Perturbation Methods: Problem Sheet 4 $Q|a$ $\ddot{x} + \varepsilon \dot{x} + x = 0$ $x = x(t, T)$, $t = \frac{T}{t} \Rightarrow \frac{d}{dt} = \frac{\partial}{\partial t} + \sum_{\substack{\lambda \in \Lambda}}$ \Rightarrow 2 11 + 222+ + 22 + + 2 (24+22+) + 2 = 0 $x \sim x_0(t, \tau) + \epsilon x_i(t, \tau) + ...$ as $\xi \rightarrow 0$ => $\underline{O(\epsilon^o)}: 364 + 20 = 0 \implies 30 = \frac{1}{2}(A(f)e^{i\theta} + \overline{A}(f)e^{-i\theta})$ $\frac{O(\epsilon^{1}): 3\epsilon_{1M} + 3_{1} = -23\epsilon_{0+} - 3\epsilon_{0}}{= -(\iota A_{T}e^{i\epsilon} - \iota Ae^{-i\epsilon}) - \frac{1}{2}(\iota Ae^{i\epsilon} - \iota Ae^{i\epsilon})}$
= -\iota (A_{T} + \frac{1}{2}A)e^{i\epsilon} + c.c.Can suppress secular lerms et only if $A_T + \frac{1}{2}A = 0$ $A = Re^{i\omega} \Rightarrow R_{\tau} + iR\omega_{\tau} + \frac{1}{2}R = 0$ $D - D_1 = 0$ $R_1 = -\frac{1}{6}R$ $\Rightarrow \quad \ \ \Theta = \Theta(\circ) , \quad R = R(\circ) e^{-\tau/2} \quad \ \ (\Theta(\circ), \quad R(\circ) \in \{R\})$ $\Rightarrow \quad x_{0} = R(\cos(t+\Theta)) = R(0)e^{-\tau/k}\cos(t+\Theta(\Theta)))$ Exact solution is $x = r_0 e^{\frac{-\epsilon t}{L}} cos \left(1 - \frac{\epsilon^2}{L} \right)^{1/2} t + \vartheta_o \qquad (r_0, \vartheta_o \in \mathbb{R})$ ~ ro $e^{-12}cos t + 90 - \frac{c^{2}t}{8}$ as $c \to 0$ \Rightarrow $x - x_0 = O(\epsilon)$ for $t = O(|\epsilon)$ $\boxed{)}$

(b) $\dot{x} + x = \epsilon x^3 \Rightarrow \text{same as } \text{(a)} \text{ unit.}$ $\frac{O(\epsilon!) : \quad x_{11} + x_1 = -2x_{0t} - x_{0}^{3}}{x - (\mathrm{i}A_{\tau}e^{\mathrm{i}t} - \mathrm{i}\overline{A_{\tau}}e^{\mathrm{i}t}) - \frac{1}{8}(Ae^{\mathrm{i}t} + \hat{A}e^{\mathrm{i}t})^{3}}$ = $[-iA_T + \frac{3}{8}A^2\overline{A}]e^{i\epsilon} + C_1C_1 + non-seandar,$ Can suppress secular terms $e^{it\lambda}$ anty if $iA_T = \frac{3}{6}A^2 \overline{A}$ $A = Re^{i(f)} \Rightarrow i(R_T + iR(f)) = \frac{3}{8}R^3$ $\Rightarrow \qquad R_T = 0, \qquad R\bigoplus_{T} = -\frac{3}{P}R^3$ $R = R(0), \oplus = \textcircled{1}(0) - \frac{2}{R}R(0)^2$ \Rightarrow $A(r) = R(0) e^{i \left(\frac{r}{c}\right)(0) - \frac{3c}{8}R(0)^2 T}$ \rightarrow $A(T) = A(0) e^{-\frac{3i^{'}}{8} |A(0)|^{2}T}$ \Rightarrow (c) is \rightarrow $\epsilon(x^2-\lambda)i+\lambda=0$ => same as (a) until $O(C')$: $x_{1}y_{1} + x_{1} = -2x_{0}y_{1} - (x_{0}^{2}-x)x_{0}y_{1}$ = $-(iA_{\tau}e^{it}-iA_{\tau}e^{-it})$
- $(\frac{1}{4}(Ae^{it}+Ae^{-it})^2-\lambda)(iAe^{it}-iAe^{-it})$ = $[-iA_T - \frac{1}{4}A^2(-iA) - \frac{2}{4}A\overline{A} - \lambda)iA]e^{iA}$ + C.C. + non-secular Can suppress secutor terms only if -2iAT + 2AA -i(2AA-X)A = 0 $\Rightarrow 2A_{T}=(\lambda-\underline{|A|^{L}})A$ $R = Re^{i\textcircled{f}} \Rightarrow 2(R_i + iR\textcircled{f}) = (\lambda - \frac{R^2}{4})R$

 \Rightarrow \oplus_{τ} = 0, 2R = $(\lambda - \frac{R^2}{L})R$ $\Rightarrow 10(1) = 10(0), R(T) \rightarrow 25, \times 0$ because R_T Z O \Leftrightarrow $X - R_T^2$ \geq O \neq α R $>$ O ; $\lambda > 0$ $\uparrow R_{\tau}$ $XCO 1Rt$ R_{7} R_{R_7LO} $\frac{2\pi}{2\pi}$ \leftarrow 2 R Thus, for X 20, solution tends to only steady solution R=0, while fa >>0, solution tends to a periodic abit with period 217 and amplitude 25% at leading ander (: $x_{0} = R(f)cos(E + (B(s)))$, This is called a Hopf bijurcation. $\boxed{1}$ $Q2(a)$ \ddot{x} + $(1+ \epsilon) x = \cos t$. $x = x(t, \tau)$, $t = \overline{t}$ => $\frac{d}{dt} = \frac{2}{2t} + \epsilon \frac{3}{2T}$ $\Rightarrow \quad \alpha_{tt} + 2\Omega_{tt} + \epsilon^2 \alpha_{T1} + (1+\epsilon) \alpha = \frac{1}{2} (e^{it} + e^{-it})$ $\frac{1}{2}$ $O(t^{o})$ $x_{o}y_{v} + x_{o} = \frac{1}{L}(e^{it} + e^{-it})$ => cannot suppress secular ett farms. Instead expand $x \sim \frac{x_o(t,\tau)}{s} + \frac{x_i(t,\tau) + \dots a s s \rightarrow 0}{s}$

$$
O(c^{*}) : x_{0,1} x_{0} = 0 \Rightarrow x_{0} = \frac{1}{2}(A(f)e^{i\theta} + \frac{1}{A}(f)e^{-i\theta})
$$
\n
$$
O(e^{a}) : x_{1u} + x_{1} = -2x_{0,1} - x_{0} + \frac{1}{2}(e^{i\theta} + e^{-i\theta})
$$
\n
$$
= -(iA_{0}e^{i\theta} - iA_{0}e^{i\theta}) - \frac{1}{2}(Ae^{i\theta} + \frac{1}{2}(e^{i\theta} + \frac{1}{2}(e^{i\theta} + e^{-i\theta}))}{1 - (iA_{0} - \frac{1}{2}A_{0} + \frac{1}{2}e^{i\theta} + \frac{1}{2}(e^{i\theta} + \frac{1}{2}(e^{i\theta} + e^{-i\theta}))}
$$
\n
$$
= -iA_{0} - \frac{1}{2}A + \frac{1}{2}e^{i\theta} + \frac{1}{2}e^{i\theta} + \frac{1}{2}(e^{i\theta} + e^{-i\theta})
$$
\n
$$
= -iA_{0} - \frac{1}{2}A + \frac{1}{2}(A - 1)
$$
\n
$$
A = |A|(Re^{i} \mathbb{D} \Rightarrow -i(R_{0} + iR\mathbb{D})|) = \frac{1}{2}R
$$
\n
$$
\Rightarrow R = O \Rightarrow R = O \Rightarrow R = \frac{1}{2}R
$$
\n
$$
\Rightarrow R = |A| = \frac{1}{2}R = O \Rightarrow R = \frac{1}{2}R
$$
\n
$$
\Rightarrow x_{0} = |A| = \frac{1}{2}R
$$
\n
$$
\Rightarrow x_{0} = |A| = \frac{1}{2}R
$$
\n
$$
\Rightarrow x_{0} = |A| = \frac{1}{2}R
$$
\n
$$
\Rightarrow R = |A| = \frac{1}{2}R = \frac{1}{2}R
$$
\n
$$
\Rightarrow R = |A| = \frac{1}{2}R = \frac{1}{2}
$$

 \textcircled{k}

$$
\frac{a_{x} \left(V(x, \frac{u}{c}) \frac{du}{dx} \right) = \frac{1}{2}(x, \frac{u}{c})
$$
\n
$$
v = u(x, x), x = x \Rightarrow \frac{1}{20}x = \frac{3}{20}x
$$
\n
$$
v = u(x, x), x = x \Rightarrow \frac{1}{20}x = \frac{3}{20}x
$$
\n
$$
v = u(x, x), x \in \mathbb{R} \setminus \left[0 \frac{1}{20}x + \frac{1}{20}x \right] = \frac{1}{2}x + \frac{1}{2}(x, x)
$$
\n
$$
u = u, (x, x) + \frac{1}{2}u, (x, x) + \frac{1}{2}u, (x, x) + \dots = \frac{1}{2}x + \frac{1}{2}(x, x)
$$
\n
$$
u = u, (x, x) + \frac{1}{2}u, (x, x) + \frac{1}{2}u, (x, x) + \dots = \frac{1}{2}x + \frac{1}{2}(x, x)
$$
\n
$$
\frac{1}{2}(x + \frac{1}{2}x) + \frac{1}{2}(x + \frac{1}{2}x) + \dots = \frac{1}{2}x + \frac{1}{2}x + \frac{1}{2}x + \dots = \frac{1}{2}
$$

 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \end{array} \end{array}$

 $\begin{picture}(20,20) \put(0,0){\line(1,0){10}} \put(15,0){\line(1,0){10}} \put(15,0){\line(1$

 QH Let $y = h(x) e^{i\mu(x)/\epsilon}$ $\Rightarrow y' = (M^2 + A')e^{i\pi/2}$ $y'' = (-\frac{R(u')^2}{5^2} + \frac{2iR'u'}{2} + \frac{iRu''}{5} + R'')e^{iu/\epsilon}$ (a) $\xi^{2}y'' + xy = 0$ for $x > 0$ $\Rightarrow -A(u^{\prime})^{2}+2i\epsilon A^{\prime}u^{\prime}+i\epsilon A u^{\prime\prime}+ \epsilon^{2}A^{\prime\prime}+xA=0$ $A \sim A_{0}(x) + c A_{1}(x) + \cdots a_{s} 2 \rightarrow 0 \Rightarrow$ $O(s^{\circ}): = A_{o}(u^{\prime})^2 + 3A_{o} = 0 \implies u^{\prime} = \pm u^{\prime l}, u = \pm \frac{2}{3} \frac{x^{3/l}}{(u^{\circ}u^{\prime})}$ $O(\epsilon I): -N_{1}(\omega I)^{2} + 2iA_{0}^{T}\omega I + iA_{0}\omega I' + 2A_{1} = 0$ $\Rightarrow 2A^{\prime}x^{\prime\prime\prime}+A^{\prime}x^{\prime\prime\prime}=0$ \Rightarrow Ao $=$ $\frac{1}{40}$ => $\ln |A_{0}| = C_{1} - \frac{1}{L} \ln x (C_{1}C |P)$ \Rightarrow $A_0 = \frac{C_1}{\lambda^{11}4}$ $(14)=e^{C_1}$ $Hencl, y_1 \sim \frac{c_2!}{3!!4!}e^{\frac{2i3l^2}{38}}$, $y_2 \sim \frac{c_2}{3!4}e^{\frac{2i3l^2}{38}}$ as $\epsilon \rightarrow 0^+$ $\overline{(\zeta_t^{-1}\varepsilon\,\mathbb{R})}$ (6) $\epsilon^2 y'' - xy = 0$ for $x > 0$. Obtain similarly $u = \pm \frac{2i3^{3h}}{3}$ A $v = \frac{c_1 t}{x^{114}}$ ($c_2 t (R)$
=> $y_1 \sim \frac{c_2 t}{x^{114}} e^{\frac{2x^{3h}}{36}}$, $y_1 \sim \frac{c_2}{x^{114}} e^{\frac{2x^{3h}}{36}}$ as $z \to 0^+$ Valid for u = 0(1) as E-50." lose validity when $x = O(\epsilon^{2/3})$

as $\epsilon y'' + y' + xy = 0$ for o each with y(0)=0, y(1)=1. (a) $y = e^{\sqrt{(x/2)}} \Rightarrow y' = \frac{\zeta'}{2} e^{\zeta/\zeta} \Rightarrow y'' = \left[\frac{(\zeta')^2}{2} + \frac{\zeta''}{2}\right] e^{\zeta/\zeta}$ $ODE \Rightarrow (s')^2 + s' + i(s' + x) = 0$ $S \sim S_0(d + E S_1(d) + ... a s E \rightarrow 0^+)$ $O(\epsilon^{\circ})$: $(S_{1})^{1}+S_{0}^{1}=O \Rightarrow S_{0}^{1}=O, \neg 1 \Rightarrow S_{0}=A_{1}, B_{1}=X_{1}$ $(A_{1}, B_{1} \in \mathbb{R})$ $O(f^{1}): 2\zeta_{0}^{1}\zeta_{1}^{1}+\zeta_{1}^{1}+\zeta_{0}^{11}+\zeta_{0}^{12}$ $S_{0} = A_{1} \Rightarrow S_{1} = -x \Rightarrow S_{1} = A_{1} + \frac{1}{2}x^{2} (A_{1} \in \mathbb{R})$
 $S_{0} = B_{1} - x \Rightarrow S_{1}' = x \Rightarrow S_{1} = B_{1} + \frac{1}{2}x^{2} (B_{2} \in \mathbb{R})$ Hence, general substian $y \sim A_3 e^{-\frac{1}{2}x^2} + B_3 e^{-\frac{1}{2}(\frac{x}{2})^2}$
where $A_3, B_3 \in \mathbb{R}$ and we have absorbed $e^{B_1/k + A_k}$ into A_3
and $e^{B_1/k + B_k}$ into B_3 . $\begin{array}{ccccccccc}\n\underline{y}(0) = 0 & \Rightarrow & A_3 & \sim & B_3 & \\
\underline{y}(1) = 1 & \Rightarrow & A_3 & e^{-1/2} & + B_3 & e^{-1/2+1/2} & \sim & 1\n\end{array}$ Thus, $A_3 \sim -B_3 \sim \frac{1}{e^{-t/\mu} - e^{-t/\epsilon + 1/\mu}} = \frac{e^{t/\mu}}{1 - e^{t-1/\epsilon}}$ giving $y \sim \frac{e^{(1-x^2)/2} - e^{-x/(1+x^2)/2}}{1-e^{1-1/x}}$ as $c \to 0.1$ (b) $x = 1 + \sum y = 7(x) \Rightarrow \frac{d^{2}7}{dx^{2}} + \frac{d^{4}}{dx^{3}} + \sum (f(\sum x))^{4} = 0$
=> $7 - 4 + 4 = 1$ (c, ce R) as $\xi \rightarrow 0^{+}$ Matching with autor (1-2 = 0(1)) requires $\gamma(-\infty)$ to be finite $\Rightarrow 6 = 0 \Rightarrow$ no BL at $x = 1$ at leading ander.

 $\widehat{\mathcal{J}}$

 \sim

<u> Land</u>

 $\mathcal{L}^{\text{max}}_{\text{max}}$

 $\overline{}$

 \circledcirc

(6)
\n
$$
\frac{Q6}{dx} = \frac{c^{3}y^{1} + (-x)y = 0 \text{ for } x > 0 \text{ with } q(0) = 1, q(\omega) = 0, q
$$

 RH ontar $\infty > 1$ $y^{(\varpi)}=0 \Rightarrow$ need to eliminate graving crintian, giving $y - \frac{c_1}{(2-\beta)^{1/4}} e_3 \rho \left(-\frac{2}{3\epsilon} (x-1)^{3/2} \right)$ as $\varepsilon \rightarrow 0^+$ with $x > 1$, $x-1 = \alpha \varphi(1)$ where $C_1 \in \mathbb{R}$ LH cuter $0 < x < 1$ Now both $\phi = \pm \frac{2}{3}(1-x)^{3/2}$ are admissible, giving $y \sim \frac{C_{2}}{(1-x)^{1/4}} \sin \left(\frac{2}{35}(1-x)^{3/2}+x\right)$ as $z \rightarrow 0^{+}$ with $0 \le x \le 1, x = \text{card}(1)$ where $(x, x) \in \mathbb{R}$ $y(0)=1 \Rightarrow C_2 \Rightarrow y \sim \frac{cosec(\frac{2}{3\epsilon}+c_1)}{(1-s)^{11}4}sin(\frac{2}{3\epsilon}(1-x)^{3/2}+c_1)$ Inner region neur x = Outer colutions unbamded as a -> 1[±], co seek an inner solution by scaling $x = 1 + \frac{d(\epsilon) \times}{d\epsilon}$, $y = \frac{d(\epsilon)^{-1/4} \gamma(x)}{d\epsilon^{1/4}}$
giving Airy's equation $\frac{d^{1} \gamma}{d\epsilon^{1}} \times \gamma$ provided $\frac{d(\epsilon) \approx \epsilon^{2/3}}{d\epsilon^{1/3}}$ General solution is $\forall (x) = c_3 \overline{Ai}(x) + c_4 Bi(x) \qquad (c_3, c_4 e/R)$ Matching inner (X-300) with PM autor (x-> 1+) Safer to use intermediate variable si to match: $x-1 = \epsilon^{\alpha} \hat{S} = \epsilon^{2\beta} \times (0 \epsilon \ll 2_{\alpha}).$

 $As x \to \infty$, $Ai(x) \sim \frac{1}{2\pi x^{1/4}} e^{-\frac{2}{3}x^{2/2}}$ $\binom{2}{2}$ $\frac{1}{x} \times \frac{3}{x^{2s}} \to \infty$ as $\xi \to 0^+$ with $\frac{3}{x} > 0$, $\frac{3}{x} = \alpha d(1) \to \infty$ $S^{-1|l_{\varphi}}\sqrt{\frac{\tilde{x}}{\varepsilon^{2\beta-\kappa}}}= \frac{C_{3}}{\varepsilon^{1|\beta}} \text{Ai}(\frac{\hat{x}}{\varepsilon^{2|3-\kappa}})+\frac{C_{\varphi}}{\varepsilon^{1|\beta}} B_{L}(\frac{\tilde{x}}{\varepsilon^{2|3-\kappa}})$ $\sim \frac{C_3}{\xi^{1/6}} \frac{1}{2\pi (s(\epsilon^{2/3-\kappa}))^{1/4}} e_3\varphi \left(-\frac{2}{3}(\frac{3}{\epsilon^{2/3-\kappa}})^{3/2}\right)$ $\frac{1}{\epsilon^{1/6}} \frac{1}{\sqrt{11^{6}} \sqrt{3} \left(\epsilon^{1/3-\epsilon}\right)} \exp\left(\frac{2}{3}\left(\frac{\hat{x}}{\epsilon^{2/3-\epsilon}}\right)^{3/2}\right)$ $y - \frac{c_1}{(2-1)2k} \cos(-\frac{2}{3\epsilon}(x-1)^{3/2})$ · x = 1 + = 2 = > 1 as E - > 0 + with $\hat{x} > 0$, $\hat{x} = cod(1) \Rightarrow$ $y(1+\epsilon^{2}x) \sim \frac{C_{1}}{(\epsilon^{2}x)^{11}k}exp(-\frac{2}{3\epsilon}(\epsilon^{2}x)^{3/2})$ \cdot Matching \Rightarrow $C_4 = 0$, $C_1 = \frac{C_3}{2\pi}$ Matching inner (x-2-0) with LM autor (x-21) $\frac{1}{2}x=\frac{3}{5}x$ $\Rightarrow -\infty$ os $\xi\Rightarrow0^{+}$ with $\hat{x}<0$, $\hat{x}=\text{card}(1)$ \Rightarrow $\frac{C_3}{\zeta} = \frac{C_3}{\zeta^{1/3-\kappa}} - \frac{C_3}{\zeta^{1/6}} \left(\frac{C_3}{\zeta^{1/3-\kappa}} \right) - \frac{C_3}{\zeta^{1/6}} \frac{1}{\sqrt{16}} \frac{1}{\sqrt{16}} \frac{1}{\sqrt{16}} \frac{1}{\zeta^{1/3-\kappa}} \left(\frac{1}{\zeta^{1/3-\kappa}} \right)^{1/3} + \frac{1}{\zeta} \right)$ $\frac{1}{1}x = 1 + e^{x} \hat{x} \to 1^{-}$ as $x \to 0^{+}$ with $\hat{x} \in 0$, $\hat{x} = \alpha u(1) \to 0$ $y(1+\epsilon<\hat{x}) \sim \frac{\text{cost}(\frac{2}{3\epsilon}+\epsilon_1)}{(-\epsilon\le\hat{x})^{114} \sin(\frac{2}{3\epsilon}(-\epsilon<\hat{x})^{314}+\epsilon_1)}$ $-Maldning \implies \alpha_1 = \frac{\Gamma}{4}$ (wlog), $\frac{C_3}{\sqrt{H}} = \csc(\frac{2}{16} + \frac{\Gamma}{4})$ · Hence, $C_1 = \frac{1}{2}csec(\frac{2}{3\epsilon} + \frac{n}{4})$ and we're done . NB: plots show excellent agreement with escact substicm