
Fourier Series and PDEs Problem Sheet 4

1. Consider the initial boundary value problem for the temperature T (x, t) in a rod of length L
and thermal diffusivity κ given by the heat equation

∂T

∂t
= κ

∂2T

∂x2
for 0 < x < L, t > 0,

with the boundary conditions Tx(0, t) = 0 and Tx(L, t) = 0 for t > 0 and the initial condition
T (x, 0) = T ∗ x (L− x) /L2 for 0 < x < L, where T ∗ is a positive constant.

(a) Show that the solution T (x, t) is uniquely determined.

(b) Use the method of separation of variables, the principle of superposition and the theory of
Fourier series to derive the series solution given by

T (x, t) =
T ∗

6
−
∞∑

m=1

T ∗

m2π2
cos

(
2mπx

L

)
exp

(
−4m2π2κt

L2

)
.

(c) What is the behaviour of the temperature T (x, t) in the limit as t→∞?

[In part (b) you may assume that the orders of summation and integration may be interchanged
as necessary and the identities∫ L

0
cos
(mπx

L

)
cos
(nπx
L

)
dx =

L

2
δmn,

∫ L

0
x(L− x) cos

(nπx
L

)
dx dx = −L

3(1 + (−1)n)

n2π2
,

where m and n are positive integers and δmn is Kronecker’s delta.]

2. (a) Let κ and ω be positive constants. Show that the heat equation

∂T

∂t
= κ

∂2T

∂x2

has complex-valued solutions of the form F (x)eiωt provided

κF
′′

= iωF.

Hence find F if F ′(x)→ 0 as x→∞ and F (0) = T1, where T1 is a positive constant.

[You may assume that the roots of λ2 = iω/κ are λ = ±(1 + i)
√
ω/2κ.]

(b) Now let T (x, t) = T0 + Re
(
F (x)eiωt

)
, where T0 is a real constant. Verify that

T (x, t) = T0 + T1 exp

(
−
√

ω

2κ
x

)
cos

(
ωt−

√
ω

2κ
x

)
,

and explain why T (x, t) is a solution of the heat equation for which Tx(x, t)→ 0 as x→∞
and T (0, t) = T0 + T1 cos (ωt).

(c) A root cellar is used to store crops, ideally by keeping them as cool as possible in the
summer, but as warm as possible in the winter. Consider a root cellar buried in soil of
thermal diffusivity κ = 10−6 m2 s−1. Use the temperature profile in part (b) to predict

(i) the shallowest ideal depth of the root cellar;

(ii) the factor by which the amplitude of the temperature oscillations at ground level are
reduced at the shallowest ideal depth.



3. Consider the initial boundary value problem for the temperature T (x, t) in a rod of length L
given by the inhomogeneous heat equation

ρc
∂T

∂t
= k

∂2T

∂x2
+Q(x, t) for 0 < x < L, t > 0,

with the boundary conditions T (0, t) = φ(t) and T (L, t) = ψ(t) for t > 0 and the initial condition
T (x, 0) = f(x) for 0 < x < L, where ρ, c and k are positive constants and the functions Q(x, t),
φ(t), ψ(t) and f(x) are given.

(a) Let

T (x, t) = φ(t)
(

1− x

L

)
+ ψ(t)

x

L
+ U(x, t).

Determine the functions Q̃ and f̃ for which U satisfies the initial boundary value problem
given by

ρc
∂U

∂t
= k

∂2U

∂x2
+ Q̃(x, t) for 0 < x < L, t > 0,

with U(0, t) = U(L, t) = 0 for t > 0 and U(x, 0) = f̃(x) for 0 < x < L.

(b) By considering your answer to question 3 of sheet 3, write down the solution for U(x, t) in
the special case in which Q̃(x, t) = 0 for 0 < x < L, t > 0.

(c) Consider now the case in which Q̃ is not identically zero. Suppose that U(x, t) and Q̃(x, t)
may be expanded as the Fourier sine series

U(x, t) =
∞∑
n=1

Un(t) sin
(nπx
L

)
, Q̃(x, t) =

∞∑
n=1

Q̃n(t) sin
(nπx
L

)
,

where the Fourier coefficients are given by

Un(t) =
2

L

∫ L

0
U(x, t) sin

(nπx
L

)
dx, Q̃n(t) =

2

L

∫ L

0
Q̃(x, t) sin

(nπx
L

)
dx.

(i) By differentiating Un(t) under the integral sign, using the heat equation and integrating
by parts, show that

ρc
dUn

dt
+
kn2π2

L2
Un = Q̃n for t > 0.

Use the initial condition for U to write down the initial condition for Un.

(ii) Explain without any further calculations how to determine the temperature T (x, t)
given the functions Q(x, t), φ(t), ψ(t) and f(x).

(iii) What are the advantages of expanding U as a Fourier sine series rather than T?

Please send comments and corrections to oliver@maths.ox.ac.uk


