D’Alembert’s solution and the characteristic diagram

e D’Alembert’s solution
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where P, ) and R are the points shown in the diagram.
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Note the deliberate abuse of notation in (2) to aid the geometric interpretation of (1).

e Definition: The curves x & ct = x =+ ¢ty are the characteristic lines through P : (zo, ).

It follows from (2) that y(P) depends only on

(i) f though the values f takes at @ and R;
(ii) g though the values g takes on the z-axis between @) and R.

This motivates the following definition.

Definition: The interval [xg — cto, xg + cto| of the z-axis between @) and R is called the
domain of dependence of P : (xo,to)

If f or g are modified outside the domain of dependence of P, then y(P) is unchanged.

e We can exploit the geometric interpretation (2) to construct explicit formulae for the
solution: the contribution to y(P) from f and g changes at points on the z-axis where f
and g change their analytic bevaviour.

Hence, given a particular f and g, the first task is to identify these points on the z-axis
and sketch the characteristic lines x + ¢t = constant through each of them — this is the
characterisrtic diagram.

The characteristic diagram divides the (z, t)-plane into regions in which the contributions
from f and g may be different: the second task is to evaluate y(P) for P in each of these
regions.



