ANALYSIS I: Problem sheet 4

Subsequences, Algebra of Limits, Monotonic Sequences

1. (a) Let the sequence (a_n) be defined by

$$a_n = \left(\frac{n^2 - 1}{n^2 + 1}\right) \cos(2\pi n/3).$$

By considering suitable subsequences prove that (a_n) diverges.

- (b) Consider the sequence $(\cos n)$. Show that, for a suitable positive constant K, there exist subsequences (b_r) and (c_s) of $(\cos n)$ with $b_r > K$ for all r and $c_s < -K$ for all s. Deduce that $(\cos n)$ diverges.
- 2. (a) Let (a_n) be a sequence such that the subsequences (a_{2n}) and (a_{2n+1}) both converge to a real number L. Show that (a_n) also converges to L.
 - (b) Let (b_n) be a sequence such that each of the subsequences (b_{2n}) , (b_{2n+1}) , (b_{3n}) converges. Need (b_n) converge? Either provide a proof or a counterexample.
 - (c) Let (c_n) be a sequence such that the subsequence (c_{kn}) converges for each $k = 2, 3, 4, \ldots$. Need (c_n) converge? Provide either a proof or a counterexample.
- 3. For which of the following choices of a_n does the sequence (a_n) converge? Justify your answers, and find the value of the limit when it exists.

(i)
$$\frac{n^2}{n!}$$
; (ii) $\frac{2^n n^2 + 3^n}{3^n (n+1) + n^7}$; (iii) $\frac{(n!)^2}{(2n)!}$; (iv) $\frac{n^4 + n^3 \sin n + 1}{5n^4 - n \log n}$.

[You may freely make use of standard limits and inequalities, sandwiching and AOL methodology, as appropriate.]

- 4. (a) Let (a_n) be a real sequence. Prove from the limit definition that $a_n \ge 0$ and $a_n \to L$ implies $L \ge 0$ and prove further that $\sqrt{a_n} \to \sqrt{L}$.
 - (b) Let (a_n) , (b_n) and (c_n) be sequences of real numbers converging to L_1 , L_2 , L_3 , respectively. Let $d_n = \max\{a_n, b_n, c_n\}$. Assuming any standard AOL results that you require, prove that $d_n \to \max\{L_1, L_2, L_3\}$.
- 5. Let r > 0. Let $a_n = r^n/n!$.
 - (a) By considering a_{n+1}/a_n show that the tail $(a_n)_{n\geqslant N}$ is monotonic decreasing if N is sufficiently large. [You should specify a suitable value of N.]
 - (b) Show that (a_n) converges to a limit L and find the value of L.
- 6. The real sequence (a_n) is defined by

$$a_1 = c,$$
 $(\alpha + \beta)a_{n+1} = a_n^2 + \alpha\beta,$

where $0 < \alpha < \beta$ and $c > \alpha$.

- (a) Prove that if (a_n) converges to a limit L then necessarily $L = \alpha$ or $L = \beta$.
- (b) Prove that $a_{n+1} \gamma$ and $a_n \gamma$ have the same sign, where γ denotes either α or β .

turn over/ ...

- (c) Prove that, if $c < \beta$ then (a_n) converges monotonically to α . Discuss the limiting behaviour of (a_n) when $c \ge \beta$.
- (d) Prove that, if $\alpha < c < \beta$,

$$|a_n - \alpha| \le \left(\frac{\alpha + c}{\alpha + \beta}\right)^{(n-1)} (c - \alpha).$$

7. [Optional, to provide additional practice with sequences defined by recurrence relations] Let (a_n) be the sequence of real numbers given by

$$a_1 = a, \quad a_{n+1} = \frac{2}{a_n + 1} \quad (n \geqslant 1).$$

- (a) Assume 0 < a < 1. Prove that the subsequences (a_{2n}) and (a_{2n+1}) are monotonic, one increasing and the other decreasing. Prove that each of these subsequences converges, and find their limits. Deduce that (a_n) converges.
- (b) What happens if a > 1?

Points to ponder

- A. [Infinite limits and results of AOL type] Let (a_n) and (b_n) be real sequences and let $c_n = a_n + b_n$ and $d_n = a_n b_n$. Consider the scenarios
 - (a) $a_n \to L \in \mathbb{R}$ and $b_n \to \infty$;
 - (b) $a_n \to \infty$ and $b_n \to M \in \mathbb{R}$;
 - (c) $a_n \to \infty$ and $b_n \to \infty$;

What are the possible limiting behaviours of (c_n) and (d_n) in each case? Find examples to illustrate the possibilities and proofs of any assertions which hold in general.

B. Let $x \in \mathbb{R}$. Let

$$a_{m,n} = \cos\left(\frac{m}{n}\pi x\right).$$

What can you say about the iterated limit

$$\lim_{m \to \infty} \left(\lim_{n \to \infty} a_{m,n} \right) ?$$

Now consider

$$\lim_{n\to\infty} \left(\lim_{m\to\infty} a_{m,n} \right).$$

Does this iterated limit always exist? Exist for some values of x but not others? Never exist?

What conclusions do you draw?