Linear Algebra I, Sheet 7, MT2018
 Bilinear forms and inner product spaces

1. Let V be a real vector space. A bilinear form $\langle-,-\rangle$ on V is said to be skew-symmetric if $\left\langle v_{1}, v_{2}\right\rangle=-\left\langle v_{2}, v_{1}\right\rangle$ for all $v_{1}, v_{2} \in V$. It is said to be alternating if $\langle v, v\rangle=0$ for all $v \in V$.
(a) Show that every bilinear form on V may be written uniquely as the sum of a symmetric bilinear form and a skew-symmetric bilinear form.
(b) Show that a bilinear form $\langle-,-\rangle$ on V is alternating if and only if it is skew-symmetric.
2. Let V be a real vector space and let $\langle-,-\rangle,\langle-,-\rangle_{1}$ and $\langle-,-\rangle_{2}$ be inner products on V. The norm of a vector v is defined by $\|v\|:=\sqrt{\langle v, v\rangle}$. Norms $\|v\|_{1}$ and $\|v\|_{2}$ are defined analogously.
(a) Show that if $u, v \in V$ then $\langle u, v\rangle=\frac{1}{2}\left(\|u+v\|^{2}-\|u\|^{2}-\|v\|^{2}\right)$.
(b) Deduce that if $\|x\|_{1}=\|x\|_{2}$ for all $x \in V$ then $\langle u, v\rangle_{1}=\langle u, v\rangle_{2}$ for all $u, v \in V$.
3. (a) Let V be a 2 -dimensional real vector space with basis $\left\{e_{1}, e_{2}\right\}$. Describe all the inner products $\langle-,-\rangle$ on V for which $\left\langle e_{1}, e_{1}\right\rangle=1$ and $\left\langle e_{2}, e_{2}\right\rangle=1$.
(b) Show that if V is the 3 -dimensional real vector space $\mathbb{R}_{2}[x]$ of polynomials of degree at most 2 in x, then the definition $\langle f(x), g(x)\rangle:=f(0) g(0)+f(1) g(1)+f(2) g(2)$ describes an inner product on V.
4. Let V be an n-dimensional real vector space with inner product $\langle-,-\rangle$, and let U be an m dimensional subspace of V. Define $U^{\perp}:=\{v \in V:\langle v, u\rangle=0$ for all $u \in U\}$.
(a) Show that U^{\perp} is a subspace of V, and that $U^{\perp} \cap U=\{0\}$.
(b) Let u_{1}, \ldots, u_{m} be a basis for U. Define $T: V \rightarrow \mathbb{R}^{m}$ by $T(v)=\left(x_{1}, \ldots, x_{m}\right)$, where $x_{i}:=\left\langle v, u_{i}\right\rangle$ for $i=1, \ldots, m$. Show that T is a linear transformation.
(c) For T as in (b), show that $\operatorname{ker} T=U^{\perp}$ and that $\operatorname{rank} T=m$.
(d) Deduce that $\operatorname{dim} U^{\perp}=n-m$ and that $V=U \oplus U^{\perp}$.
(e) Let $V:=\mathbb{R}_{2}[x]$ with the inner product defined in $\mathrm{Q} 3(\mathrm{~b})$, and let U be the subspace spanned by 1 and x. Find polynomials $p(x) \in U$ and $q(x) \in U^{\perp}$ such that $x^{2}=p(x)+q(x)$.
5. Let a, b, c be real numbers. Use the Cauchy-Schwarz inequality to show that if $x^{2}+y^{2}+z^{2}=1$ then $a x+b y+c z \leqslant \sqrt{a^{2}+b^{2}+c^{2}}$. At what points does equality hold?
6. Let V be a complex vector space, and let $\langle-,-\rangle: V \times V \rightarrow \mathbb{C}$ be a sesquilinear form: that is, for all $u, v, w \in V$ and all $\alpha, \beta \in \mathbb{C}$,

$$
\text { (i) }\langle\alpha u+\beta v, w\rangle=\alpha\langle u, w\rangle+\beta\langle v, w\rangle \quad \text { and } \quad \text { (ii) }\langle u, v\rangle=\overline{\langle v, u\rangle} \text {. }
$$

Note that $\langle v, v\rangle \in \mathbb{R}$ for all $v \in V$. If $\langle v, v\rangle>0$ for all $v \in V \backslash\{0\}$ then the form is said to be Hermitian.
(a) Show that $\langle u, \alpha v+\beta w\rangle=\bar{\alpha}\langle u, v\rangle+\bar{\beta}\langle u, w\rangle$ for all $u, v, w \in V$ and all $\alpha, \beta \in \mathbb{C}$.
(b) Show that if $\left\langle\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right)\right\rangle=x_{1} \overline{y_{1}}+\cdots+x_{n} \overline{y_{n}}$ then $\langle-,-\rangle$ is a Hermitian form on \mathbb{C}^{n}.
(c) Now suppose that V is finite-dimensional over \mathbb{C} and that the form $\langle-,-\rangle$ is Hermitian. Let U be a subspace of V, and, as in Q4, define $U^{\perp}:=\{v \in V:\langle v, u\rangle=0$ for all $u \in U\}$. Show that $U^{\perp} \leqslant V$ and that $V=U \oplus U^{\perp}$.

