Linear Algebra I, Sheet 6, MT2018 Matrices of linear transformations, change of basis, rank

1. Let V be a finite-dimensional vector space, and let U, W be subspaces such that $V = U \oplus W$. Let $T: V \to V$ be a linear transformation with the property that $T(U) \subseteq U$ and $T(W) \subseteq W$.

- (a) Show that the matrix of T with respect to a basis of V which is the union of bases of U and of W has block form $\begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$, where A is the matrix of the restriction of T to U and B is the matrix of the restriction of T to W.
- (b) Now let $V = \mathbb{R}^4$ and define $T(x_1, x_2, x_3, x_4) = (x_1 + x_2, x_1 x_2, x_4, 0)$. Find 2-dimensional subspaces U and W such that $T(U) \subseteq U$, $T(W) \subseteq W$, and $V = U \oplus W$.
- (c) For the subspaces U, W you found in (b), find bases B_U for U and B_W for W, and find the matrix of T with respect to $B_U \cup B_W$ as in (a).

2. Let $A \in \mathcal{M}_{n \times n}(\mathbb{R})$. Show that if $A^2 = 0$ then rank $A \leq \frac{1}{2}n$. Show more generally that if $A^k = 0$ then rank $A \leq n(k-1)/k$.

3. Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be the linear map T(x, y, z) = (y, -x, z) for all $(x, y, z) \in \mathbb{R}^3$. Let \mathcal{E} be the standard basis of \mathbb{R}^3 , and let \mathcal{F} be the basis f_1, f_2, f_3 where $f_1 = (1, 1, 1), f_2 = (1, 1, 0)$ and $f_3 = (1, 0, 0)$.

- (a) Calculate the matrix A of T with respect to the standard basis \mathcal{E} of \mathbb{R}^3 .
- (b) Calculate (directly) the matrix B of T with respect to the basis \mathcal{F} .
- (c) Let I be the identity map of \mathbb{R}^3 . Calculate the matrix P of I with respect to the bases \mathcal{E} , \mathcal{F} and the matrix Q of I with respect to the bases \mathcal{F} , \mathcal{E} , and check that $PQ = I_3$.
- (d) What do you predict is true about QBP? Now compute it—were you right?
- **4**.
 - (a) Show that if $X, Y \in \mathcal{M}_{n \times n}(\mathbb{R})$ then $\operatorname{tr}(XY) = \operatorname{tr}(YX)$.
 - (b) Deduce that if A and B are similar $n \times n$ matrices then tr(A) = tr(B).
- **5.** Let $A \in \mathcal{M}_{m \times n}(\mathbb{R})$ and let $b \in \mathbb{R}^m_{col}$. Prove that
 - (a) if m < n then the system of linear equations Ax = 0 always has a non-trivial solution;
 - (b) if m < n then the system of linear equations Ax = b has either no solution or infinitely many different solutions;
 - (c) if A has rank m then the system of linear equations Ax = b always has a solution;
 - (d) if A has rank n then the system of linear equations Ax = b has at most one solution;
 - (e) if m = n and A has rank n, then the system Ax = b has precisely one solution.

6. Let $n \ge 2$ and let $V_n := \{a_0x^n + a_1x^{n-1}y + \dots + a_ny^n : a_0, a_1, \dots, a_n \in \mathbb{R}\}$, the real vector space of homogeneous polynomials of degree n in two variables x and y. Let B_n be the "natural" ordered basis $x^n, x^{n-1}y, \dots, xy^{n-1}, y^n$ of V_n . Define $L: V_n \to V_{n-2}$ by $L(f) := \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$.

- (a) Check that L (the two-variable Laplace operator) is a linear transformation.
- (b) Find the matrix of L with respect to the bases B_n of V_n and B_{n-2} of V_{n-2} .
- (c) Find the rank of this matrix, and hence find the dimension of $\{f \in V_n : L(f) = 0\}$.