Linear Algebra I, Sheet 5, MT2018 Linear transformations. Kernel and image. Rank and nullity.

- **1.** Which of the following formulae describe linear transformations $T : \mathbb{R}^3 \to \mathbb{R}^3$?
 - (i) T(x, y, z) = (y, z, 0);
 - (ii) T(x, y, z) = (|x|, -z, 0);
- (iii) T(x, y, z) = (x 1, x, y);
- (iv) T(x, y, z) = (yz, zx, xy).

As always, justify your answers.

2. Describe the kernel and image of each of the following linear transformations, and in each case find the nullity and the rank.

- (i) $T : \mathbb{R}^4_{\text{col}} \to \mathbb{R}^3_{\text{col}}$ given by T(X) = AX for $X \in \mathbb{R}^4_{\text{col}}$, where $A = \begin{pmatrix} 1 & -1 & 1 & 1 \\ 1 & 2 & -1 & 1 \\ 0 & 3 & -2 & 0 \end{pmatrix}$.
- (ii) $V = \mathcal{M}_{n \times n}(\mathbb{R})$, and $T: V \to \mathbb{R}$ is given by T(X) = tr(X), the sum $x_{11} + x_{22} + \cdots + x_{nn}$ of the entries on the main diagonal of X.

3. Let $V = \mathbb{R}_n[x]$, the vector space of real polynomials of degree $\leq n$. Define $D: V \to V$ to be differentiation with respect to x. Find the rank and nullity of D.

- 4. Let V be a finite-dimensional vector space, and let $S, T: V \to V$ be linear transformations.
 - (i) Show that $\text{Im}(S+T) \leq \text{Im} S + \text{Im} T$. Deduce that $\text{rank}(S+T) \leq \text{rank} S + \text{rank} T$.
 - (ii) Show that $\operatorname{null}(ST) \leq \operatorname{null} S + \operatorname{null} T$. [Hint: Focus on the restriction of S to Im T, and consider its image and kernel.]
- **5.** Let V be a finite-dimensional vector space.
 - (a) Let U, W be subspaces such that $V = U \oplus W$. Let $P : V \to V$ be the projection onto U along W, and let $Q : V \to V$ be the projection onto W along U.
 - (i) Show that $Q = i_V P$.
 - (ii) Show that $P^2 = P$, that $Q^2 = Q$ and that PQ = QP = 0.
 - (b) Now let $T: V \to V$ be a linear transformation such that $T^2 = T$ (such linear transformations are said to be *idempotent*).
 - (i) For $v \in V$ let u = Tv and let w = v Tv. Show that $u \in \text{Im } T$, $w \in \ker T$ and v = u + w.
 - (ii) Show that $\operatorname{Im} T \cap \ker T = \{0\}$.
 - (iii) Deduce that $V = U \oplus W$ where $U := \operatorname{Im} T$, $W := \ker T$, and that T is the projection onto U along W.

6. Let V be an n-dimensional vector space and let $T: V \to V$ be a linear transformation. Prove that the following statements are equivalent:

(a) Im
$$T = \ker T$$
, and (b) $T^2 = 0$, *n* is even and rank $T = \frac{1}{2}n$.