
MT 2018

ANALYSIS I: Problem sheet 5

Cauchy Sequences, Series (convergence and absolute convergence),
Properties of e, Alternating Series Test.

1. For n ∈ N let

an =

∫

n

1

cos x

x2
dx.

Prove, for m > n > 1, that |am − an| 6 n−1 and deduce that (an) converges. By integration by
parts, or otherwise, demonstrate the existence of

lim
n→∞

∫

n

1

sin x

x
dx.

2. (a) Let p be a non-zero natural number. Prove by considering the partial sums that

∑ 1

k(k + p)

converges. What is
∑

∞

k=1 1/(k(k + p))?

(b) Evaluate the sum
∞
∑

k=1

cos k

2k
.

(c) Use the Comparison Test to prove that

∑ 2k + 1

(k + 1)(k + 2)2

converges.

3. Let (an) be a sequence of real or complex numbers and assume that
∑

∞

k=1 |ak| converges. Prove,
by considering the partial sums

sn = a1 + · · ·+ an and Sn = |a1|+ · · ·+ |an|,

that
∣

∣

∣

∣

∣

∞
∑

k=1

ak

∣

∣

∣

∣

∣

6

∞
∑

k=1

|ak|.

[You may assume the Triangle Law for real or complex numbers and the theorem that
∑

|ak|
converges implies that

∑

ak converges.]

turn over /. . .
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4. The number known as e is defined by

e = lim
n→∞

sn, where sn =
n

∑

k=0

1

k!
.

(a) Prove that (sn) is monotonic increasing and bounded above and deduce that the limit
defining e exists. [Hint for getting an upper bound: compare sn with the sum of a geometric

progression.]

(b) Show that, for n > 1,

0 < e−
n

∑

k=0

1

k!
<

1

n!n
.

Deduce that e is irrational.

5. There exists a real number L such that
(

1 +
1

n

)n

→ L as n → ∞

(recall Example 9.3(a)). In fact L = e [a proof is given in the supplementary notes on e].
Assuming this fact, show that

(

1− 1

n

)n

→ 1

e
as n → ∞.

6. (a) Prove that
∑

(−1)k−1(
√
k + 1−

√
k) converges.

(b) Let

sn = 1− 1

3
+

1

5
− 1

7
+ · · ·+ (−1)n+1

2n− 1
.

The Alternating Series Test implies that (sn) converges to some limit L. By examining the
proof of the AST prove that 2/3 < L < 13/15.

7. Let
∑

ak be a series of real numbers. Which of the following are true and which are false?
Provide a proof or counterxample as appropriate.

(a) k2ak → 0 implies
∑

ak converges.

(b) If
∑

ak converges, then
∑

(ak)
2 converges.

(c) If
∑

ak converges absolutely, then
∑

(ak)
2 converges.

(d)
∑

(ak)
2 convergent implies

∑

(ak)
3 convergent.

8. [Optional, and quite challenging] For each of the following statements either provide a proof or
a counterexample.

(a) For a divergent series
∑

ak of positive terms,
∑ ak

1 + ak
is also divergent.

(b) Assume ak > 0. Then
∑

ak and
∑

ak/sk either both converge or both diverge, where
sk = a1 + · · ·+ ak.
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Points to ponder

A. Give an example of a real sequence (cn) for which |cn+1 − cn| → 0 as n → ∞ but for which (cn)
fails to converge. What does the existence of such an example tell you?

B. Let (ak) be a sequence. Define new sequences (bk) and (ck) as follows:

bk = (a2k−1 + a2k) for k > 1;

c1 = a1, ck = (a2(k−1) + a2k−1) for k > 2.

Now let ak = (−1)k for each k > 1. Calculate

sn := a1 + a2 + · · ·+ an;

tn := b1 + b2 + · · ·+ bn;

un := c1 + c2 + · · ·+ cn.

What are the limiting behaviours of (sn), (tn) and (un)? What happens for other choices of
(ak)? What do your answers tell you about infinite sums? Specifically, do such sums always
behave in the same way as finite sums do?
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