ANALYSIS I: Problem sheet 5

Cauchy Sequences, Series (convergence and absolute convergence), Properties of e, Alternating Series Test.

1. For $n \in \mathbb{N}$ let

$$a_n = \int_1^n \frac{\cos x}{x^2} \,\mathrm{d}x$$

Prove, for $m \ge n \ge 1$, that $|a_m - a_n| \le n^{-1}$ and deduce that (a_n) converges. By integration by parts, or otherwise, demonstrate the existence of

$$\lim_{n \to \infty} \int_1^n \frac{\sin x}{x} \, \mathrm{d}x.$$

2. (a) Let p be a non-zero natural number. Prove by considering the partial sums that

$$\sum \frac{1}{k(k+p)}$$

converges. What is $\sum_{k=1}^{\infty} 1/(k(k+p))$?

(b) Evaluate the sum

$$\sum_{k=1}^{\infty} \frac{\cos k}{2^k}$$

(c) Use the Comparison Test to prove that

$$\sum \frac{2k+1}{(k+1)(k+2)^2}$$

converges.

3. Let (a_n) be a sequence of real or complex numbers and assume that $\sum_{k=1}^{\infty} |a_k|$ converges. Prove, by considering the partial sums

$$s_n = a_1 + \dots + a_n$$
 and $S_n = |a_1| + \dots + |a_n|$,

that

$$\left|\sum_{k=1}^{\infty} a_k\right| \leqslant \sum_{k=1}^{\infty} |a_k|.$$

[You may assume the Triangle Law for real or complex numbers and the theorem that $\sum |a_k|$ converges implies that $\sum a_k$ converges.]

turn over /...

4. The number known as e is defined by

$$e = \lim_{n \to \infty} s_n$$
, where $s_n = \sum_{k=0}^n \frac{1}{k!}$

- (a) Prove that (s_n) is monotonic increasing and bounded above and deduce that the limit defining e exists. [*Hint for getting an upper bound: compare* s_n with the sum of a geometric progression.]
- (b) Show that, for $n \ge 1$,

$$0 < e - \sum_{k=0}^{n} \frac{1}{k!} < \frac{1}{n! n}.$$

Deduce that e is irrational.

5. There exists a real number L such that

$$\left(1+\frac{1}{n}\right)^n \to L \quad \text{as } n \to \infty$$

(recall Example 9.3(a)). In fact L = e [a proof is given in the supplementary notes on e]. Assuming this fact, show that

$$\left(1-\frac{1}{n}\right)^n \to \frac{1}{e} \quad \text{as } n \to \infty.$$

- 6. (a) Prove that $\sum (-1)^{k-1}(\sqrt{k+1} \sqrt{k})$ converges.
 - (b) Let

$$s_n = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots + \frac{(-1)^{n+1}}{2n-1}.$$

The Alternating Series Test implies that (s_n) converges to some limit L. By examining the proof of the AST prove that 2/3 < L < 13/15.

- 7. Let $\sum a_k$ be a series of real numbers. Which of the following are true and which are false? Provide a proof or counterxample as appropriate.
 - (a) $k^2 a_k \to 0$ implies $\sum a_k$ converges.
 - (b) If $\sum a_k$ converges, then $\sum (a_k)^2$ converges.
 - (c) If $\sum a_k$ converges absolutely, then $\sum (a_k)^2$ converges.
 - (d) $\sum (a_k)^2$ convergent implies $\sum (a_k)^3$ convergent.
- 8. [Optional, and quite challenging] For each of the following statements either provide a proof or a counterexample.
 - (a) For a divergent series $\sum a_k$ of positive terms, $\sum \frac{a_k}{1+a_k}$ is also divergent.
 - (b) Assume $a_k > 0$. Then $\sum a_k$ and $\sum a_k/s_k$ either both converge or both diverge, where $s_k = a_1 + \cdots + a_k$.

Points to ponder

- A. Give an example of a real sequence (c_n) for which $|c_{n+1} c_n| \to 0$ as $n \to \infty$ but for which (c_n) fails to converge. What does the existence of such an example tell you?
- B. Let (a_k) be a sequence. Define new sequences (b_k) and (c_k) as follows:

$$b_k = (a_{2k-1} + a_{2k})$$
 for $k \ge 1$;
 $c_1 = a_1$, $c_k = (a_{2(k-1)} + a_{2k-1})$ for $k \ge 2$.

Now let $a_k = (-1)^k$ for each $k \ge 1$. Calculate

$$s_n := a_1 + a_2 + \dots + a_n;$$

 $t_n := b_1 + b_2 + \dots + b_n;$
 $u_n := c_1 + c_2 + \dots + c_n.$

What are the limiting behaviours of (s_n) , (t_n) and (u_n) ? What happens for other choices of (a_k) ? What do your answers tell you about infinite sums? Specifically, do such sums always behave in the same way as finite sums do?