
Inhomogeneous heat equation and boundary conditions

Consider the IBVP for the temperature T (x, t) in a rod of length L given by the inhomogeneous
heat equation
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with the inhomogeneous boundary conditions Tx(0, t) = φ(t) and Tx(L, t) = ψ(t) for t > 0 and
the initial condition T (x, 0) = f(x) for 0 < x < L, where ρ, c and k are positive constants and
the functions Q(x, t), φ(t), ψ(t) and f(x) are given.
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Note that Q is the volumetric heat source (due to e.g. radiation or chemical reactions) and the
heat flux in the positive direction q = −kTx according to Fourier’s law, so that the boundary
conditions prescribe q at each end of the rod.

Generalizing Fourier’s method

• In general Fourier’s method cannot be used to solve the IBVP for T because the heat
equation and boundary conditions are inhomogeneous (i.e. Q, φ and ψ are non-zero). We
now describe a generalization of Fourier’s method that works.

• We deal first with the boundary conditions: if we let T (x, t) = S(x, t) + U(x, t), where
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then the IBVP for T implies that the IBVP for U is given by
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with Ux(0, t) = 0 and Ux(L, t) = 0 for t > 0 and U(x, 0) = f̃(x) for 0 < x < L; here
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are functions that are known in terms of Q, φ, ψ and f . Thus, the boundary conditions
have been rendered homogeneous using a technique called ‘shifting the data’ (because φ
and ψ have moved from the boundary conditions in the IBVP for T to the PDE in the
IBVP for U).



• If Q̃ = 0, then we can solve the IBVP for U using Fourier’s method as in Example 3.4 to
obtain
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where the Fourier coefficients an are chosen to satisfy the initial condition so that

an =
2

L

∫ L

0

f̃(x) cos
(nπx
L

)
dx.

• This series solution for U(x, t) suggests that if Q̃ is not identically zero, then we should
seek a solution for U in the form of the Fourier cosine series
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where the Fourier coefficients Un(t) depend on time and are to be determined. From the
formulae for the Fourier coefficients of a cosine series, we deduce that Un(t) are given in
terms of U(x, t) by the integral expressions
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• We now use Leibniz’s Integral Rule and the heat equation for U to deduce that
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Integration by parts using the boundary conditions for U reveals that∫ L
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while we recognize the functions
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as the Fourier coefficients of the cosine series for Q̃(x, t). Combining these equations, we
find that Un is governed by the ODE
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with the initial condition for U giving the initial condition
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Remarks

• We have reduced the problem to a countably infinite set of IVPs for U0(t), U1(t), . . . .

• The IVP for Un(t) can be solved explicitly using an integrating factor.

• If Q̃ = 0, then Q̃n = 0 and we recover the solution for U obtained by Fourier’s method.


