Linear Algebra I, Sheet 3, MT2018

Vector spaces and subspaces. Spanning sets. Linear independence. Bases.

1. Show that the set of real sequences (u_n) that satisfy the recurrence relation $u_{n+1} = u_n + u_{n-1}$ (for $n \ge 1$) is a real vector space (a subspace of the space of all sequences of real numbers).

Find a basis, and write down the dimension of the vector space.

- 2. For each of the following vector spaces and each of the specified subsets, determine whether or not the subset is a subspace. That is, in each case, either verify the conditions defining a subspace (or use the subspace test), or show by an example that one of the conditions does not hold.
- (a) $V = \mathbb{R}^4$: (i) $\{(a, b, c, d) \in V : a + b = c + d\};$
 - (ii) $\{(a, b, c, d) \in V : a + b = 1\};$
 - (iii) $\{(a, b, c, d) \in V : a^2 = b^2\}.$
- (b) $V = \mathcal{M}_{n \times n}(\mathbb{R})$: (i) the set of upper triangular matrices;
 - (ii) the set of invertible matrices;
 - (iii) the set of matrices that are not invertible.
- **3.** Let S be a finite spanning set for a vector space V. Let T be a smallest subset of S that spans V. Show that T is linearly independent, hence a basis of V.
- **4.** (a) Which of the following sets of vectors in \mathbb{R}^3 are linearly independent?
 - $(i) \ \{(1,3,0),(2,-3,4),(3,0,4)\}, \qquad (ii) \ \{(1,2,3),(2,3,1),(3,1,2)\}.$
 - (b) Let $V := \mathbb{R}^{\mathbb{R}} = \{f : \mathbb{R} \to \mathbb{R}\}$. Which of the following sets are linearly independent in V?
 - (i) $\{f, g, h\}$ where $f(x) = 5x^2 + x + 1$, g(x) = 2x + 3 and $h(x) = x^2 1$.
 - (ii) $\{p, q, r\}$ where $p(x) = \cos^2(x)$, $q(x) = \cos(2x)$ and r(x) = 1.
- **5.** (a) Let u, v, w be linearly independent vectors in a vector space V.
 - (i) Show that u + v, u v, u 2v + w are also linearly independent.
 - (ii) Are u + v 3w, u + 3v w, v + w linearly independent?
- (b) Let $\{v_1, v_2, \dots, v_n\}$ be a linearly independent set of n vectors in a vector space V. Prove that each of the following sets is also linearly independent:
 - (i) $\{c_1v_1, c_2v_2, \dots, c_nv_n\}$ where $c_i \neq 0$ for $1 \leq i \leq n$;
 - (ii) $\{w_1, w_2, \dots, w_n\}$ where $w_i = v_i + v_1$ for $1 \le i \le n$.
- **6.** (a) Let $V_1 := \{(x_1, \dots, x_n) \in \mathbb{R}^n : x_1 + \dots + x_n = 0\}$. Show that V_1 is a subspace of \mathbb{R}^n and find a basis for it.
- (b) Let $V_2 := \{(x_{ij}) \in \mathcal{M}_{n \times n}(\mathbb{R}) : x_{ij} = x_{ji} \text{ for all relevant } (i, j)\}$. Show that V_2 is a subspace of $\mathcal{M}_{n \times n}(\mathbb{R})$ —this is the space of real symmetric matrices—and find a basis for it.
- (c) Let $V_3 := \{(x_{ij}) \in \mathcal{M}_{n \times n}(\mathbb{R}) : x_{ij} = -x_{ji} \text{ for all relevant } (i,j)\}$. Show that V_3 is a subspace of $\mathcal{M}_{n \times n}(\mathbb{R})$ —this is the space of real *skew-symmetric* $n \times n$ matrices—and find a basis for it.