let H be a graph in which not all degrees are even.
Then there is a path in H such that both ends have odd degree.

Proof.
Pick a component of H containing a vertex of odd degree.
By Lemma 10, there is another vertex of odd degree in H.
Pick a path joining these two vertices. �

Edmonds’ algorithm

Note that the perfect matching step makes sense as |X | is even, by
Lemma 10.

Lemma 19. Let H be a graph in which not all degrees are even.
Then there is a path in H such that both ends have odd degree.

Proof.

Pick a component of H containing a vertex of odd degree.
By Lemma 10, there is another vertex of odd degree in H.
Pick a path joining these two vertices. �

Edmonds’ algorithm

Note that the perfect matching step makes sense as |X | is even, by
Lemma 10.

Lemma 19. Let H be a graph in which not all degrees are even.
Then there is a path in H such that both ends have odd degree.

Proof.
Pick a component of H containing a vertex of odd degree.

By Lemma 10, there is another vertex of odd degree in H.
Pick a path joining these two vertices. �

Edmonds’ algorithm

Note that the perfect matching step makes sense as |X | is even, by
Lemma 10.

Lemma 19. Let H be a graph in which not all degrees are even.
Then there is a path in H such that both ends have odd degree.

Proof.
Pick a component of H containing a vertex of odd degree.
By Lemma 10, there is another vertex of odd degree in H.

Pick a path joining these two vertices. �

Edmonds’ algorithm

Note that the perfect matching step makes sense as |X | is even, by
Lemma 10.

Lemma 19. Let H be a graph in which not all degrees are even.
Then there is a path in H such that both ends have odd degree.

Proof.
Pick a component of H containing a vertex of odd degree.
By Lemma 10, there is another vertex of odd degree in H.
Pick a path joining these two vertices. �

Edmonds’ algorithm works

Theorem 20. Edmonds’ Algorithm finds a
minimum length postman walk.

Proof.
Let W ∗ be a minimum length postman walk.
It suffices to show that the algorithm finds a
postman walk that is no longer than W ∗.

Let G ∗ be the Eulerian extension of G
defined by W ∗. Let H be the graph of
copied edges: E (H) = E (G ∗) \ E (G). Note
that the set of vertices with odd degree in H
is X (i.e. the same set as for G).
We construct a set of paths in H by repeating the following
procedure: if the current graph has any vertices of odd degree,
apply Lemma 19 to find a path P such that both ends have odd
degree, delete the edges of P and repeat.
This procedure pairs up the vertices in X so that each pair is
connected by a path in H.

Edmonds’ algorithm works

Theorem 20. Edmonds’ Algorithm finds a
minimum length postman walk.

Proof.

Let W ∗ be a minimum length postman walk.
It suffices to show that the algorithm finds a
postman walk that is no longer than W ∗.

Let G ∗ be the Eulerian extension of G
defined by W ∗. Let H be the graph of
copied edges: E (H) = E (G ∗) \ E (G). Note
that the set of vertices with odd degree in H
is X (i.e. the same set as for G).

1

5 1

11

5

5

5

7

5

1 1

1

7

We construct a set of paths in H by repeating the following
procedure: if the current graph has any vertices of odd degree,
apply Lemma 19 to find a path P such that both ends have odd
degree, delete the edges of P and repeat.
This procedure pairs up the vertices in X so that each pair is
connected by a path in H.

Edmonds’ algorithm works

Theorem 20. Edmonds’ Algorithm finds a
minimum length postman walk.

Proof.
Let W ∗ be a minimum length postman walk.
It suffices to show that the algorithm finds a
postman walk that is no longer than W ∗.

Let G ∗ be the Eulerian extension of G
defined by W ∗. Let H be the graph of
copied edges: E (H) = E (G ∗) \ E (G). Note
that the set of vertices with odd degree in H
is X (i.e. the same set as for G).

1

5 1

11

5

5

5

7

5

1 1

1

7

We construct a set of paths in H by repeating the following
procedure: if the current graph has any vertices of odd degree,
apply Lemma 19 to find a path P such that both ends have odd
degree, delete the edges of P and repeat.
This procedure pairs up the vertices in X so that each pair is
connected by a path in H.

Edmonds’ algorithm works

Theorem 20. Edmonds’ Algorithm finds a
minimum length postman walk.

Proof.
Let W ∗ be a minimum length postman walk.
It suffices to show that the algorithm finds a
postman walk that is no longer than W ∗.

Let G ∗ be the Eulerian extension of G
defined by W ∗.

Let H be the graph of
copied edges: E (H) = E (G ∗) \ E (G). Note
that the set of vertices with odd degree in H
is X (i.e. the same set as for G).

1

5 1

11

5

5

5

7

5

1 1

1

7

We construct a set of paths in H by repeating the following
procedure: if the current graph has any vertices of odd degree,
apply Lemma 19 to find a path P such that both ends have odd
degree, delete the edges of P and repeat.
This procedure pairs up the vertices in X so that each pair is
connected by a path in H.

Edmonds’ algorithm works

Theorem 20. Edmonds’ Algorithm finds a
minimum length postman walk.

Proof.
Let W ∗ be a minimum length postman walk.
It suffices to show that the algorithm finds a
postman walk that is no longer than W ∗.

Let G ∗ be the Eulerian extension of G
defined by W ∗. Let H be the graph of
copied edges: E (H) = E (G ∗) \ E (G).

Note
that the set of vertices with odd degree in H
is X (i.e. the same set as for G).

1

5 1

11

5

5

5

7

5

1 1

1

7

We construct a set of paths in H by repeating the following
procedure: if the current graph has any vertices of odd degree,
apply Lemma 19 to find a path P such that both ends have odd
degree, delete the edges of P and repeat.
This procedure pairs up the vertices in X so that each pair is
connected by a path in H.

Edmonds’ algorithm works

Theorem 20. Edmonds’ Algorithm finds a
minimum length postman walk.

Proof.
Let W ∗ be a minimum length postman walk.
It suffices to show that the algorithm finds a
postman walk that is no longer than W ∗.

Let G ∗ be the Eulerian extension of G
defined by W ∗. Let H be the graph of
copied edges: E (H) = E (G ∗) \ E (G). Note
that the set of vertices with odd degree in H
is X (i.e. the same set as for G).

1

5 1

11

5

5

5

7

5

1 1

1

7

We construct a set of paths in H by repeating the following
procedure: if the current graph has any vertices of odd degree,
apply Lemma 19 to find a path P such that both ends have odd
degree, delete the edges of P and repeat.
This procedure pairs up the vertices in X so that each pair is
connected by a path in H.

Edmonds’ algorithm works

Theorem 20. Edmonds’ Algorithm finds a
minimum length postman walk.

Proof.
Let W ∗ be a minimum length postman walk.
It suffices to show that the algorithm finds a
postman walk that is no longer than W ∗.

Let G ∗ be the Eulerian extension of G
defined by W ∗. Let H be the graph of
copied edges: E (H) = E (G ∗) \ E (G). Note
that the set of vertices with odd degree in H
is X (i.e. the same set as for G).

1

5 1

11

5

5

5

7

5

1 1

1

7

We construct a set of paths in H by repeating the following
procedure: if the current graph has any vertices of odd degree,
apply Lemma 19 to find a path P such that both ends have odd
degree, delete the edges of P and repeat.

This procedure pairs up the vertices in X so that each pair is
connected by a path in H.

Edmonds’ algorithm works

Theorem 20. Edmonds’ Algorithm finds a
minimum length postman walk.

Proof.
Let W ∗ be a minimum length postman walk.
It suffices to show that the algorithm finds a
postman walk that is no longer than W ∗.

Let G ∗ be the Eulerian extension of G
defined by W ∗. Let H be the graph of
copied edges: E (H) = E (G ∗) \ E (G). Note
that the set of vertices with odd degree in H
is X (i.e. the same set as for G).

1

5 1

11

5

5

5

7

5

1 1

1

7

We construct a set of paths in H by repeating the following
procedure: if the current graph has any vertices of odd degree,
apply Lemma 19 to find a path P such that both ends have odd
degree, delete the edges of P and repeat.
This procedure pairs up the vertices in X so that each pair is
connected by a path in H.

Edmonds’ algorithm works

Theorem 20. Edmonds’ Algorithm finds a minimum length
postman walk.

Let H ′ ⊆ H be the graph formed by the
union of these paths.

Let G ′ be the Eulerian extension of G
defined by copying the edges of H ′.

Let W ′ be an Euler tour in G ′, interpreted as
a postman walk in G . Then c(W ′) ≤ c(W ∗).
By definition of the algorithm it finds a
postman walk that is no longer than W ′. �

1

5 1

11

5

5

5

7

5

1 1

1

7

Edmonds’ algorithm works

Theorem 20. Edmonds’ Algorithm finds a minimum length
postman walk.

Let H ′ ⊆ H be the graph formed by the
union of these paths.

Let G ′ be the Eulerian extension of G
defined by copying the edges of H ′.

Let W ′ be an Euler tour in G ′, interpreted as
a postman walk in G . Then c(W ′) ≤ c(W ∗).
By definition of the algorithm it finds a
postman walk that is no longer than W ′. �

1

5 1

11

5

5

5

7

5

1 1

1

7

Edmonds’ algorithm works

Theorem 20. Edmonds’ Algorithm finds a minimum length
postman walk.

Let H ′ ⊆ H be the graph formed by the
union of these paths.

Let G ′ be the Eulerian extension of G
defined by copying the edges of H ′.

Let W ′ be an Euler tour in G ′, interpreted as
a postman walk in G . Then c(W ′) ≤ c(W ∗).
By definition of the algorithm it finds a
postman walk that is no longer than W ′. �

1

5 1

11

5

5

5

7

5

1 1

1

7

Edmonds’ algorithm works

Theorem 20. Edmonds’ Algorithm finds a minimum length
postman walk.

Let H ′ ⊆ H be the graph formed by the
union of these paths.

Let G ′ be the Eulerian extension of G
defined by copying the edges of H ′.

Let W ′ be an Euler tour in G ′, interpreted as
a postman walk in G . Then c(W ′) ≤ c(W ∗).

By definition of the algorithm it finds a
postman walk that is no longer than W ′. �

1

5 1

11

5

5

5

7

5

1 1

1

7

Edmonds’ algorithm works

Theorem 20. Edmonds’ Algorithm finds a minimum length
postman walk.

Let H ′ ⊆ H be the graph formed by the
union of these paths.

Let G ′ be the Eulerian extension of G
defined by copying the edges of H ′.

Let W ′ be an Euler tour in G ′, interpreted as
a postman walk in G . Then c(W ′) ≤ c(W ∗).
By definition of the algorithm it finds a
postman walk that is no longer than W ′. �

1

5 1

11

5

5

5

7

5

1 1

1

7

